A growing body of evidence, accumulated over the past 15 years, has highlighted that the protein kinase C family of isozymes is capable of translocating to the nucleus or is resident within the nucleus. The comprehension of protein kinase C isoform regulation within this organelle is under development. At present, it is emerging that lipid second messengers may play at least two roles in the control of nuclear protein kinase C: on one side they serve as chemical attractants, on the other they directly modulate the activity of specific isoforms. One of the best characterized lipid second messenger that could be involved in the regulation of nuclear PKC activity is DAG. The existence of two separate pools of nuclear DAG suggests that this lipid second messenger might be involved in distinct pathways that lead to different cell responses. Nuclear phosphatidylglycerol, D-3 phosphorylated inositol lipids and nuclear fatty acids are involved in a striking variety of critical biological functions which may act by specific PKC activation. The fine tuning of PKC regulation in cells subjected to proliferating or differentiating stimuli, might prove to be of great interest also for cancer therapy, given the fact that PKC-dependent signaling pathways are increasingly being seen as possible pharmacological target in some forms of neoplastic diseases. In this article, we review the current knowledge about lipid second messengers that are involved in regulating the translocation and/or the activity of different protein kinase C isoforms identified at the nuclear level.

Protein kinase C isoforms and lipid second messengers: a critical nuclear partnership?

NERI, Luca Maria;BORGATTI, Paola;CAPITANI, Silvano;
2002

Abstract

A growing body of evidence, accumulated over the past 15 years, has highlighted that the protein kinase C family of isozymes is capable of translocating to the nucleus or is resident within the nucleus. The comprehension of protein kinase C isoform regulation within this organelle is under development. At present, it is emerging that lipid second messengers may play at least two roles in the control of nuclear protein kinase C: on one side they serve as chemical attractants, on the other they directly modulate the activity of specific isoforms. One of the best characterized lipid second messenger that could be involved in the regulation of nuclear PKC activity is DAG. The existence of two separate pools of nuclear DAG suggests that this lipid second messenger might be involved in distinct pathways that lead to different cell responses. Nuclear phosphatidylglycerol, D-3 phosphorylated inositol lipids and nuclear fatty acids are involved in a striking variety of critical biological functions which may act by specific PKC activation. The fine tuning of PKC regulation in cells subjected to proliferating or differentiating stimuli, might prove to be of great interest also for cancer therapy, given the fact that PKC-dependent signaling pathways are increasingly being seen as possible pharmacological target in some forms of neoplastic diseases. In this article, we review the current knowledge about lipid second messengers that are involved in regulating the translocation and/or the activity of different protein kinase C isoforms identified at the nuclear level.
2002
Neri, Luca Maria; Borgatti, Paola; Capitani, Silvano; Martelli, A. M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199505
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact