In this work the numerical integration of 1D shallow water equations (SWE) over movable bed is performed using a well-balanced central weighted essentially non-oscillatory (CWENO) scheme, fourth-order accurate in space and in time. Time accuracy is obtained following a Runge-Kutta (RK) procedure, coupled with its natural continuous extension (NCE). Spatial accuracy is obtained using WENO reconstructions of conservative variables and of flux and bed derivatives. An original treatment for bed slope source term, which maintains the established order of accuracy and satisfies the property of exactly preserving the quiescent flow (C-property), is introduced in the scheme. This treatment consists of two procedures. The former involves the evaluation of the point-values of the flux derivative, considered as a whole with the bed slope source term. The latter involves the spatial integration of the source term, analytically manipulated to take advantage from the expected regularity of the free surface elevation. The high accuracy of the scheme allows to obtain good results using coarse grids, with consequent gain in terms of computational effort. The well-balancing of the scheme allows to reproduce small perturbations of the free surface and of the bottom otherwise of the same order of magnitude of the numerical errors induced by the non-balancing. The accuracy, the well-balancing and the good resolution of the model in reproducing free surface flow over movable bed are tested over analytical solutions and over numerical results available in literature.
High-order balanced CWENO scheme for movable bed Shallow Water Equations
CALEFFI, Valerio;VALIANI, Alessandro;BERNINI, Anna
2007
Abstract
In this work the numerical integration of 1D shallow water equations (SWE) over movable bed is performed using a well-balanced central weighted essentially non-oscillatory (CWENO) scheme, fourth-order accurate in space and in time. Time accuracy is obtained following a Runge-Kutta (RK) procedure, coupled with its natural continuous extension (NCE). Spatial accuracy is obtained using WENO reconstructions of conservative variables and of flux and bed derivatives. An original treatment for bed slope source term, which maintains the established order of accuracy and satisfies the property of exactly preserving the quiescent flow (C-property), is introduced in the scheme. This treatment consists of two procedures. The former involves the evaluation of the point-values of the flux derivative, considered as a whole with the bed slope source term. The latter involves the spatial integration of the source term, analytically manipulated to take advantage from the expected regularity of the free surface elevation. The high accuracy of the scheme allows to obtain good results using coarse grids, with consequent gain in terms of computational effort. The well-balancing of the scheme allows to reproduce small perturbations of the free surface and of the bottom otherwise of the same order of magnitude of the numerical errors induced by the non-balancing. The accuracy, the well-balancing and the good resolution of the model in reproducing free surface flow over movable bed are tested over analytical solutions and over numerical results available in literature.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.