The pharmacological inhibitors of phosphoinositide 3-kinase (PI3K)/Akt pathway have been proposed in the treatment of leukemia based on their antiproliferative effects. However, several studies demonstrated the activation of PI3K in the nuclei of all-trans-retinoic acid (ATRA) - differentiated HL-60 cells, raising the possibility that PI3K/Akt-inhibitors may block antitumor properties of retinoids. The aim of the present study was to investigate the possible activation of nuclear Akt in ATRA-treated cells and to test the effects of Akt-inhibitors on ATRA-mediated differentiation. The Akt-activity was found to be increased in the nuclei and lysates of ATRA-differentiated HL-60 and NB4 cells. The down-modulation of the expression of Akt protein in HL-60 cells using siRNA reduces the CD11b expression in ATRA-treated cells. The treatment of both cell lines with the commercially available Akt inhibitors inhibited the growth of both control and ATRA-treated cells. Akt-inhibitors had no inhibitory effects on ATRA-mediated growth arrest and the expression of CD11b in HL-60 cells, but increased the percentage of control cells expressing CD11b. In contrast, the presence of Akt inhibitors reduced the expression of CD11b in ATRA-treated NB4 cells.
The role of the nuclear Akt activation and Akt inhibitors in all-trans-retinoic acid-differentiated HL-60 cells.
BRUGNOLI, Federica;BERTAGNOLO, Valeria;
2006
Abstract
The pharmacological inhibitors of phosphoinositide 3-kinase (PI3K)/Akt pathway have been proposed in the treatment of leukemia based on their antiproliferative effects. However, several studies demonstrated the activation of PI3K in the nuclei of all-trans-retinoic acid (ATRA) - differentiated HL-60 cells, raising the possibility that PI3K/Akt-inhibitors may block antitumor properties of retinoids. The aim of the present study was to investigate the possible activation of nuclear Akt in ATRA-treated cells and to test the effects of Akt-inhibitors on ATRA-mediated differentiation. The Akt-activity was found to be increased in the nuclei and lysates of ATRA-differentiated HL-60 and NB4 cells. The down-modulation of the expression of Akt protein in HL-60 cells using siRNA reduces the CD11b expression in ATRA-treated cells. The treatment of both cell lines with the commercially available Akt inhibitors inhibited the growth of both control and ATRA-treated cells. Akt-inhibitors had no inhibitory effects on ATRA-mediated growth arrest and the expression of CD11b in HL-60 cells, but increased the percentage of control cells expressing CD11b. In contrast, the presence of Akt inhibitors reduced the expression of CD11b in ATRA-treated NB4 cells.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.