beta-Diketone enols are known to form intramolecular ...O=C-C=C-OH... resonance-assisted hydrogen bonds (RAHBs) with O...O distances as short as 2.39-2.44 Angstrom. However, even the most accurate diffraction studies have not been able to assess with certainty whether these very strong hydrogen bonds (H-bonds) are to be described as proton-centered O...H...O bonds in a single-well (SW) potential or as the dynamic or static mixing of two O-H...O <-/-> O...H-O tautomers in a double-well (DW) one. This contribution reexamines the problem and shows that diffraction methods are fairly able to assess the SW or DW nature of the H-bond formed and, in the second case, its dynamic or static nature, provided a Bayesian approach is used which associates a number of experimental techniques (X-ray crystallography at variable temperature, difference Fourier maps, least-squares refinement of proton populations, Hirshfeld's rigid-bond test) with a reasonable prior, that is the full set of possible proton-transfer (PT) pathways for the O-H...O system derived from theoretical calculations, The method is first applied to three beta-diketone enols, whose crystal structures were determined in the interval of temperatures 100-295 K and then generalized to the interpretation of a much wider set of beta-diketone enol structures derived from the literature, making it possible to establish a general relationship between chemical structure (symmetric or dissymmetric substitution, steric compression or stretching, increased pi-bond delocalizability), H-bond strength, and the shape of the PT-barrier. Final results are interpreted in terms of simplified VB theory and state-correlation (or avoided-crossing) diagrams.

Covalent versus electrostatic nature of the strong hydrogen bond: Discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in beta-diketone enol RAHB systems

GILLI, Paola;BERTOLASI, Valerio;PRETTO, Loretta;FERRETTI, Valeria;GILLI, Gastone
2004

Abstract

beta-Diketone enols are known to form intramolecular ...O=C-C=C-OH... resonance-assisted hydrogen bonds (RAHBs) with O...O distances as short as 2.39-2.44 Angstrom. However, even the most accurate diffraction studies have not been able to assess with certainty whether these very strong hydrogen bonds (H-bonds) are to be described as proton-centered O...H...O bonds in a single-well (SW) potential or as the dynamic or static mixing of two O-H...O <-/-> O...H-O tautomers in a double-well (DW) one. This contribution reexamines the problem and shows that diffraction methods are fairly able to assess the SW or DW nature of the H-bond formed and, in the second case, its dynamic or static nature, provided a Bayesian approach is used which associates a number of experimental techniques (X-ray crystallography at variable temperature, difference Fourier maps, least-squares refinement of proton populations, Hirshfeld's rigid-bond test) with a reasonable prior, that is the full set of possible proton-transfer (PT) pathways for the O-H...O system derived from theoretical calculations, The method is first applied to three beta-diketone enols, whose crystal structures were determined in the interval of temperatures 100-295 K and then generalized to the interpretation of a much wider set of beta-diketone enol structures derived from the literature, making it possible to establish a general relationship between chemical structure (symmetric or dissymmetric substitution, steric compression or stretching, increased pi-bond delocalizability), H-bond strength, and the shape of the PT-barrier. Final results are interpreted in terms of simplified VB theory and state-correlation (or avoided-crossing) diagrams.
2004
Gilli, Paola; Bertolasi, Valerio; Pretto, Loretta; Ferretti, Valeria; Gilli, Gastone
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1198119
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 251
  • ???jsp.display-item.citation.isi??? 250
social impact