Peptide nucleic acids (PNAs) are DNA mimics composed of N-(2-aminoethyl)glycine units. This structure gives to PNAs (a) resistance to DNases and proteinases, (b) capacity to hybridize with high affinity to complementary sequences of single-stranded RNA and DNA and (c) capacity to form highly stable (PNA)2-RNA triplexes with RNA targets. Furthermore, DNA-PNA hybrid molecules are capable to reversibly interact with DNA-binding proteins, being therefore of interest for studies on regulation of gene expression by the decoy approach. The major conclusion of this paper is that cationic liposomes are able to efficiently complexate DNA-PNA hybrid molecules and mediate their binding to target cells. Our results are of some interest, since, unlike commonly used nucleic acids analogs, PNA oligomers are not taken up spontaneously into the cells. In addition, they are not suitable for an efficient delivery with commonly used liposomal formulations. Transfection of PNA-DNA hybrid molecules to in vitro cultured cells could be of great interest to determine the applications of these new reagents to experimental alteration of gene expression.

Liposomes as carriers for DNA-PNA hybrids

NASTRUZZI, Claudio;CORTESI, Rita;ESPOSITO, Elisabetta;GAMBARI, Roberto;BORGATTI, Monica;BIANCHI, Nicoletta;FERIOTTO, Giordana;MISCHIATI, Carlo
2000

Abstract

Peptide nucleic acids (PNAs) are DNA mimics composed of N-(2-aminoethyl)glycine units. This structure gives to PNAs (a) resistance to DNases and proteinases, (b) capacity to hybridize with high affinity to complementary sequences of single-stranded RNA and DNA and (c) capacity to form highly stable (PNA)2-RNA triplexes with RNA targets. Furthermore, DNA-PNA hybrid molecules are capable to reversibly interact with DNA-binding proteins, being therefore of interest for studies on regulation of gene expression by the decoy approach. The major conclusion of this paper is that cationic liposomes are able to efficiently complexate DNA-PNA hybrid molecules and mediate their binding to target cells. Our results are of some interest, since, unlike commonly used nucleic acids analogs, PNA oligomers are not taken up spontaneously into the cells. In addition, they are not suitable for an efficient delivery with commonly used liposomal formulations. Transfection of PNA-DNA hybrid molecules to in vitro cultured cells could be of great interest to determine the applications of these new reagents to experimental alteration of gene expression.
2000
Nastruzzi, Claudio; Cortesi, Rita; Esposito, Elisabetta; Gambari, Roberto; Borgatti, Monica; Bianchi, Nicoletta; Feriotto, Giordana; Mischiati, Carlo...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1200253
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 48
social impact