The gravitational split-flow lateral transport thin fractionation is known to be a fast, simple, theoretically tractable and tunable tool for the binary separation of molecular or particulate samples into different dimensional fractions. This fractionation is performed in a so-called SPLITT cell and is due to the combined effect of the gravitational force field and the flow rates inside the separation channel. It is known that separation performance is strongly dependent on the flow rate conditions and feed flow concentration, however, to date, few studies have been conducted to investigate the effect non-specific crossover has on separation. The aim of this work is to establish whether diffusive processes stemming from hydrodynamic effects contribute in any way to the quality of separation. A silica sample of known ranule size distribution was chosen for this study which has nvironmental applications.
SPLITT Cell Analytical Separation of Silica Particles. Non-Specific Crossover Effects: Does the Shear-Induced Diffusion Play a Role?
CONTADO, Catia;
2007
Abstract
The gravitational split-flow lateral transport thin fractionation is known to be a fast, simple, theoretically tractable and tunable tool for the binary separation of molecular or particulate samples into different dimensional fractions. This fractionation is performed in a so-called SPLITT cell and is due to the combined effect of the gravitational force field and the flow rates inside the separation channel. It is known that separation performance is strongly dependent on the flow rate conditions and feed flow concentration, however, to date, few studies have been conducted to investigate the effect non-specific crossover has on separation. The aim of this work is to establish whether diffusive processes stemming from hydrodynamic effects contribute in any way to the quality of separation. A silica sample of known ranule size distribution was chosen for this study which has nvironmental applications.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.