Some gene therapy applications will require simultaneous expression of multiple gene products to achieve a therapeutic effect. In this study we describe the generation and characterization of replication incompetent herpes simplex virus type 1 (HSV-1) vectors (HX86Z or HX86G) carrying distinct and independently regulated expression cassettes for five transgenes (hIL-2, hGM-CSF, hB7.1, HSV-tk and lacZ or hIFNγ). The transgenes, representing 12 kb of DNA sequence, were recombined into separate loci of a single mutant virus vector deleted for 11.6 kb of vector sequences representing portions of nine viral genes, ICP4, ICP22, ICP27, ICP47, U(L)24, U(L)41, U(L)44, U(S)10 and U(S)11. Deletion of the immediate-early genes ICP4, ICP22 and ICP27 substantially reduced vector cytotoxicity, prevented early and late viral gene expression and left intact MHC class I antigen expression. Simultaneous expression of multiple transgenes was obtained for up to 7 days in primary human melanoma cells with peak expression at 2-3 days after infection. The transgenes were chosen for their potential to function synergistically in tumor destruction and vaccine gene therapy applications, but the method and vector employed could be applied to other multigene therapy strategies. This study demonstrates the potential for engineering large transgene capacity DNA viruses such as HSV-1 for expression of multiple transgenes.

Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications

MARCONI, Peggy Carla Raffaella;
1998

Abstract

Some gene therapy applications will require simultaneous expression of multiple gene products to achieve a therapeutic effect. In this study we describe the generation and characterization of replication incompetent herpes simplex virus type 1 (HSV-1) vectors (HX86Z or HX86G) carrying distinct and independently regulated expression cassettes for five transgenes (hIL-2, hGM-CSF, hB7.1, HSV-tk and lacZ or hIFNγ). The transgenes, representing 12 kb of DNA sequence, were recombined into separate loci of a single mutant virus vector deleted for 11.6 kb of vector sequences representing portions of nine viral genes, ICP4, ICP22, ICP27, ICP47, U(L)24, U(L)41, U(L)44, U(S)10 and U(S)11. Deletion of the immediate-early genes ICP4, ICP22 and ICP27 substantially reduced vector cytotoxicity, prevented early and late viral gene expression and left intact MHC class I antigen expression. Simultaneous expression of multiple transgenes was obtained for up to 7 days in primary human melanoma cells with peak expression at 2-3 days after infection. The transgenes were chosen for their potential to function synergistically in tumor destruction and vaccine gene therapy applications, but the method and vector employed could be applied to other multigene therapy strategies. This study demonstrates the potential for engineering large transgene capacity DNA viruses such as HSV-1 for expression of multiple transgenes.
1998
Krisky, Dm; Marconi, Peggy Carla Raffaella; Oligino, Tj; Rouse, Rjd; Fink, Dj; Cohen, Jb; Watkins, Sc; Glorioso, Jc
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1205542
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? 107
social impact