The fuzzy model identification problem from noisy data is addressed. The piecewise linear fuzzy model structure is used as a nonlinear prototype for a multi-input, single-output unknown system. The consequent of the fuzzy model is identified using noisy data, e.g. collected from experiments on a real system. The identification procedure is formulated within the Frisch scheme, well established for linear systems, which has been modified and improved to be applied in fuzzy systems field.

Noise rejection in parameters identification for piecewise linear fuzzy models

SIMANI, Silvio;FANTUZZI, Cesare;ROVATTI, Riccardo;BEGHELLI, Sergio
1998

Abstract

The fuzzy model identification problem from noisy data is addressed. The piecewise linear fuzzy model structure is used as a nonlinear prototype for a multi-input, single-output unknown system. The consequent of the fuzzy model is identified using noisy data, e.g. collected from experiments on a real system. The identification procedure is formulated within the Frisch scheme, well established for linear systems, which has been modified and improved to be applied in fuzzy systems field.
1998
9780780348639
fuzzy systems; multivariable systems; noise; parameter estimation; uncertain systems; Frisch scheme; piecewise linear fuzzy models
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1195646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 4
social impact