We developed a model for n-type metal-oxide polycrystalline semiconductors which allows us to calculate the density of surface-chemisorbed oxygen and the band bending, once the Schottky barrier height is measured. From numerical simulation, we estimated for the polycrystalline SnO2 a depletion layer, Λ, of approximately 20 nm; consequently, we deposited films with a mean grain radius, R, larger (30 nm) than Λ, and smaller (10 nm). When R is smaller than Λ, the model predicts a flattening of the band bending, and a decrease in the density of chemisorbed oxygen that leads to the unpinning of the Fermi level. To give evidence of the predicted decrease in the density of surface states, we present and compare electrical measurements in dry air, as well as scanning tunnelling microscopy/spectroscopy results.

Surface state density decrease in nanostructured polycrystalline SnO2: modelling and experimental evidence

MALAGU', Cesare;CAROTTA, Maria Cristina;GUIDI, Vincenzo;MARTINELLI, Giuliano;
2004

Abstract

We developed a model for n-type metal-oxide polycrystalline semiconductors which allows us to calculate the density of surface-chemisorbed oxygen and the band bending, once the Schottky barrier height is measured. From numerical simulation, we estimated for the polycrystalline SnO2 a depletion layer, Λ, of approximately 20 nm; consequently, we deposited films with a mean grain radius, R, larger (30 nm) than Λ, and smaller (10 nm). When R is smaller than Λ, the model predicts a flattening of the band bending, and a decrease in the density of chemisorbed oxygen that leads to the unpinning of the Fermi level. To give evidence of the predicted decrease in the density of surface states, we present and compare electrical measurements in dry air, as well as scanning tunnelling microscopy/spectroscopy results.
2004
Malagu', Cesare; Carotta, Maria Cristina; H., Fissan; Guidi, Vincenzo; M. K., Kennedy; F. E., Kruis; Martinelli, Giuliano; T. G. G., Maffeis; G. T., O...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1203135
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact