The chromatographic behavior of a series of racemic benzodiazepines was evaluated under linear and nonlinear conditions on a new hybrid polymeric (DACH-ACR) chiral stationary phase (CSP). Differently substituted benzodiazepines were employed as probes to make hypotheses concerning possible molecular interaction mechanisms originating between target compounds and active sites on the CSP. Hydrogen bonds were found to be pivotal for chromatographic retention and chiral selectivity. The competitive effect from a mobile-phase (MP) modifier able to interact with the CSP through H-bonds was investigated. The performance of the polymeric DACH-ACR CSP for preparative purposes was also evaluated. The competitive adsorption isotherms of two benzodiazepines, lorazepam and temazepam, were measured at different MP compositions through the so-called inverse method. The adsorption data were fitted with a competitive bi-Langmuir adsorption isotherm. Enantiomeric separations under nonlinear conditions were modeled by using the equilibrium dispersive (ED) model of chromatography. Theoretical overloaded band profiles (obtained by solving the system of partial differential equations described by the ED model) matched, in a significantly accurate way, the profiles experimentally measured.

Adsorption equilibria of benzodiazepines on a hybrid polymeric chiral stationary phase

CAVAZZINI, Alberto;DONDI, Francesco;MINGHINI, Erik;MASSI, Alessandro;
2005

Abstract

The chromatographic behavior of a series of racemic benzodiazepines was evaluated under linear and nonlinear conditions on a new hybrid polymeric (DACH-ACR) chiral stationary phase (CSP). Differently substituted benzodiazepines were employed as probes to make hypotheses concerning possible molecular interaction mechanisms originating between target compounds and active sites on the CSP. Hydrogen bonds were found to be pivotal for chromatographic retention and chiral selectivity. The competitive effect from a mobile-phase (MP) modifier able to interact with the CSP through H-bonds was investigated. The performance of the polymeric DACH-ACR CSP for preparative purposes was also evaluated. The competitive adsorption isotherms of two benzodiazepines, lorazepam and temazepam, were measured at different MP compositions through the so-called inverse method. The adsorption data were fitted with a competitive bi-Langmuir adsorption isotherm. Enantiomeric separations under nonlinear conditions were modeled by using the equilibrium dispersive (ED) model of chromatography. Theoretical overloaded band profiles (obtained by solving the system of partial differential equations described by the ED model) matched, in a significantly accurate way, the profiles experimentally measured.
Cavazzini, Alberto; Dondi, Francesco; S., Marmai; Minghini, Erik; Massi, Alessandro; C., Villani; R., Rompietti; F., Gasparrini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1201362
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact