We introduce and investigate the properties of Hochschild cohomology of algebras in an abelian monoidal category M. We show that the second Hochschild cohomology group of an algebra in M classifies extensions of A up to an equivalence. We characterize algebras of Hochschild dimension 0 (separable algebras), and of Hochschild dimension less or equal to 1 (formally smooth algebras). Several particular cases and applications are included in the last section of the paper.

Hochschild Cohomology And 'Smoothness' In Monoidal Categories''

ARDIZZONI, Alessandro;MENINI, Claudia;STEFAN, Dragos
2007

Abstract

We introduce and investigate the properties of Hochschild cohomology of algebras in an abelian monoidal category M. We show that the second Hochschild cohomology group of an algebra in M classifies extensions of A up to an equivalence. We characterize algebras of Hochschild dimension 0 (separable algebras), and of Hochschild dimension less or equal to 1 (formally smooth algebras). Several particular cases and applications are included in the last section of the paper.
2007
Ardizzoni, Alessandro; Menini, Claudia; Stefan, Dragos
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1205313
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact