OBJECTIVE: To investigate long-latency motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation in congenital hemiplegia (CH) and to seek for correlation with paretic hand movement deficits. METHODS: MEPs were recorded from the first dorsal interosseous of both hands in 12 CH patients and 12 age-matched controls; dexterity and upper limb function were quantitatively assessed in both groups. RESULTS: In CH patients, long-latency MEPs, occurring much later than the commonly reported MEPs, were frequently observed in the paretic and non-paretic hands. Four distinct groups of long-latency MEPs were found, each cluster being identified by its mean latency, namely 35, 85, 160 and 225 ms. The residual dexterity of the paretic hand was correlated with the presence of contralateral MEPs with a 20 and 225 ms latency and was negatively correlated with ipsilateral MEPs, irrespective of their latency. In controls, only few MEPs with a latency of 225 ms were found in 4 out of 12 subjects. CONCLUSIONS: The pattern of MEPs found in CH patients differs dramatically from that reported in adult stroke patients, suggesting that long-latency MEPs are a rather distinctive consequence of early corticospinal lesions. The hypothesis that a given cluster of long-latency MEPs is mediated by a particular pathway appears very unlikely. Rather, we suggest that an exacerbation of cortical and/or spinal excitability is at the origin of these long-latency MEPs.

Long-latency motor evoked potentials in congenital hemiplegia

FADIGA, Luciano;
2003

Abstract

OBJECTIVE: To investigate long-latency motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation in congenital hemiplegia (CH) and to seek for correlation with paretic hand movement deficits. METHODS: MEPs were recorded from the first dorsal interosseous of both hands in 12 CH patients and 12 age-matched controls; dexterity and upper limb function were quantitatively assessed in both groups. RESULTS: In CH patients, long-latency MEPs, occurring much later than the commonly reported MEPs, were frequently observed in the paretic and non-paretic hands. Four distinct groups of long-latency MEPs were found, each cluster being identified by its mean latency, namely 35, 85, 160 and 225 ms. The residual dexterity of the paretic hand was correlated with the presence of contralateral MEPs with a 20 and 225 ms latency and was negatively correlated with ipsilateral MEPs, irrespective of their latency. In controls, only few MEPs with a latency of 225 ms were found in 4 out of 12 subjects. CONCLUSIONS: The pattern of MEPs found in CH patients differs dramatically from that reported in adult stroke patients, suggesting that long-latency MEPs are a rather distinctive consequence of early corticospinal lesions. The hypothesis that a given cluster of long-latency MEPs is mediated by a particular pathway appears very unlikely. Rather, we suggest that an exacerbation of cortical and/or spinal excitability is at the origin of these long-latency MEPs.
2003
Vandermeeren, Y; Bastings, E; Fadiga, Luciano; Olivier, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1201787
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact