Isolated hepatocytes of the European eel (Anguilla anguilla) have been used as experimental model to characterize the effects of Cd2+ and Hg2+ on either basal or epinephrine-stimulated glucose release. Cd2+ strongly reduced glucose output from cells perifused in BioGel P4 columns and challenged with epinephrine, with a maximum inhibition of 95% reached at 10 μM (IC50 0.04 μM). The epinephrine-stimulated glucose output was also reduced by Hg2+, although a significant inhibition of about 60% was achieved only at 10 μM (IC50 5 μM). The possible influence of Cd2+ and Hg2+ on adenylyl cyclase/cAMP transduction pathway has been investigated, since this system is known to play a pivotal role in the regulation of fish liver glycogen breakdown and consequent glucose release. Micromolar concentrations of both heavy metals significantly reduced the epinephrine-modulated cAMP levels in isolated eel hepatocytes, in good agreement with the reduction of glucose output. Cd2+ and Hg2+ also significantly reduced basal and epinephrine-stimulated adenylyl cyclase activity in liver membrane preparations. A competitive inhibition with respect to Mg2+ was shown by Cd2+ and Hg2+, which significantly reduced the affinity of the allosteric activator for the adenylyl cyclase system. Apparent Km for Mg2+ was 4.35 mM in basal conditions, and increased to 9.1 and 7.1 mM in the presence of 10 μM Cd2+ and Hg2+, respectively. These results indicate that Cd2+ and Hg2+ may impair a crucial intracellular transduction pathway involved in the adrenergic control of glucose metabolism, but also in several other routes of hormonal regulation of liver functions. © 2003 Elsevier Science B.V. All rights reserved.

Cd2+ and Hg2+ affect glucose release and cAMP-dependent transduction pathway in isolated eel hepatocytes

CAPUZZO, Antonio
2003

Abstract

Isolated hepatocytes of the European eel (Anguilla anguilla) have been used as experimental model to characterize the effects of Cd2+ and Hg2+ on either basal or epinephrine-stimulated glucose release. Cd2+ strongly reduced glucose output from cells perifused in BioGel P4 columns and challenged with epinephrine, with a maximum inhibition of 95% reached at 10 μM (IC50 0.04 μM). The epinephrine-stimulated glucose output was also reduced by Hg2+, although a significant inhibition of about 60% was achieved only at 10 μM (IC50 5 μM). The possible influence of Cd2+ and Hg2+ on adenylyl cyclase/cAMP transduction pathway has been investigated, since this system is known to play a pivotal role in the regulation of fish liver glycogen breakdown and consequent glucose release. Micromolar concentrations of both heavy metals significantly reduced the epinephrine-modulated cAMP levels in isolated eel hepatocytes, in good agreement with the reduction of glucose output. Cd2+ and Hg2+ also significantly reduced basal and epinephrine-stimulated adenylyl cyclase activity in liver membrane preparations. A competitive inhibition with respect to Mg2+ was shown by Cd2+ and Hg2+, which significantly reduced the affinity of the allosteric activator for the adenylyl cyclase system. Apparent Km for Mg2+ was 4.35 mM in basal conditions, and increased to 9.1 and 7.1 mM in the presence of 10 μM Cd2+ and Hg2+, respectively. These results indicate that Cd2+ and Hg2+ may impair a crucial intracellular transduction pathway involved in the adrenergic control of glucose metabolism, but also in several other routes of hormonal regulation of liver functions. © 2003 Elsevier Science B.V. All rights reserved.
2003
E., Fabbri; F., Caselli; A., Piano; G., Sartor; Capuzzo, Antonio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact