A biophysical description of the denervated rat sympathetic neuron is reported, obtained by the two-electrode voltage-clamp technique in mature intact superior cervical ganglia in vitro. At membrane potential values negative to -50 mV, the normal, quiescent neuron displays voltage-dependent K and Cl conductances; following direct or synaptic stimulation (15Hz for 10 s), the neuron moves to a new resting state characterized by increased amplitude and voltage dependence of Cl conductance. Denervation produces two main effects: 1) resting Cl conductance gradually increases while its voltage-dependence decreases; by 30 days a high-conductance resting state prevails, almost independent of membrane potential in the -50/-110 mV range; 2) the increase in amplitude and voltage-dependence of Cl conductance, produced by direct stimulation in control neurons, is less marked in denervated neurons, and is observed over an increasingly small range of membrane potentials. Thirty days after denervation, the prevailing high-conductance resting state appears virtually insensitive to changes in membrane potential and stimulation. Voltage-dependent potassium currents involved in spike electrogenesis (the delayed compound potassium current and the fast transient potassium current) exhibit an early drastic decrease in peak amplitude in the denervated neuron; the effect is largely reversed after 6 days. Remarkable changes in fast transient potassium current kinetics occur following denervation: the steady-state inactivation curve shifts by up to +15 mV toward positive potential and voltage sensitivity of inactivation removal becomes more steep. A comprehensive mathematical model of the denervated neuron is presented that fits the neuron behavior under current-clamp conditions. It confirms that neuronal excitability is tuned by the conductances (mostly chloride conductance) that control the resting membrane potential level, and by fast transient potassium current. Impairment of the latter reduces both inward threshold charge for firing and spike repolarization rate, and fast transient potassium current failure cancels the voltage dependence of both processes.
Biophysical properties of the silent and activated rat sympathetic neuron following denervation
SACCHI, Oscar;ROSSI, Marialisa;CANELLA, Rita;
2005
Abstract
A biophysical description of the denervated rat sympathetic neuron is reported, obtained by the two-electrode voltage-clamp technique in mature intact superior cervical ganglia in vitro. At membrane potential values negative to -50 mV, the normal, quiescent neuron displays voltage-dependent K and Cl conductances; following direct or synaptic stimulation (15Hz for 10 s), the neuron moves to a new resting state characterized by increased amplitude and voltage dependence of Cl conductance. Denervation produces two main effects: 1) resting Cl conductance gradually increases while its voltage-dependence decreases; by 30 days a high-conductance resting state prevails, almost independent of membrane potential in the -50/-110 mV range; 2) the increase in amplitude and voltage-dependence of Cl conductance, produced by direct stimulation in control neurons, is less marked in denervated neurons, and is observed over an increasingly small range of membrane potentials. Thirty days after denervation, the prevailing high-conductance resting state appears virtually insensitive to changes in membrane potential and stimulation. Voltage-dependent potassium currents involved in spike electrogenesis (the delayed compound potassium current and the fast transient potassium current) exhibit an early drastic decrease in peak amplitude in the denervated neuron; the effect is largely reversed after 6 days. Remarkable changes in fast transient potassium current kinetics occur following denervation: the steady-state inactivation curve shifts by up to +15 mV toward positive potential and voltage sensitivity of inactivation removal becomes more steep. A comprehensive mathematical model of the denervated neuron is presented that fits the neuron behavior under current-clamp conditions. It confirms that neuronal excitability is tuned by the conductances (mostly chloride conductance) that control the resting membrane potential level, and by fast transient potassium current. Impairment of the latter reduces both inward threshold charge for firing and spike repolarization rate, and fast transient potassium current failure cancels the voltage dependence of both processes.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.