rilankite-type zirconium titanate, a promising structure for ceramic pigments, was synthesized at 1400 degrees C following three main doping strategies: (a) ZrTi(1-x)A(x)O(4), (b) ZrTi(1-x-y)A(x)B(y)O(4) and (c) Zr1-xCTiO4 where A = Co, Cr, Fe, Mn. Ni or V (chromophores), B = Sb or W (counterions) and C = Pr (chromophore); x = y = 0.05. Powders were characterized by XRD with Rietveld refinements and DRS in the UV-visible-NIR range; technological properties were appraised in several ceramic matrices (frits, glazes and body). Zirconium titanate can be usefully coloured with first row transition elements, giving green and greenish yellow (Co and Ni); orange-buff (Cr and V); tan-brown hues (Mn and Fe). In industrial-like synthesis conditions, a disordered structure as (Zr,Ti)O-2, with both Zr and Ti randomly distributed in the octahedral site, is achieved. Doping with chromophores and counterions induces unit cell dimensions variation and causes an oversatUration in zirconium oxide. Optical spectroscopy reveals the occurrence of Co2+, Cr3+, Fe3+, Mn2+, Mn3+, Ni2+, V3+ and V4+. The zirconium titanate pigments fulfil current technological requirements for low-temperature applications, but exhibit a limited chemico-physical stability for higher firing temperature and in chemically aggressive media.
Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties
CRUCIANI, Giuseppe
2006
Abstract
rilankite-type zirconium titanate, a promising structure for ceramic pigments, was synthesized at 1400 degrees C following three main doping strategies: (a) ZrTi(1-x)A(x)O(4), (b) ZrTi(1-x-y)A(x)B(y)O(4) and (c) Zr1-xCTiO4 where A = Co, Cr, Fe, Mn. Ni or V (chromophores), B = Sb or W (counterions) and C = Pr (chromophore); x = y = 0.05. Powders were characterized by XRD with Rietveld refinements and DRS in the UV-visible-NIR range; technological properties were appraised in several ceramic matrices (frits, glazes and body). Zirconium titanate can be usefully coloured with first row transition elements, giving green and greenish yellow (Co and Ni); orange-buff (Cr and V); tan-brown hues (Mn and Fe). In industrial-like synthesis conditions, a disordered structure as (Zr,Ti)O-2, with both Zr and Ti randomly distributed in the octahedral site, is achieved. Doping with chromophores and counterions induces unit cell dimensions variation and causes an oversatUration in zirconium oxide. Optical spectroscopy reveals the occurrence of Co2+, Cr3+, Fe3+, Mn2+, Mn3+, Ni2+, V3+ and V4+. The zirconium titanate pigments fulfil current technological requirements for low-temperature applications, but exhibit a limited chemico-physical stability for higher firing temperature and in chemically aggressive media.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.