In this paper the problem of identifying a fuzzy model from noisy data is addressed. The piecewise-affine fuzzy model structure is used as non-linear prototype for a multi-input, single-output unknown system. The consequents of the fuzzy model are identified from noisy data which are collected from experiments on the real system. The identification procedure is formulated within the Frisch scheme, well established for linear systems, which is extended so that it applies to piecewise-affine, constrained models.

Parameter identification for piecewise affine fuzzy models in noisy environment

SIMANI, Silvio
Primo
;
FANTUZZI, Cesare;ROVATTI, Riccardo
;
BEGHELLI, Sergio
1999

Abstract

In this paper the problem of identifying a fuzzy model from noisy data is addressed. The piecewise-affine fuzzy model structure is used as non-linear prototype for a multi-input, single-output unknown system. The consequents of the fuzzy model are identified from noisy data which are collected from experiments on the real system. The identification procedure is formulated within the Frisch scheme, well established for linear systems, which is extended so that it applies to piecewise-affine, constrained models.
1999
Simani, Silvio; Fantuzzi, Cesare; Rovatti, Riccardo; Beghelli, Sergio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1196646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 32
social impact