We prove that there exists an integer M such that if S ⊂ ℙ4 is a smooth surface with deg(S) > M, then the canonical map of S is birational. Then we consider surfaces, S, satisfying h i(script J signS(3 - i)) = 0, 0 ≤ i ≤ 2 and show that they are regular and that their canonical system is base point free and very ample if deg(S) > M and S doesn't contain -2-curves. Copyright © 2004 by Marcel Dekker, Inc.

On the canonical map of smooth surfaces in P4

ELLIA, Filippo Alfredo
Primo
;
2004

Abstract

We prove that there exists an integer M such that if S ⊂ ℙ4 is a smooth surface with deg(S) > M, then the canonical map of S is birational. Then we consider surfaces, S, satisfying h i(script J signS(3 - i)) = 0, 0 ≤ i ≤ 2 and show that they are regular and that their canonical system is base point free and very ample if deg(S) > M and S doesn't contain -2-curves. Copyright © 2004 by Marcel Dekker, Inc.
2004
Ellia, Filippo Alfredo; Folegatti, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1204363
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact