A model for the analysis of carbon fiber reinforced polymers (CFRP) reinforced masonry walls - in the case of out-of-plane actions under service loads - is here developed by means of homogenization procedures. According to the approach adopted in a previous paper by the authors for in-plane actions [Composites Science and Technology 64 (13-14) (2004) 2097-2112], two homogenization procedures are discussed in detail: an analytical multi-step and a numerical single-step technique. The advantages of a multi-step approach consist in providing - under the assumption of simplified hypotheses on the strain distribution- explicit formulas for the constitutive function of CFRP reinforced masonry. In this way, a direct identification between a 3D body and a 2D Kirchhoff-Love plate is obtained. On the other hand, the single-step homogenization, based on a FE technique, provides more accurate and reliable 3D homogenized moduli. A critical discussion and the validation of the hypotheses assumed for the two models are presented by means of several comparisons on the homogenized moduli obtained. A final comparison between the two homogenization techniques discussed and a 3D discrete model is reported for the meaningful case of a simply supported plate symmetrically and asymmetrically reinforced.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Data di pubblicazione: | 2005 | |
Titolo: | Out-of-plane loaded CFRP reinforced masonry walls: mechanical characteristics by homogenization procedures | |
Autori: | A. CECCHI; G. MILANI; A. TRALLI | |
Rivista: | COMPOSITES SCIENCE AND TECHNOLOGY | |
Parole Chiave: | A. Carbon fibers; A. Layered structures; A. Structural materials; B. Mechanical properties; C. Finite element analysis (FEA) | |
Abstract: | A model for the analysis of carbon fiber reinforced polymers (CFRP) reinforced masonry walls - in the case of out-of-plane actions under service loads - is here developed by means of homogenization procedures. According to the approach adopted in a previous paper by the authors for in-plane actions [Composites Science and Technology 64 (13-14) (2004) 2097-2112], two homogenization procedures are discussed in detail: an analytical multi-step and a numerical single-step technique. The advantages of a multi-step approach consist in providing - under the assumption of simplified hypotheses on the strain distribution- explicit formulas for the constitutive function of CFRP reinforced masonry. In this way, a direct identification between a 3D body and a 2D Kirchhoff-Love plate is obtained. On the other hand, the single-step homogenization, based on a FE technique, provides more accurate and reliable 3D homogenized moduli. A critical discussion and the validation of the hypotheses assumed for the two models are presented by means of several comparisons on the homogenized moduli obtained. A final comparison between the two homogenization techniques discussed and a 3D discrete model is reported for the meaningful case of a simply supported plate symmetrically and asymmetrically reinforced. | |
Digital Object Identifier (DOI): | 10.1016/j.compscitech.2004.12.047 | |
Handle: | http://hdl.handle.net/11392/1205038 | |
Appare nelle tipologie: | 03.1 Articolo su rivista |