Vertebrate photoreceptors respond to light with a graded hyperpolarization from a membrane potential in the dark of approximately -35 mV. The present work investigates the physiological role of the Ca2+-activated K+ current in the photovoltage generation in mechanically isolated rods from salamander retina. Membrane current or voltage in isolated rods was recorded from light- and dark-adapted rods under voltage- or current-clamp conditions, respectively. In light-adapted rods of the salamander, selective blockade of Ca2+-activated K+ channels by means of charybdotoxin depolarized the plasma membrane of current-clamped rods by approximately 30 mV, from a resting potential of approximately -35 mV. A similar depolarization was observed if external Ca2+ (1 mM) was substituted with Ba2+ or Sr2+. Under control conditions, the injection of currents of increasing amplitude (up to -100 pA, to mimic the current entering the rod outer segment) could not depolarize the membrane potential beyond a saturating value of approximately -20 mV. However, in the presence of charybdotoxin, rods depolarized up to +20 mV. In experiments with dark-adapted current-clamped rods, charybdotoxin perfusion lead to transient depolarizations up to 0 mV and steady-state depolarizations of approximately 5 mV above the dark resting potential. Finally, the recovery phase of the voltage response to a flash of light in the presence of charybdotoxin showed a transient overshoot of the membrane potential. It was concluded that Ca2+-activated K+ current is necessary for clamping the rod photovoltage to values close to the dark potential, thus allowing faithful single photon detection and correct synaptic transmission.
Calcium-activated potassium current clamps dark potential of vertebrate rods
PELUCCHI, Bruna;RISPOLI, Giorgio
2001
Abstract
Vertebrate photoreceptors respond to light with a graded hyperpolarization from a membrane potential in the dark of approximately -35 mV. The present work investigates the physiological role of the Ca2+-activated K+ current in the photovoltage generation in mechanically isolated rods from salamander retina. Membrane current or voltage in isolated rods was recorded from light- and dark-adapted rods under voltage- or current-clamp conditions, respectively. In light-adapted rods of the salamander, selective blockade of Ca2+-activated K+ channels by means of charybdotoxin depolarized the plasma membrane of current-clamped rods by approximately 30 mV, from a resting potential of approximately -35 mV. A similar depolarization was observed if external Ca2+ (1 mM) was substituted with Ba2+ or Sr2+. Under control conditions, the injection of currents of increasing amplitude (up to -100 pA, to mimic the current entering the rod outer segment) could not depolarize the membrane potential beyond a saturating value of approximately -20 mV. However, in the presence of charybdotoxin, rods depolarized up to +20 mV. In experiments with dark-adapted current-clamped rods, charybdotoxin perfusion lead to transient depolarizations up to 0 mV and steady-state depolarizations of approximately 5 mV above the dark resting potential. Finally, the recovery phase of the voltage response to a flash of light in the presence of charybdotoxin showed a transient overshoot of the membrane potential. It was concluded that Ca2+-activated K+ current is necessary for clamping the rod photovoltage to values close to the dark potential, thus allowing faithful single photon detection and correct synaptic transmission.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.