Two different applications of the operator splitting method are presented here. The first one concerns hyperbolic systems of balance laws in one space dimension: we state the existence and the stability of solutions for initial data with bounded variation. As an example a case of vehicular traffic flow is then considered. The second application concerns abstract nonlinear semigroups in a metric space: we show how a composition of semigroups can be defined, thus generalizing Trotter-Kato product formulas to nonlinear semigroups.
On the operator splitting method: nonlinear balance laws and a generalization of Trotter-Kato formulas
CORLI, Andrea
2007
Abstract
Two different applications of the operator splitting method are presented here. The first one concerns hyperbolic systems of balance laws in one space dimension: we state the existence and the stability of solutions for initial data with bounded variation. As an example a case of vehicular traffic flow is then considered. The second application concerns abstract nonlinear semigroups in a metric space: we show how a composition of semigroups can be defined, thus generalizing Trotter-Kato product formulas to nonlinear semigroups.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.