G proteins are members of a highly conserved superfamily of GTPases, which includes heterotrimeric (alpha, beta, gamma) proteins acting as critical control points for transmembrane signaling. In ectothermal vertebrates, knowledge about these proteins is scarce, and our work provides the first demonstration that G(s), G(q), and G(i) proteins are all present in the liver of a fish. G(q)alpha subunits of about 42 kDa have been identified in European eel (Anguilla anguilla) liver membranes, supporting previous reports about the existence of hormone transduction pathways coupled to inositol 1,4,5-trisphosphate/Ca(2+) enhancement in fish hepatocytes. Although two G(s)alpha proteins of about 45 and 52 kDa have been reported in mammals, a single isoform of approximately 45 kDa has been recognized in eel liver. G(s)alpha and G(q)alpha proteins are involved in the epinephrine transduction pathway, leading to cAMP and Ca(2+) intracellular increments, respectively. Interestingly, both messengers significantly stimulated glucose release from eel hepatocytes but with a different time course. In fact, the Ca(2+)-dependent glucose output preceded the cAMP-mediated release by about 7 min. G(i)alpha subunits of about 40 kDa were also immunodetected, suggesting the presence of hormone receptors leading to adenylyl cyclase inhibition in eel liver; however, alpha(2)- adrenoreceptor ligands were ineffective on both enzyme activity and glucose release.
G proteins immunodetection and adrenergic transduction pathways in the liver of Anguilla anguilla
CAPUZZO, Antonio;
2002
Abstract
G proteins are members of a highly conserved superfamily of GTPases, which includes heterotrimeric (alpha, beta, gamma) proteins acting as critical control points for transmembrane signaling. In ectothermal vertebrates, knowledge about these proteins is scarce, and our work provides the first demonstration that G(s), G(q), and G(i) proteins are all present in the liver of a fish. G(q)alpha subunits of about 42 kDa have been identified in European eel (Anguilla anguilla) liver membranes, supporting previous reports about the existence of hormone transduction pathways coupled to inositol 1,4,5-trisphosphate/Ca(2+) enhancement in fish hepatocytes. Although two G(s)alpha proteins of about 45 and 52 kDa have been reported in mammals, a single isoform of approximately 45 kDa has been recognized in eel liver. G(s)alpha and G(q)alpha proteins are involved in the epinephrine transduction pathway, leading to cAMP and Ca(2+) intracellular increments, respectively. Interestingly, both messengers significantly stimulated glucose release from eel hepatocytes but with a different time course. In fact, the Ca(2+)-dependent glucose output preceded the cAMP-mediated release by about 7 min. G(i)alpha subunits of about 40 kDa were also immunodetected, suggesting the presence of hormone receptors leading to adenylyl cyclase inhibition in eel liver; however, alpha(2)- adrenoreceptor ligands were ineffective on both enzyme activity and glucose release.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.