Various experimental approaches have been used in this work to assess the thermal stabilities of lupin seed conglutin γ at two pH values, 4.5 and 7.5, at which the protein exists as a protomer and a tetramer, respectively. The patterns of thermal unfolding at the two pH values differed significantly; the tetramer aggregated and became insoluble, whereas the protomer was still soluble after thermal treatment. Also, the midpoint transition temperatures were dramatically different, being 60.3 and 75.1 °C for the protomer and tetramer, respectively. The behavior of conglutin γ at neutral pH was also affected by disulfide formation/interchange, in that some unfolded protein molecules became covalently stabilized. More detailed analyses by differential scanning calorimetry and indirect fluorescence measurements, using 8-anilino-1-naphthalenesulfonic acid as a probe, confirmed the remarkable differences observed in the thermal stabilities of the two protein forms and allowed models for their unfolding patterns to be drawn.

Thermal stabilities of lupin seed conglutinin gamma promoters and tetramers

BELLINI, Tiziana;DALLOCCHIO, Franco Pasquale Filippo
2000

Abstract

Various experimental approaches have been used in this work to assess the thermal stabilities of lupin seed conglutin γ at two pH values, 4.5 and 7.5, at which the protein exists as a protomer and a tetramer, respectively. The patterns of thermal unfolding at the two pH values differed significantly; the tetramer aggregated and became insoluble, whereas the protomer was still soluble after thermal treatment. Also, the midpoint transition temperatures were dramatically different, being 60.3 and 75.1 °C for the protomer and tetramer, respectively. The behavior of conglutin γ at neutral pH was also affected by disulfide formation/interchange, in that some unfolded protein molecules became covalently stabilized. More detailed analyses by differential scanning calorimetry and indirect fluorescence measurements, using 8-anilino-1-naphthalenesulfonic acid as a probe, confirmed the remarkable differences observed in the thermal stabilities of the two protein forms and allowed models for their unfolding patterns to be drawn.
Duranti, M.; Sessa, F.; Scarafoni, A.; Bellini, Tiziana; Dallocchio, Franco Pasquale Filippo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1201095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact