A general approach is developed for the statistical analysis of quantized trajectories produced by a class of chaotic maps generalizing piecewise-affine Markov systems. The frame- work is based on a generalization of the Perron–Frobenius oper- ator and on the mapping of its properties onto properties of tensor function algebra. The general results are specialized to the compu- tation of second-order statistical behaviors and exemplified with the analysis of two nontrivial maps exhibiting self-similar correla- tion trends.

Tensor Function Analysis of Quantized Chaotic Piecewise-Affine Pseudo-Markov Systems - Part I: 2nd Order Correlations and Self-Similarity

ROVATTI, Riccardo;MAZZINI, Gianluca
2002

Abstract

A general approach is developed for the statistical analysis of quantized trajectories produced by a class of chaotic maps generalizing piecewise-affine Markov systems. The frame- work is based on a generalization of the Perron–Frobenius oper- ator and on the mapping of its properties onto properties of tensor function algebra. The general results are specialized to the compu- tation of second-order statistical behaviors and exemplified with the analysis of two nontrivial maps exhibiting self-similar correla- tion trends.
2002
Rovatti, Riccardo; Mazzini, Gianluca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1206184
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact