Let (H, A,C) be a threetuple, where H is a Hopf algebra coacting on an algebra A and acting on a coalgebra C, and M the category of representations of (H, A,C). Let z be a generalized grouplike element of (H, A,C) and B the subalgebra of z-coinvariants of the Verma structure A in M. We prove the following affineness criterion: if there exist a total z-normalized integral and if the canonical map is surjective, then the induction functor is an equivalence of categories.

The affineness criterion for Doi-Kopinnen modules

MENINI, Claudia;
2004

Abstract

Let (H, A,C) be a threetuple, where H is a Hopf algebra coacting on an algebra A and acting on a coalgebra C, and M the category of representations of (H, A,C). Let z be a generalized grouplike element of (H, A,C) and B the subalgebra of z-coinvariants of the Verma structure A in M. We prove the following affineness criterion: if there exist a total z-normalized integral and if the canonical map is surjective, then the induction functor is an equivalence of categories.
2004
9780824757595
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1191389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact