We previously reported that chronic stimulation with low, noncytotoxic doses of extracellular adenosine triphosphate (ATP) induced a distorted maturation of dendritic cells (DCs) and impaired their capacity to initiate T-helper (Th) 1 responses in vitro. Here, we examined the effects of ATP on chemokine-receptor expression and chemokine production by DCs. ATP strongly induced expression of CXC chemokine receptor 4 on both immature and lipopolysaccharide (LPS)-stimulated DCs and slightly up-regulated CC chemokine receptor (CCR) 7 on both DC types. In contrast, ATP reduced CCR5 expression on immature DCs. These effects were confirmed at both the messenger RNA and protein levels and were not produced by uridine triphosphate (UTP). Consistent with the changed receptor expression, ATP increased migration and intracellular calcium of immature and mature DCs to stromal-derived factor 1 (CXC ligand [CXCL] 12) and macrophage inflammatory protein [MIP] 3 beta (CC ligand [CCL] 19), whereas responses to MIP-1 beta (CCL4) were reduced. DCs are an important source of chemokines influencing recruitment of distinct T-lymphocyte subsets. ATP, but not UTP, significantly reduced LPS-induced production of interferon-inducible protein 10 (CXCL10) and regulated upon activation, normal T-cell expressed and secreted chemokine (CCL5); increased secretion of macrophage-derived chemokine (CCL22); and did not change production of thymus and activation-regulated chemokine (CCL17). Consistent with these findings, supernatants from ATP-treated mature DCs attracted Th1 and T-cytotoxic 1 cells less efficiently, whereas migration of Th2 and T cytotoxic 2 cells was not affected. Our data suggest that ATP provides a signal for enhanced lymph node localization of DCs but that it may, at the same time, diminish the capacity of DCs to amplify type 1 immune responses.

Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes

FERRARI, Davide;DI VIRGILIO, Francesco;
2002

Abstract

We previously reported that chronic stimulation with low, noncytotoxic doses of extracellular adenosine triphosphate (ATP) induced a distorted maturation of dendritic cells (DCs) and impaired their capacity to initiate T-helper (Th) 1 responses in vitro. Here, we examined the effects of ATP on chemokine-receptor expression and chemokine production by DCs. ATP strongly induced expression of CXC chemokine receptor 4 on both immature and lipopolysaccharide (LPS)-stimulated DCs and slightly up-regulated CC chemokine receptor (CCR) 7 on both DC types. In contrast, ATP reduced CCR5 expression on immature DCs. These effects were confirmed at both the messenger RNA and protein levels and were not produced by uridine triphosphate (UTP). Consistent with the changed receptor expression, ATP increased migration and intracellular calcium of immature and mature DCs to stromal-derived factor 1 (CXC ligand [CXCL] 12) and macrophage inflammatory protein [MIP] 3 beta (CC ligand [CCL] 19), whereas responses to MIP-1 beta (CCL4) were reduced. DCs are an important source of chemokines influencing recruitment of distinct T-lymphocyte subsets. ATP, but not UTP, significantly reduced LPS-induced production of interferon-inducible protein 10 (CXCL10) and regulated upon activation, normal T-cell expressed and secreted chemokine (CCL5); increased secretion of macrophage-derived chemokine (CCL22); and did not change production of thymus and activation-regulated chemokine (CCL17). Consistent with these findings, supernatants from ATP-treated mature DCs attracted Th1 and T-cytotoxic 1 cells less efficiently, whereas migration of Th2 and T cytotoxic 2 cells was not affected. Our data suggest that ATP provides a signal for enhanced lymph node localization of DCs but that it may, at the same time, diminish the capacity of DCs to amplify type 1 immune responses.
2002
LA SALA, A.; Sebastiani, S.; Ferrari, Davide; DI VIRGILIO, Francesco; Idzko, M.; Norgauer, J.; Girolomoni, G.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0006497120381672-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1202429
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 92
social impact