This paper contains tow new results about minimal sets in euclidean spaces. The first one is of the Maximum principle type, and proves that if C1⊂C2 are minimal singular cones, then C1= C2 This result completes those proven in16 and 17. The second result proves that in every singular minimal cone , a nonempty minimal set E is strictly contained. If C is the “smallest” singular minimal cone in its dimension, then the boundary of E is analytic.

On minimal conies

MASSARI, Umberto;
1997

Abstract

This paper contains tow new results about minimal sets in euclidean spaces. The first one is of the Maximum principle type, and proves that if C1⊂C2 are minimal singular cones, then C1= C2 This result completes those proven in16 and 17. The second result proves that in every singular minimal cone , a nonempty minimal set E is strictly contained. If C is the “smallest” singular minimal cone in its dimension, then the boundary of E is analytic.
1997
Massari, Umberto; Gonzalez, E.; Miranda, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1206103
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact