L-type and R-type Ca(2+) currents were detected in frog semicircular canal hair cells. The former was noninactivating and nifedipine-sensitive (5 microM); the latter, partially inactivated, was resistant to omega-conotoxin GVIA (5 microM), omega-conotoxin MVIIC (5 microM), and omega-agatoxin IVA (0.4 microM), but was sensitive to mibefradil (10 microM). Both currents were sensitive to Ni(2+) and Cd(2+) (>10 microM). In some cells the L-type current amplitude increased almost twofold upon repetitive stimulation, whereas the R-type current remained unaffected. Eventually, run-down occurred for both currents, but was prevented by the protease inhibitor calpastatin. The R-type current peak component ran down first, without changing its plateau, suggesting that two channel types generate the R-type current. This peak component appeared at -40 mV, reached a maximal value at -30 mV, and became undetectable for voltages > or =0 mV, suggestive of a novel transient current: its inactivation was indeed reversibly removed when Ba(2+) was the charge carrier. The L-type current and the R-type current plateau were appreciable at -60 mV and peaked at -20 mV: the former current did not reverse for voltages up to +60 mV, the latter reversed between +30 and +60 mV due to an outward Cs(+) current flowing through the same Ca(2+) channel. The physiological role of these currents on hair cell function is discussed.

Calcium currents in hair cells isolated from semicircular canals of the frog

MARTINI, Marta;ROSSI, Marialisa;RUBBINI, Gemma;RISPOLI, Giorgio
2000

Abstract

L-type and R-type Ca(2+) currents were detected in frog semicircular canal hair cells. The former was noninactivating and nifedipine-sensitive (5 microM); the latter, partially inactivated, was resistant to omega-conotoxin GVIA (5 microM), omega-conotoxin MVIIC (5 microM), and omega-agatoxin IVA (0.4 microM), but was sensitive to mibefradil (10 microM). Both currents were sensitive to Ni(2+) and Cd(2+) (>10 microM). In some cells the L-type current amplitude increased almost twofold upon repetitive stimulation, whereas the R-type current remained unaffected. Eventually, run-down occurred for both currents, but was prevented by the protease inhibitor calpastatin. The R-type current peak component ran down first, without changing its plateau, suggesting that two channel types generate the R-type current. This peak component appeared at -40 mV, reached a maximal value at -30 mV, and became undetectable for voltages > or =0 mV, suggestive of a novel transient current: its inactivation was indeed reversibly removed when Ba(2+) was the charge carrier. The L-type current and the R-type current plateau were appreciable at -60 mV and peaked at -20 mV: the former current did not reverse for voltages up to +60 mV, the latter reversed between +30 and +60 mV due to an outward Cs(+) current flowing through the same Ca(2+) channel. The physiological role of these currents on hair cell function is discussed.
2000
Martini, Marta; Rossi, Marialisa; Rubbini, Gemma; Rispoli, Giorgio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1205890
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? ND
social impact