Several INFN Sections and Departments of Physics of Italian Universities have spent many man-years in the attempt to adapt detector and read-out technologies, originally developed in the field of High Energy Physics, to the domain of biomedical apparatuses. The research covered such areas as the exploitation of crystals for the production of monochromatic X-ray beams, the development of devices for efficient X-ray detection, the design of advanced VLSI electronics, the improvement of Position Sensitive Photomultiplier Tubes and crystals for Nuclear Medicine gamma-cameras. These studies have been integrated in the Integrated Mammographic Imaging (IMI) project, funded by the Italian Government through the law 46/82 (art.10) and is carried on by five high-technology industries in Italy, namely LABEN, CAEN, AMS, GILARDONI and POL.HI.TECH. We report on the status of this technological transfer project.
An example of technological transfer to industry: the "IMI" project
BALDELLI, Paola;GAMBACCINI, Mauro;
2004
Abstract
Several INFN Sections and Departments of Physics of Italian Universities have spent many man-years in the attempt to adapt detector and read-out technologies, originally developed in the field of High Energy Physics, to the domain of biomedical apparatuses. The research covered such areas as the exploitation of crystals for the production of monochromatic X-ray beams, the development of devices for efficient X-ray detection, the design of advanced VLSI electronics, the improvement of Position Sensitive Photomultiplier Tubes and crystals for Nuclear Medicine gamma-cameras. These studies have been integrated in the Integrated Mammographic Imaging (IMI) project, funded by the Italian Government through the law 46/82 (art.10) and is carried on by five high-technology industries in Italy, namely LABEN, CAEN, AMS, GILARDONI and POL.HI.TECH. We report on the status of this technological transfer project.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.