Two different applications of the operator splitting method are presented here. The first one concerns hyperbolic systems of balance laws in one space dimension: we state the existence and the stability of solutions for initial data with bounded variation. As an example a case of vehicular traffic flow is then considered. The second application concerns abstract nonlinear semigroups in a metric space: we show how a composition of semigroups can be defined, thus generalizing Trotter-Kato product formulas to nonlinear semigroups.

On the operator splitting method: nonlinear balance laws and a generalization of Trotter-Kato formulas

CORLI, Andrea
2007

Abstract

Two different applications of the operator splitting method are presented here. The first one concerns hyperbolic systems of balance laws in one space dimension: we state the existence and the stability of solutions for initial data with bounded variation. As an example a case of vehicular traffic flow is then considered. The second application concerns abstract nonlinear semigroups in a metric space: we show how a composition of semigroups can be defined, thus generalizing Trotter-Kato product formulas to nonlinear semigroups.
2007
Operator splitting; nonlinear balance laws; Trotter-Kato formulas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199926
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact