In the paper, self-adapting models capable of reproducing time-dependent data with high computational speed are investigated. The considered models are recurrent feed-forward neural networks (RNNs) with one feedback loop in a recursive computational structure, trained by using a back-propagation learning algorithm. The data used for both training and testing the RNNs have been generated by means of a non-linear physics-based model for compressor dynamic simulation, which was calibrated on a multi-stage axial-centrifugal small size compressor. The first step of the analysis is the selection of the compressor maneuver to be used for optimizing RNN training. The subsequent step consists in evaluating the most appropriate RNN structure (optimal number of neurons in the hidden layer and number of outputs) and RNN proper delay time. Then, the robustness of the model response towards measurement uncertainty is ascertained, by comparing the performance of RNNs trained on data uncorrupted or co...
Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models
Venturini M.
2005
Abstract
In the paper, self-adapting models capable of reproducing time-dependent data with high computational speed are investigated. The considered models are recurrent feed-forward neural networks (RNNs) with one feedback loop in a recursive computational structure, trained by using a back-propagation learning algorithm. The data used for both training and testing the RNNs have been generated by means of a non-linear physics-based model for compressor dynamic simulation, which was calibrated on a multi-stage axial-centrifugal small size compressor. The first step of the analysis is the selection of the compressor maneuver to be used for optimizing RNN training. The subsequent step consists in evaluating the most appropriate RNN structure (optimal number of neurons in the hidden layer and number of outputs) and RNN proper delay time. Then, the robustness of the model response towards measurement uncertainty is ascertained, by comparing the performance of RNNs trained on data uncorrupted or co...I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


