An autoradiographic study was conducted to determine whether kinin receptors are altered in the rat spinal cord in two experimental models of chronic hyperglycemia and insulin resistance. Sprague-Dawley rats were given 10% d-glucose in their drinking water alone or with insulin (9 mU/kg/min with osmotic pumps) for 4 weeks. Both groups and control rats were treated either with a normal chow diet or with an alpha-lipoic acid-supplemented diet as antioxidant therapy. After 4 weeks of treatment, glycemia, insulinemia, blood pressure, insulin resistance index, the production of superoxide anion in the aorta and the density of B1 receptor binding sites in the dorsal horn were significantly increased in the two models. These effects were prevented or attenuated by alpha-lipoic acid. In contrast, B2 receptor binding sites of most spinal cord laminae were increased in the glucose group only and were not affected by alpha-lipoic acid. Results show that chronic hyperglycemia associated with insulin resistance increases B1 and B2 receptor binding sites in the rat spinal cord through distinct mechanisms, including the oxidative stress for the B1 receptor.
Increases of spinal kinin receptor binding sites in two rat models of insulin resistance
RODI, Donata;
2005
Abstract
An autoradiographic study was conducted to determine whether kinin receptors are altered in the rat spinal cord in two experimental models of chronic hyperglycemia and insulin resistance. Sprague-Dawley rats were given 10% d-glucose in their drinking water alone or with insulin (9 mU/kg/min with osmotic pumps) for 4 weeks. Both groups and control rats were treated either with a normal chow diet or with an alpha-lipoic acid-supplemented diet as antioxidant therapy. After 4 weeks of treatment, glycemia, insulinemia, blood pressure, insulin resistance index, the production of superoxide anion in the aorta and the density of B1 receptor binding sites in the dorsal horn were significantly increased in the two models. These effects were prevented or attenuated by alpha-lipoic acid. In contrast, B2 receptor binding sites of most spinal cord laminae were increased in the glucose group only and were not affected by alpha-lipoic acid. Results show that chronic hyperglycemia associated with insulin resistance increases B1 and B2 receptor binding sites in the rat spinal cord through distinct mechanisms, including the oxidative stress for the B1 receptor.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.