The analysis of myosin filament suspensions shows that these solutions are characterized by highly nonideal behavior. From these data a model is constructed that allows us to predict that 1) when subjected to an increasing protein osmotic pressure, myosin filaments experience an elastic deformation, which is not linearly related to the acting force; and 2) at constant protein osmotic pressure, when the cross-bridges of the myosin filaments are subjected to an external, nonosmotic force parallel to the filament axis, they are deformed and the water activity coefficient is altered. As a consequence, in muscle, passive and active shortening of the sarcomere is expected to promote the change of the water-water and of the water-protein interactions. We thus propose to depict muscle contraction as a chemo-osmoelastic transduction, where the analysis of the energy partition during the power stroke requires consideration of the osmotic factor in addition to the chemoelastic ones.

Thermodynamic features of myosin filament suspensions: Implications for the modeling of muscle contraction

GRAZI, Enrico;
2001

Abstract

The analysis of myosin filament suspensions shows that these solutions are characterized by highly nonideal behavior. From these data a model is constructed that allows us to predict that 1) when subjected to an increasing protein osmotic pressure, myosin filaments experience an elastic deformation, which is not linearly related to the acting force; and 2) at constant protein osmotic pressure, when the cross-bridges of the myosin filaments are subjected to an external, nonosmotic force parallel to the filament axis, they are deformed and the water activity coefficient is altered. As a consequence, in muscle, passive and active shortening of the sarcomere is expected to promote the change of the water-water and of the water-protein interactions. We thus propose to depict muscle contraction as a chemo-osmoelastic transduction, where the analysis of the energy partition during the power stroke requires consideration of the osmotic factor in addition to the chemoelastic ones.
2001
Grazi, Enrico; Cintio, O.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1203975
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact