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Abstract

With the increasing computational performance per Watt provided by multi-/many-
core architectures, several industries are facing a transition from single-core to multi-
/many-core systems. At the same time, there is a trend in the automotive market
aiming at integrating multiple software components into the same MPSoC (MultiPro-
cessor System-On-Chip). In this context, the partitioning and integration of mixed-
criticality applications on top of multi-/many-core architectures is a serious challenge
for embedded-software architects. In order to tackle this problem, a plausible solution is
to virtualize the hardware resources. The adoption of this approach in the automotive
industry has increased in recent years in order to achieve the temporal and spatial
isolation demanded by Tier-1 and OEMs for the execution of mission-critical real-time
applications. However, there are still many concerns and challenges regarding the
correct management of shared hardware devices.

At software level, modern automotive embedded applications are composed of
multiple components with different levels of criticality. In particular these software com-
ponents communicate through shared memory. This type of inter-task communication
can lead to potential data inconsistency issues. In this sense, distinct novel and standard
communication models are proposed, providing different levels of predictability and
data consistency.

This thesis focuses on investigating and analyzing problems related to the execu-
tion of real-time applications running on top of modern embedded multi-/many-core
architectures. Specifically, this dissertation makes the following contributions: 1) identi-
fication of the main sources of unpredictability in multi-core architectures at I/O level
in virtualized platforms, 2) analysis of different mechanisms that are used for shared-
memory inter-task communication in the automotive domain 3) end-to-end latency
characterization of effect chains implemented with different communication paradigms,
and 4) a model-based code generator tool that serves to test and prove the findings done
during the PhD.
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Abstract

Con l’aumento delle prestazioni computazionali per Watt fornito da architetture
multi-/many-core, diverse industrie stanno affrontando una transizione da sistemi
single-core a multi-/many-core. Allo stesso tempo, c’è una tendenza nel mercato
automobilistico che punta all’integrazione di più componenti software nello stesso
MPSoC (Multi-Processor System-On-Chip). In questo contesto il partizionamento e
l’integrazione di applicazioni a criticità mista su architetture multi-/many-core rapp-
resenta una seria sfida per gli architetti del software embedded. Per affrontare questo
problema una soluzione plausibile è virtualizzare le risorse hardware. L’adozione di
questo approccio nell’industria automobilistica è aumentata negli ultimi anni al fine di
raggiungere l’isolamento temporale e spaziale richiesto da Tier-1 e OEM per l’esecuzione
di applicazioni mission-critical in tempo reale. Tuttavia, ci sono ancora molte preoccu-
pazioni e sfide riguardanti la corretta gestione dei dispositivi hardware condivisi.

A livello software, le moderne applicazioni embedded automobilistiche sono com-
poste da più componenti con diversi livelli di criticità. In particolare questi componenti
software comunicano attraverso la memoria condivisa. Questo tipo di comunicazione
tra le attività può portare a potenziali problemi di incoerenza dei dati. In questo senso,
vengono proposti modelli di comunicazione nuovi e standard distinti, che forniscono
diversi livelli di prevedibilità e coerenza dei dati.

Questa tesi si concentra sull’analisi dei problemi relativi all’esecuzione di appli-
cazioni in tempo reale, che si basano su architetture multi-core/many-core. Nello
specifico questa tesi fornisce i seguenti contributi: 1) identificazione delle principali fonti
di imprevedibilità nelle architetture multi-core a livello I/O in piattaforme virtualizzate;
2) analisi di diversi meccanismi che vengono utilizzati per la comunicazione inter-task a
memoria condivisa nel dominio automobilistico; 3) caratterizzazione della end-to-end
latency di effect chain implementate con diversi paradigmi di comunicazione e 4) uno
strumento generatore di codice basato su modelli che serve per testare e dimostrare i
risultati ottenuti durante il dottorato.
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Introduction 1

1 Introduction

Real-time systems are computer-based systems that must react within tight time
constraints to critical events in the external world [1]. Due to their specificity and com-
plexity, these systems have been traditionally designed and implemented on top of
a single computing core, especially in the embedded and industrial domain. In this
context, modern industrial applications need to process a huge amount of data coming
from multiple sensors with tight timing restrictions, thus requiring an increasing and
considerable amount of computational power. To satisfy this increasing computational
demand in the embedded domain, at first, silicon vendors invested in exploiting Moore’s
law/Dennard’s scaling by increasing the processor clock speed and by substantially
increasing the Instruction-Level parallelism (ILP). However, this approach led to power
consumption and power dissipation issues, that ultimately make it impossible to power
up even more than 75% of transistors in a single SoC (System On Chip) simultaneously.
This phenomenon is called Dark Silicon [2]. For this reason, architectures based on a
single-core processor reached a frequency ceiling limit more than a decade ago. As a
consequence, vendors decided to take advantage of Thread-Level Parallelism (TLP) by
integrating multiple processors onto the same die, delivering high computing perfor-
mance while meeting size, weight and power (SWaP) constraints that are imposed in the
embedded domain. The appearance of parallel programming models like OpenMP 1 or
Cuda 2 that exploit the parallel nature of these new architectures, help programmers in
addressing the considerable computational demand required in new-generation appli-
cations by increasing their productivity and making the exploitation of the hardware
straightforward.

At the same time, the technological trend in embeddded real-time systems lead
towards the integration of multiple applications with different criticality levels onto the
same computing platform, thus reducing considerably production costs. Accordingly,
many manufacturers in the automotive, avionic or even medical domain are moving to-
wards multi-core platfoms for the integration of mixed-criticality systems. Nevertheless,
the increasing complexity of today’s multi-core architectures that have been designed
primarily for general purposes, combined with the need to integrate applications with

1http://www.openmp.org/
2https://www.geforce.com/hardware/technology/cuda
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Introduction 2

real-time constraints, challenge the design of reliable and efficient solutions to unprece-
dented problems. In this sense, a common research problem in the multi-core domain is
related to the concurrent access to shared resources. For instance, the concurrent access
to the memory is one of the main sources of unpredictability in program execution.

Concurrently, the single-core to multi-core transition does not only bring a change
of programming/design methodologies, but also in functional safety issues. A typical
example of functional safety in the computer science domain is the Ariane 5 accident,
where a rocket exploded during a test flight. The error was because of a floating point
data conversion due to the fact that Ariane 5 contained part of the Ariane 4 code. While
Ariane 5 worked with 64-bit floating points values, the old software required 16-bit
signed integer. This example shows the importance of considering a safety assessment
process in the architecture transition phase. Traditionally, many of the mechanisms
and safety measures used to mitigate potential risks have been developed and certified
for single-core platforms. Consequently, multi-core systems have to be implemented
considering a number of unprecedented problems such as managing access to shared
resources or fault propagation problems.

Achieving predictability by means of virtualization. Nowadays, embedded
system providers are increasingly implementing software solutions on top of multi-core
processors. Applications running on multi-core platforms can be allocated according to
different approaches. Historically, classic real-time systems are scheduled with parti-
tioned or global scheduling. Unfortunately, those approaches have significant limitations
for the integration and implementation of mixed-critical software with real-time require-
ments. Recently, virtualization has been gaining popularity for the implementation of
software with mixed-critical requirements. Therefore, based on the performance and pre-
dictability provided, we can classify multi-core task allocation in the above mentioned
categories (see Figure 1.1):

• Global scheduling: According to the global scheduling approach [3], tasks can be
scheduled in any processor, such that, tasks can migrate between cores, this can
lead to increase the task execution times due to cache misses. For instance, delays
related to moving tasks between cores with a different on-board cache. Generally,
global scheduling provides lower average response times achieving higher utiliza-
tion bounds with respect the partitioned approach because the workload can be
better distributed over the multiple cores.

• Partitioned scheduling: While global scheduling allows to schedule dynamically
tasks in all cores, according to the partitioned scheduling approach, tasks are
statically assigned to cores. Thus it is possible to schedule tasks using state of the

© Università di Modena e Reggio Emilia Ignacio Sañudo
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art single-core scheduling algorithms, being possible to extrapolate single-core
analysis. However, it is still an open problem in the community the optimal task-
to-core allocation (task partitioning), that is essentially a bin-packing problem,
which is known to be a combinatorial NP-hard problem.

• Virtualization: Virtualization is a technology that provides mechanisms for the
emulation of multiple systems running on a single hardware. A hypervisor or
virtual machine monitor (VMM) is a layer of abstraction that enables the execution
of different operating systems in the same on-board platform. In this regard, virtu-
alization allows the hard isolation of applications in virtual machines providing an
environment that enables the execution of mixed-criticality applications in shared
hardware.

Figure 1.1: Global scheduling (left), Partitioned scheduling (middle), Virtualization
(right).

Many software providers in the marketplace are moving towards the use of virtualization
as a solution to execute complex mission critical applications and infotainment software
within the same computing platform. This kind of “coexistence” brings problems in
the interaction and management of the shared devices. Following this assumption, the
main requirement imposed by many industrial standards is to achieve the so called
Freedom From Interference (FFI) between partitions. Many software standards in the
automotive (ISO-26262 [4] or Adaptive AUTOSAR in the near future 3) and avionic
domain (ARINC-653 [5], DO-178C [6]) define guidelines to evaluate and support sys-
tems executing applications with different criticality levels. Although those standards
describe how to develop applications complying with software safety assessments, some

3https://www.autosar.org/standards/adaptive-platform/
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Introduction 4

of the safety recommendations in terms of software implementation are very ambiguous
because they do not provide details on how to achieve spatial and temporal isolation
between mixed-critical partitions.

Predictable Execution Models. While at hardware level virtualization provides
mechanisms to isolate the hardware resources, at software level guaranteeing a pre-
dictable behavior in software components is still challenging. Although it is obvious, not
only virtualization can provide “real-time” properties to applications. In the real-time
context, many of the new innovations are driven by software. Accordingly, different task
models have been proposed in the literature aiming to provide a predictable behavior.
For instance, the AER (Acquisition, Execution, Restitution) [7] execution model, where
each task is enforced to execute in its time slot, PREM (PRedictable Execution Model) [8]
that decouples the task execution in different phases or even the Logical Execution Time
(LET) model. LET [9] is a hard real-time programming abstraction that was introduced
with the time triggered programming language Giotto [10] to provide determinism in
the execution. In a nutshell, LET semantic fixes the time it takes from reading a particular
input to writing program output, disregarding the temporal behavior of the application.
In this way it is possible to achieve a high level of predictability and a strong consistency
between the timing constraints (logical model) and the task execution (physical model),
thus facilitating the design, implementation, test and certification proccess [11] (see
Figure 1.2).

Logical Execution Time
Logical

Physical Execution ExecutionSuspend

Input Output

Time

Reading point Publishing point

Communication Interval

Figure 1.2: Logical Execution Time semantic.

In the automotive domain, automotive engineers are concerned with the application
responsiveness. In particular, the propagation delay of an input stimulus, that triggers a
chain reaction leading to a final actuation or control action, called Effect Chain. A parallel
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concern arises in the integration of applications running on multi-core platforms, these
applications usually communicate by means of shared memory. In a nutshell, this kind
of communication can lead to possible data inconsistency issues due to concurrent access
to shared data. Generally, concurrent access to shared resources need to be synchronized
to avoid conflicts or data inconsistency problems between tasks that shared data. One
possible solution is to limit the access using lock-based resource sharing protocols. Lock-
based mechanisms enforce the exclusive mutual access to shared resources, consequently
incurring in task high-blocking delays. In the automotive domain, different communi-
cation patterns are used for inter-task communication ensuring different levels of data
consistency, namely Explicit and Implicit communication patterns, both approaches are
presented in the AUTOSAR standard.

• Explicit: Reads and writes are performed directly in the memory disregarding po-
tential data inconsistency issues. In order to avoid this pitfall, lock-based constructs
are used.

• Implicit: In this case, tasks accessing shared labels work on local copies instead
of the original labels. Specifically, data consistency is achieved prefetching all
the shared variables into the local memory in the beginning of the task execution
and publishing it at the end. In order to do so, lock-based, lock-free or wait-free
mechanisms can be used.

Those approaches have diverse impact on the propagation delay of communication
chains and also in terms of memory footprint. Logical Execution Time appears as a
natural model for task execution that provides determinism and data consistency using
wait-free mechanisms. Indeed, there is an increasing interest in LET in the automotive
domain [12]. Unfortunately, LET is not currently supported by AUTOSAR and there are
not many studies of LET and other communication patterns in the automotive context.
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1.1 Organization of the thesis

This dissertation is organized as follows: Chapter 2 introduces the necessary back-
ground to understand and motivate the findings provided in this work. In particular,
we introduce notions in functional safety and ISO-26262, giving a little perspective of
the recommendations and requirements in the development of automotive software. In
the same way, AUTOSAR and the RunTime Environment (RTE) are described. Then we
introduce the principle of model based development, where a modeling framework used
in the automotive domain called AMALTHEA is presented. Chapter 3 presents a survey
on I/O management within virtualized platforms, providing a view of the limitations
given in these technologies in terms of real-time performance at I/O level. How to
overcome these limitations is an important aspect of the ISO-26262. Motivated by the
need to explore isolation mechanisms for providing shared resource access management
by one or more tasks, in Chapter 4 we present different novel and standard mechanisms
for providing determinism and data consistency in inter-task communication at software
level. Specifically, we propose a schedulability analysis for the AUTOSAR task model
in which cooperative and preemptive tasks are concurrently scheduled on the same
platform. Moreover, we present an end-to-end latency analysis and an implementation
for three different inter-task communication patterns, namely, Explicit communication
pattern, Implicit Communication pattern and Logical Execution Time. Theoretical results
are derived using a widely adopted benchmark for automotive real-time systems. We
derive this analysis in the context of the ’Formal Methods for Timing Verification’ FMTV
industrial challenge organized by Robert Bosch GmbH. The techniques exposed in this
chapter can be used to solve shared resource management pitfalls. In Chapter 5, the
Hipert Generator Tool (HGT) is presented. The code generator tool allows the genera-
tion of synthetic tasks from different modeling frameworks (RT-DOT and AMALTHEA)
following a model based development approach. The tool was developed explicitly,
and used to validate research outcomes in real industrial settings even when applica-
tion details and code are unknown because they are covered by NDA (Non-Disclosure
Agreement) or IPR (Intellectual Property Right). Finally, in Chapter 6, future work and
the major findings of the thesis are summarized.
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2 Background

In this chapter we summarize the background and provide a context for the con-
cepts presented in this dissertation. In particular, Section 2.1 reviews the basic idea
behind functional safety and software development for Electronic and Electrical (E/E)
components according to ISO-26262, an international standard for the automotive indus-
try. Since Chapter 4 is dedicated to derive an End-To-End latency analysis of automotive
communication patterns, Section 2.2 presents an overview of software development fol-
lowing the AUTOSAR standard, paying special attention to the software communication
mechanisms. Finally, Section 2.3 introduces notions of Model-Driven Development in or-
der to understand how the code-generator tool presented in Chapter 5 works. Moreover,
the AMALTHEA framework is presented, that in this dissertation is used to: abstract
the functionality of automotive applications, compute the aforementioned End-To-End
latency analysis, and generate the code of the corresponding application.

2.1 Functional safety

Lately, the automotive industry is facing a change in the way they build our vehicles.
New passenger vehicles require a technological transition to satisfy the computational
demand by new-generation automotive software, opening up a number of opportunities
for innovation and research. All the big players in the automotive domain are spending
a considerable amount of resources in this direction. Major OEMs (Original Equipment
Manufacturer) like BMW, Volvo, Tesla, or General Motors and Tier-1s such as Bosch
or Continental, are already developing the necessary know-how and technological
background to build the next generation of embedded automotive systems.

According to Semicast studies 1, revenues for advanced driver-assistance systems
(ADAS) electronics are estimated to grow to around 86$ billion in 2022, from 53$ billion
in 2015. According to this trend, the complexity of the automotive software is growing
very fast. Nowadays, a car manages up to 2500 signals [13]. Among these signals we
find, for instance, information related to car speed, break control or just button-action
requests that, for example, roll up a car window or unlock a car door. All these signals
are exchanged through the car network and computed by an embedded system called

1http://semicast.net/wp-content/uploads/2016/09/120916.doc Last access 1/11/2017
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Electronic Control Unit (ECU). Currently, a single car contains approximately from 50
to 100 ECUs. Each ECU manages a specific functionality of the car, for example, the
combustion engine or the electronic valve control. In particular, the car’s software
contains close to 100 million of lines of code (LoC). It should be noted that, estimates
indicate a growth of 150-300 millions of LoC in the near future 2. To get a rough idea of
this quantity, the mouse DNA can be written in around 120 millon of LoC 3.

In this line, safety is one of the key aspects of automobile development. Safety is the
absence of unreasonable risk. According to IEC61508 [14], functional safety is: “Freedom
from unacceptable risk of physical injury or of damage to the health of people, either
directly, or indirectly as a result of damage to property or to the environment.” Following
this assumption, the idea behind functional safety is reducing risk in electronic systems.
This concept is important also in many other domains, such as automotive, avionics,
railroad or medical device.

In the automotive domain, while the development of new generation hardware
and software components is growing very fast, not all the OEM and Tier-1 players
are creating prototypes meeting the constraints required by the standards, potentially
creating unsafe products. Probably the best-known case so far, is the Toyota unintended
acceleration problem. According to the National Highway Traffic Safety Administration
(NHTSA), unintended acceleration (UA) is “the occurrence of any degree of acceleration
that the vehicle driver did not purposely cause to occur”. In 2009, Toyota recalled
several vehicles experiencing different unintended acceleration problems. As reported
by NHTSA [15] the fault was related to pedal entrapment. As a consequence of this
episode, there were reported 89 people dead. Moreover, the economical consequences
for Toyota were significant: they spent approximately 1200M$ in legal costs for violating
safety laws and more than 10 million vehicles were recalled worldwide. NASA was
appointed to investigate the case. The report presented that only 11 of 127 rules of
MISRA C were complied. MISRA (Motor Industry Software Reliability Association) is a
consortium that supplies guidelines for the software development of E/E components,
this guideline is adopted in the automotive field. MISRA C [16] is a guideline for the C
programming language, originally conceived for the safety development of automotive
embedded systems, currently it is used in many domains such as, defense, railway
aerospace, telecommunications, among others. With regard to the Toyota unintended
acceleration problem, experts in functional safety pointed that if they had followed the
directives described in the automotive standards, the failure would have been mitigated.
Therefore, it is easy to conclude that functional safety plays an important role in an area
in which a system failure may causes physical injuries or even loss of life.

2http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
3http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

© Università di Modena e Reggio Emilia Ignacio Sañudo

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/


Background 9

There are many standards that contribute to the safety development of electronic
and software components:

• IEC-61508 [14] (Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-related Systems) specifies a complete safety life cycle for electronic
components of different domains.

• ISO-26262 [4] standard, defines methodologies for the development and deploy-
ment of an electrical and/or electronic systems within a road vehicle. The standard
is an adaptation of IEC-61508 for automotive systems.

• AUTOSAR (AUTomotive Open System ARchitecture) is an open standard for
automotive system development whose main goals are: software independence
from hardware, modularity, scalability, reusability of functions, and flexible main-
tenance. AUTOSAR looks at the different functionalities in a car network, splits
them into logical clusters (Software Compositions), and finds functional atomic
units (Software Components) that make up these clusters.

2.1.1 ISO-26262

ISO-26262 published in 2008, is the main functional safety standard for the devel-
opment of electronic systems in passenger vehicles. The standard works as a guidance
to avoid risks due to hazards caused by malfunctioning behavior of the vehicle. The
content of the standard is not legally required, but it provides a methodical way for en-
suring safe development of E/E components for vehicles. The standard defines a safety
life cycle for E/E products that covers the entire life-cycle of an automotive component,
from management and development to production, decommissioning and relation with
suppliers. Moreover, it provides a V-model as a reference process model for the diverse
phases of the product development.

The standard characterizes the importance to reduce a risk using a safety measure
called Automotive Safety Integrity Level (ASIL), that is the counterpart to the SIL, defined
in IEC-61508. ASIL, is composed of five different levels, each level specifies the safety
measures to apply for avoiding an unreasonable residual risk. These levels are ASIL D,
ASIL C, ASIL B, ASIL A and QM, where ASIL D determines the maximum stringent
level and QM (Quality Management) the least stringent level where there is no need to
apply ISO-26262, i.e., a component without any safety requirement. The higher the ASIL
level, the greater the importance to reduce the risk. In fact, ASIL D components require
a hardware failure rate of ≤ 10−8h−1 whereas ASIL B components have to comply with
a failure rate of ≤ 10−7h−1.
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Table 2.1: ASIL risk matrix.
Severity

Controllability Exposure
S0 S1 S2 S3

E1 QM QM QM QM
E2 QM QM QM QM
E3 QM QM QM A

C1

E4 QM QM A B
E1 QM QM QM QM
E2 QM QM QM A
E3 QM QM A B

C2

E4 QM A B C
E1 QM QM QM A
E2 QM QM A B
E3 QM A B C

C3

E4 QM B C D

The ASIL level is evaluated based on a hazard and risk analysis. The analysis iden-
tifies and categorizes hazardous events to the prevention or mitigation of the associated
hazards to avoid unreasonable risk. The analysis establishes the definition/allocation of
functional and technical requirements into hardware and software components respec-
tively. Accordingly, the criterion used to determine the ASIL level of an E/E automotive
component is based on the following criteria:

1. Controllability: ability to avoid a specified harm or damage. The controllability is
estimated based on a defined rationale for each hazardous event that can be caused
by the driver or other persons potentially at risk. The controllability is designated
to one of the following controllability classes: C1 - Simply controllable, C2 - Normally
controllable , C3 - Difficult to control or uncontrollable, in accordance with Table 2.1.

2. Probability of exposure: likelihood of the occurrence of harm or malfunction. The
exposure classes are: E0 - Incredible, E1 - Very low probability, E2 - Low probability, E3
- Medium probability, E4 - High probability.

3. Severity: measure or estimate of the extent of harm to the persons involved in a
possible accident. The severity classes are: SO - No injuries, fatal injuries, S1 - Light
and moderate injuries , S2 - Severe and life-threatening injuries (survival probable), S3 -
Life-threatening injuries (survival uncertain).

In order to identify the possible hazards in the components, techniques such as
brainstorming, checklists, quality history, failure mode and effect analysis (FMEA) and
field studies can be used. In this work we mainly cover Part 6 of the ISO-26262 standard
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(See Figure 2.1), i.e., "Product development at Software level". Part of dissertation is
dedicated to unveil the details of the standard for the use of an hypervisor as a technology
for develop mixed-criticality systems. In this context, one key concept established by the
ISO-26262 standard, is the so called, Freedom From interference (FFI). FFI is the absence of
cascading failure between two or more components. In particular, Section 3.3 describes
deeply the importance of Freedom From Interference for the execution of software with
different criticality levels.

PART 1: Vocabulary

PART 2: Management of functional safety

PART 3: 

Concept 

phase

PART 7: 

Production 

and 

operation

PART 8: Supporting process

PART 4: System development

PART 5: HW 

development

PART 6: SW 

development

PART 9: ASIL-oriented and Safety-oriented analysis

PART 10: Guideline on ISO26262 

Figure 2.1: ISO-26262 structure.

2.2 AUTOSAR

A little over a decade ago, car software manufacturers used to integrate their own
software solutions based on specific properties of the vehicle model. For instance, let
us consider the software development of the power window. In this case, during the
development phase, the Tier-1 had to consider several technical details of third-parties
components, from the supplier of the door checker mechanism to the implementation of
the power window motor. Such an approach made software suppliers dependent on the
vehicle model, discouraging the reusability and scalability of the software components.
Furthermore, the increasing complexity of E/E car components, the growth in software
functionalities and the exponential complexity in car interconnections by means of ECUs,
introduced many problems in terms of project management. All these factors led to
Tier-1 and OEMs to establish the AUTOSAR partnership.

© Università di Modena e Reggio Emilia Ignacio Sañudo



Background 12

According to the standard [17], AUTOSAR (AUTomotive Open System ARchitec-
ture) is a “worldwide development partnership of vehicle manufacturers, suppliers
and other companies from the electronics, semiconductor and software industry”. The
AUTOSAR consortium was constituted in 2003 by Continental, Bosch, BMW, Daimler,
Volkswagen, Chrysler and Siemens in order to assemble the main principles for E/E
vehicle software development 4. AUTOSAR provides a standardization of the interfaces
between the different software layers, giving a hierarchical organization of the SW/HW
components integrated in the vehicle. As is depicted in Figure 2.2, this approach pro-
vides a powerful environment for reusability and scalability of SW/HW components,
giving suppliers the chance to integrate the same software into different ECUs, reducing
development times and minimizing maintenance efforts.

Hardware

Software

Application Layer

AUTOSAR

Hardware

Figure 2.2: Old automotive paradigm & AUTOSAR paradigm.

The main principle of AUTOSAR is the division between Application and Infrastruc-
ture. To guarantee this principle, AUTOSAR defines three different software layers: (i)
Basic Software (BSW), (ii) Application Software (ASW), and (iii) RunTime Environment
(RTE) as detailed in Figure 2.3a:

• Basic Software (BSW): is the standardized software layer that provides the infras-
tructural functionality for the ECU. The basic software defines through code and
description files its functionality, in this way, it is possible to configure the different
sub-layers grouped into the Basic Software. The BSW is composed of the following
sub-layers (see Figure 2.3b): the Microcontroller Abstraction layer (MCAL) which
provides hardware drivers making upper software layers independent from the

4Many other partners joined after the creation, like Toyota, Ford or Peugeot.
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microcontroller; the ECU abstraction layer which provides APIs to access periph-
erals making upper software layers independent from the ECU hardware layout;
and the Service Layer that provides operating system functionalities, memory
services, diagnostic services, etc. Drivers that are not specified in AUTOSAR are to
be found in the Complex Drivers layer.

• Application Layer (ASW): This layer represents the implementation of the so called,
Software Components (SWCs) and contains the functionality of the system. An
obvious property of the SWCs is that they communicate with each other. According
to the hierarchy established by the standard, the communication is done through
the RunTime Environment (RTE).

• RunTime Environment (RTE): The RunTime Environment provides a middleware to
control the runtime behavior of the application layer, supporting the communica-
tion of the software components and the basic software at inter- and intra-ECU
level. This layer makes SWCs independent from the mapping to a specific ECU.

Application Layer (ASW)

RunTime Environment (RTE)

Microcontroller

Basic Software (BSW)

(a)

Application Layer (ASW)

RunTime Environment (RTE)

Microcontroller

Complex

Drivers

Services Layer

ECU Abstraction Layer

Microcontroller Abstraction Layer

(b)

Figure 2.3: AUTOSAR architecture (a) BSW sublayers (b).

With regard to software scalability and portability, AUTOSAR provides two archi-
tectural mechanisms that facilitates independence of the software development. These
mechanisms are called Virtual Function Bus (VFB) and the above-mentioned RunTime
Environment. The VFB and RTE offer an abstract and concrete (respectively) layers for
the exchange of information between software components. In the next sub-section we
will introduce both concepts.

2.2.1 AUTOSAR Software Development

According to the standard: “Application software within AUTOSAR is organized
in self-contained units called Software Components or, more formally, SwComponent-
Types”. In brief, SWCs contain the functionality of the application/system. The inherent
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complexity of communication and interconnections by means of SWCs lead to model
and design the communication in a very abstract form. SWCs are developed indepen-
dently from the underlying hardware, thanks to the software abstraction layer provided
by the Virtual Function Bus and the RunTime Environment. The VFB [18] is a virtual
bus that models the communication among AUTOSAR SWCs and BSW modules. All
SWCs are interconnected via the VFB. As is shown in Figure 2.4, the VFB provides a
communication layer in which we can abstract communication details during design
phase, strictly separating the Application Layer (i.e., SWCs) from the Infrastracture (i.e.,
BSW). Such an approach not only simplifies the communication between SWCs, but also
provides a robust separation between Application and Infrastracture, thus allowing the
reuse of the SWCs for different ECUs.
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Figure 2.4: AUTOSAR Virtual Function Bus.

Specifically, software components communicate among each other and/or with the
Basic Software modules through the RTE. While the VFB provides an abstraction that
disregards the SWC-to-ECU mapping, the RTE represents the concrete implementation
of the VFB (see Figure 2.5). In this context, the generation of the RTE for each ECU
and the SWC-to-ECU allocation is performed by the so called RTE generator. The RTE
generation proccess is divided into two different phases: Contract Phase and Generation
Phase [19].

Accordingly, AUTOSAR offers an interface for the management of the SWCs called
Software Component Description. In particular, this XML file provides information about
the number of ports for the communication performed by the SWCs, a description
of the runnable entities or scheduling information. This information will be used to
generate the RTE interface that will contain functional aspects of the SWCs, working
as a “contract” between the SWCs and the RTE. The contract phase does not create the
code of the tasks, this is done by the definition of the functional behavior using tools like
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Figure 2.5: AUTOSAR RunTime Environment.

Simulink or just hand coding, but it creates the header files that contains the functions,
data types and structures that will be used by the SWCs. For instance [13], let us suppose
that we have a SWC with a send-port P that uses a data type D, the contract phase will
generate the API function RTE_Send_P_D that sends data D through the port P.

On the other hand, during the Generation phase, different documents are pro-
vided, for instance, ECU configuration parameters that will describe the mapping of the
runnable to the tasks or the communication matrix. Summing up everything, the header
files created during the contract phase are used to generate the concrete implementation
of the RTE that will be executed in the ECU. Figure 2.6 depicts the process of the SWC
tool deployment.

2.2.2 AUTOSAR Execution Model

The AUTOSAR execution model can be described in many forms. Generally, soft-
ware engineers in the automotive domain use graph-based models to represent the
task execution. In the literature, the notation shown to characterize the AUTOSAR
execution model is based on Directed Graph (D-graph) or Directed Acyclic Graph (DAG)
representation [20], [21]. In this dissertation, we proposed a DAG based approach to
describe the execution model of the software components. In this sense, the proposed
model is “compliant” with the AUTOSAR execution model. We will further explain the
task model defined in Section 4.3.

SWCs are used to build the functionality of the system in a vehicle. In particular,
the internal behavior of a SWC or application is characterized by tasks. According to
AUTOSAR “a Task is the object which executes (user) code and which is managed by the
OS”. A single SWC is composed of tasks and at the same time, each task is composed of
different runnables. Runnable is the smallest functional entity in the automotive domain.
A single runnable entity is mapped to a single task.
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Figure 2.6: AUTOSAR ECU deployment.

In a multi-core platform different runnables can execute in different cores simulta-
neously. Typically, a task is the smallest schedulable entity, in this way, the operating
system scheduler will decide in runtime which task will be scheduled according to the
task priority and the scheduling policy. Many of the details provided in the AUTOSAR
standard at operating system level, are based on the OSEK 5 OS (ISO 17356-3) standard.
For instance, OSEK provides the definition of technical concepts like tasks, shared re-
source management or alarms and counters. AUTOSAR OS defines two different types
of tasks, Basic Tasks and Extended Tasks. Without going into any further details, a basic
task has three states (running, ready and suspended) and can not block itself. On the
other hand, an extended task can suspend itself in order to wait for events, adding a
Wait state in the flow state-machine design. The specification of the state-machine with
the state transitions for both basic and extended tasks is depicted in Figure 2.7a.

Generally, tasks are scheduled according to partitioned fixed-priority scheduling.
However, the priority can be change in runtime, it depends on the AUTOSAR OS. AU-
TOSAR operating systems supports three different scheduling algorithms, preemptive,
non-preemptive, and cooperative scheduling [23]:

5www.osek-vdx.org
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Terminate
OsTaskExecutionBudget reset

Wait
OsTaskExecutionBudget reset

Preempt
OsTaskExecutionBudget stopped

Successful activation of a task already in the RUNNING 

state marks the start of a new OsTaskTimeFrame

A task that waits on an event which is already set 

notionally transitions into the WAITING state

RUNNING

Start
OsTaskExecutionBudget started

Activate
OsTaskTimeFrame started

SUSPENDED WAITING

Release
OsTaskTimeFrame started

READY

Successful activation of a task already in the READY 

imeFramestate marks the start of a new OsTaskT
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Figure 2.7: Task state transition model [22].

• Preemptive scheduling: a ready high priority task can preempt a lower priority
one at any time during the execution. Although this approach provides very short
response time and minimal jitter for highest priority tasks, under this scheduling
algorithm, context switch overheads and data inconsistency issues need to be
considered.

• Non-Preemptive scheduling: tasks can not be preempted. Scheduling decisions
are taken at the end of the task execution. Following this assumption, response
times are predictable for high priority tasks, however, non-preemptive tasks can
incur to priority inversion problems.

• Cooperative or mixed preemptive scheduling: higher priority cooperative tasks
can preempt lower priority cooperative tasks at predefined scheduling points or at
the end of the execution. On the other hand, cooperative tasks can be preempted
by higher priority preemptive tasks at any point in the execution. This approach
allows to manage the task execution in a very flexible way.

To sum up, task and runnable entities run on top of the ECUs and are mapped onto
SWCs thanks to the RTE.

The standard does not provide a task description based on activation requirements.
However, strongly inspired in [24] we can classify tasks according to activation con-
straints:

• Periodic and sporadic Tasks: Periodic tasks are an infinite sequence of jobs, that
are activated with a determined rate. On the other hand, sporadic tasks are
characterized by a minimum interarrival time between consecutive jobs.

© Università di Modena e Reggio Emilia Ignacio Sañudo



Background 18

• Single Activation Tasks: In this case, these tasks are activated only once in the system,
these tasks can either boot up/initialization or shutdown tasks.

• Angle Synchronous Tasks: These tasks are activated at prefixed rotation angles of
the crankshaft. Following this assumption, the task rate depends on the engine
speed, the higher the speed rotation, the higher the activation rate. This kind of
tasks are also called angular or adaptive rate tasks [25].

• Chained Tasks: While the tasks mentioned-above do not have any precedence
constraint in the activation, chained tasks are activated by a predecessor task. This
activation can be triggered at intra- and inter-core level.

• Interrupt Service Routines (ISR): An ISR is a process triggered by an interrupt
request, it is triggered from a hardware device that manages a specific function of
the associated device.

• Modes and states: Modes can be used to model the state of an ECU, i.e., a particular
mode can trigger a task in a specific state. For instance, changing the mode of the
ECU can trigger a task to prepare some resource before changing the state.

Many other properties of the classic real-time scheduling are defined in the AUTOSAR
standard, like shared resources management policies or alarms and scheduling tables.
However they are out of the scope of this dissertation.

2.2.3 AUTOSAR Communication Model

Physically, tasks communicate with each other through different communication
interfaces, for instance, CAN 6, FlexRay 7, LIN 8 or Most 9. In AUTOSAR, at design
point of view, the communication between SWCs is realized through Ports and Interfaces.
While the interface represents the structures and operations that are provided by a
specific SWC through the RTE, a port is the software communication mechanism used to
interconnect SWCs. We can distinguish between two kind of ports: P-Port (Provider-Port)
and R-Port (Receiver-Port). Ports and interfaces are interconnected, characterizing the
structures and operations required or provided by a SWC through that port. AUTOSAR
supports two kinds of communication Port-Interface:

• Client-Server interface: according to this communication interface, client compo-
nents request server functions and server components provide the result to the

6http://www.bosch-semiconductors.de/en/automotive_electronics/ip_modules/can_literature_2.
html

7http://www.mostcooperation.com/technology/most-network/
8https://elearning.vector.com/vl_lin_introduction_de.html
9http://www.mostcooperation.com
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client. Following this assumption, Client-Server interfaces define the operations
provided by the server that can be used by the client.

• Sender-Receiver interface: is the communication interface used for data exchange
between SWCs. The interface defines the data type that will be exchanged from the
sender to the receiver. In a nutshell, is like read/write variables between process,
such as the C programming language.

Both communication interfaces are depicted in Figure 2.8. According to AUTOSAR, we
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Figure 2.8: AUTOSAR Communication Patterns.

can further differentiate between two types of ECU communication:

• Intra-ECU communication: the exchange of information is realized among SWCs
that are located in the same ECU.

• Inter-ECU communication: in this case, the communication is performed between
SWCs that are located in different ECUs.

SWCs communicate through the RTE, but at implementation level, runnables com-
municate by means of variables, in AUTOSAR called inter-runnable variables. From
now on we will call them shared labels. Data exchange between SWCs take place when
runnables write or read in a variable. As described above, runnables may execute con-
currently and very often different runnables are writing and reading simultaneously the
same variable. This scenario can lead to potential inconsistency in the data exchanged
during the communication.

The Sender-Receiver Communication schema uses a memory sharing mechanism
allowing tasks to communicate by means of shared memory. In this sense, the RTE
supports two different modes of communication, namely Explicit and Implicit:
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• Explicit: According to the Explicit communication pattern, a task may directly
access to shared variables at any point during its execution. This means that it is
possible to produce inconsistencies in the data exchanged when accesses are not
protected through proper synchronization or locking constructs.

• Implicit: With this communication pattern, tasks accessing shared labels work on
task-local copies instead of the original labels. In this case, accesses to the global
memory are defined at the beginning and at the end of the task boundaries. In this
way, the communication pattern avoids concurrent access in the shared memory
during the runnable execution, ensuring integrity in the shared data. At the end of
the task execution the local copies are returned to the shared memory. The implicit
communication model is implemented as a part of the code generated in the RTE.

As can be observed, both communication patterns provide different levels of data con-
sistency. Accordingly, several solutions have been proposed to provide data consistency
and flow preservation in AUTOSAR [24], [26].

Along the last years, there has been an increasing interest in the Logical Execution
Time model in different domains, for instance, in automotive [12] or avionics [27] [28]. As
we defined before, the main principle of LET is the definition of when the inputs are read
and outputs are produced. This model provides independence between the hardware
and the logical model, i.e., the application will behave in the same way disregarding
where the application is running. The LET model, solves intrinsically some of the
problems given typically in multi-core platforms in terms of predictability because the
communication and task activities take place at fixed time instants.

In Chapter 4 we provide a single node Intra-ECU end-to-end latency analysis
for the described AUTOSAR communication patterns and LET. We propose a formal
implementation for the Explicit, Implicit and LET communication patterns, analyzing
the impact introduced in terms of memory footprint and communication delay.

2.3 Model-Driven Development

The increasing complexity in software development combined with the need of
improving the efficiency/productivity in the system implementation lifecycle, has stim-
ulated the application of new techniques that help software developers in this activity.
As stated by Atkinson in [29], since a long time ago researchers have been tried to raise
the abstraction level of application software development. Model-Driven development
(MDD) [30] is an engineering paradigm used to abstract the software development
process. MDD has emerged as a good methodology to improve the efficiency in the
system implementation activity. Since the traditional programming paradigm requires
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to provide every detail of the system’s implementation, MDD allows to abstract this step
by just providing a model with the functionality needed by the system. In this context,
a model is an abstract representation/description of the system. A model can be used
for code generation, because it adequately characterizes the functionality/behavior of a
given application.

The Model-Driven development process automates many of the routines in the soft-
ware development. Moreover, the model of a system under analysis undergoes multiple
refinement/optimization stages to obtain a final implementation, that is behaviorally
identical, but with specific properties that are amenable to designers. Such a process
is typically automated through the so-called Model-to-Model Transformation (M2M)
and Model to Text (M2T) transformation. In a nutshell, the code generation process
receives the model as input, this input is created in the requirement analysis phase by the
software engineers. The model is tested in order to meet with all the constraints defined
in the mentioned above phase. Then, if necessary, it converts the model into a different
model with the M2M process. This can be, for instance, the conversion of a UML model
into another model that better captures certain properties of the target system. Finally,
the code is produced, it can be either hand coded or automatically generated in a phase
in which the model is transformed into a lower level code representation (e.g., C/C++)
through the M2T procedure. Figure 2.9 shows the process described above.

Figure 2.9: Code generation pipeline process.

A modeling language is composed of syntax and semantic rules [31] that define,
namely, the set of language rules, constraints and the meaning of different language
tokens. In order to create a model, engineers must first define the language rules, that is,
the abstract syntax or metamodel [32]. A metamodel is the abstract model used for the
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model constraint definition, i.e., the metamodel defines the constraints to comply by the
model. In other words, in MDD design, the model is an instance of the metamodel.

Such an approach is extremely beneficial to software developers. First, in model-
driven software development, several activities are automated, and the code creation
process becomes faster and more efficient. Furthermore, automation, by definition
reduces the error rate of the implementation with respect to a human developer. MDD
also let developers work at higher levels of abstraction, so they can compose lower-
level features (e.g., drivers) as “building blocks” from a higher level of design, this
allows to test, find, and fix possible errors. This also lets engineers to automatically
generate code in different languages and for different platforms, moreover it is possible
to generate automatically the documentation along with the code, by only providing a
single and solid model definition. Finally, and most importantly, this approach enables
quick verification and certification of source code, enabling its adoption also in specific
domains such as avionics and automotive where they are required, for example a model-
based approach meets the specifications of IEC61508.

Traditionally, mathematical modelling has been widely used in many engineering
domains such as aerospace and avionics [33], [34]. Recently, modeling has been gaining
increasing attention in the automotive domain for simulating the real physical system
behavior or to test the functionality of a car component. This paradigm is currently
broadly used in the automotive domain. Specifically, the 6th part, Annex B of ISO-26262,
describes the importance of MDD at software level. An important aspect of model-
driven development is that a functional model not only specifies the function performed
by the component, but also provides design and implementation information that is
used for the code generation phase, i.e., functional model can represent specification
aspects such as design and implementation. This approach is widely adopted using
commercial off-the-self (COTS) modeling and simulation software tools, such as Matblab
Simulink 10 or ETAS ASCET 11.

In Chapter 5 we presented a code generator tool that follows the MDD paradigm to
generate the code that will be used to test the findings presented in Chapter 4.

2.3.1 AMALTHEA

AMALTHEA [35] is an open source framework that provides a XML-based docu-
ment format for modeling embedded multi-/many-core systems, supporting the AU-
TOSAR [17] standard. It is based on model-driven methodology and adopted by several
automotive companies. AMALTHEA is maintained by a consortium of academic and

10https://mathworks.com/products/simulink.html
11https://www.etas.com/en/products/ascet-developer.php
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industrial entities from the automotive and embedded domains. Thanks to its simple
and elegant XML-based layout, this model is extremely useful to automotive engineers
in the Verification and Validation (V&V) process, and it is being adopted by leading Tier
1 companies such as Bosch Gmbh.

In this context, APP4MC 12 for embedded multi-/ and many-core software develop-
ment, used by Bosch. The APP4MC platform provides an entire tool chain for tracing,
partitioning, mapping and modeling. APP4MC is based on the Eclipse modelling frame-
work (EMF) [36] to model software, hardware, timing behavior and constraints of the
system.

The modeling tool (for convenience called “AMALTHEA framework”) models
both high-level requirements and low-level behavior of software components, e.g.,
task periods, deadlines, memory access patterns, etc. It also models the hardware
platform where the application is targeted, and it supports the abstraction of multi-
core architectures. Hiding the intrinsic application information and code, that is often
under IPR (Intellectual Property Right) restrictions, AMALTHEA makes it possible
for academics to directly interact with real system (SW/HW) models provided by
industrial partners for research-related activities, with no licensing issues. Abstracting
out functional implementation details, the timing behavior of concurrent tasks can be
reproduced without exposing IP-critical internal details, limiting the risks to reverse the
software engineering process.

The AMALTHEA tool chain process is depicted in Figure 2.10. The model covers
the following aspects:

• Constraints. Provide definition for event chains, timing constraints, affinity con-
straints and runnable sequential constraints.

• Events. Definition of the type of event produced in the event chains {start, resume
suspend, terminate}.

• Hardware. Abstract representation of the hardware target.

• Mapping. Mapping of the software components in the hardware task-core mapping.

• Operating System. Information about the adopted scheduler and scheduling algo-
rithms.

• Software. Definition of the application software components, like runnables, tasks,
and data items (labels).

• Stimuli. The activation instant of recurring tasks.

12Application Platform Project for MultiCore (APP4MC). Url: http://www.eclipse.org/app4mc/
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Some of the metamodel features, such as peculiar scheduling policies, are not easily
reproducible using a general purpose operating system, but they rather require RT-OSes
(such as RTAI [37] or ERIKA [38]), or RT-oriented patches/extensions to generic OSes
(e.g., SCHED_DEADLINE [39], PREEMPT-RT [40] or GRUB [41], for the GNU/Linux
kernel) For example, the behavior of a set of tasks under a cooperative scheduling 13

policy is not easy to emulate on an operating system without limited preemptive sup-
port [42]. In this cases, some information of the metamodel like the above mentioned
features are simply ignored.

Since AMALTHEA can be adopted to abstract the behavior of automotive appli-
cations, we used the model to derive the end-to-end latency analysis. In this way, it is
possible to compute the analysis without having the application code.

Figure 2.10: Structure of the AMALTHEA model.

13Once started, a task within a co-operative scheduling system will continue to run until it relinquishes
control.
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3 Towards predictability in virtualization
platforms

In the embedded systems domain, hypervisors are increasingly being adopted to
guarantee timing isolation and appropriate hardware resource sharing among different
software components. However, managing concurrent and parallel requests to shared
hardware resources in a predictable way still represents an open issue. We argue that
hypervisors can be an effective means to achieve an efficient and predictable arbitration
of competing requests to shared devices in order to satisfy real-time requirements. As
a representative example, we consider the case for mass storage (I/O) devices like
Hard Disk Drives (HDD) and Solid State Disks (SSD), whose access times are orders
of magnitude higher than those of central memory and CPU caches, therefore having
a greater impact on overall task delays. As we argue in Section 2.1.1, virtualization
technologies can be used to provide spatial and temporal isolation (Freedom From
Interference) thanks to the abstraction and capacity to isolate hardware resources.

In this chapter, we provide a survey of the literature on I/O management within
virtualized environments, focusing on software solutions proposed in the open source
community, discussing their main limitations in terms of real-time performance. Then,
we discuss how the research in this subject may evolve in the future, highlighting the
importance of techniques that are focused on scheduling not uniquely the processing
bandwidth, but also the access to other important shared resources, like I/O devices.
These issues are important to certification authorities in many domains, like: railway,
avionics or automotive. The remainder of this chapter is organized as follows. The
next section introduces basic virtualization concepts. In Section 3.2 we introduce the
motivation behind this chapter. Then Section 3.3 presents a brief description of the safety
assesment proccess as is required by the ISO-26262 standard for the development of
hypervisors as a mechanism for partitioning mixed-criticality applications. Section 3.4
describes the existing solution based on the Xen hypervisor for I/O management. Sec-
tion 3.5 discusses statically partitioned solutions for multi-core platforms. Section 3.6
highlights performance, predictability and security issues related to the layered schedul-
ing systems implied by many virtualization techniques. Existing works introducing
real-time parameters within the I/O scheduler are summarized in Section 3.7, while
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Section 3.8 discusses the additional predictability problems incurred with current SSD
devices. A final discussion is provided in Section 3.9 showing promising research lines
to improve the predictable management of shared hardware resources by means of
properly designed hypervisor mechanisms.

3.1 Introduction to Virtualization

A hypervisor, also called Virtual Machine Manager (VMM), is a combination of
software and hardware components that allow emulating the execution of multiple
virtual machines (VMs) upon the same computing platform by properly arbitrating
the concurrent access to shared hardware resources (see Figure 3.1). Most of the avail-
able open source hypervisors are specifically tailored to server applications and cloud
computing. In these areas, hypervisors are mainly designed to provide isolation, load
balancing, server consolidation and desktop virtualization within the managed virtual
machines. However, the emerging of new potential areas for VMMs, such as automotive
applications and other embedded systems, and the possibility to exploit multi-core
embedded processors are posing new challenges to real-time systems engineers. This
is the case of next-generation automotive architectures, where cost-effective solutions
ever more require sharing an on-board computing platform among different applica-
tions with heterogeneous safety and criticality levels, e.g., the infotainment part on one
side, and a safety-critical image processing module on the other side. These domains
are independent, with different period, deadline, safety and criticality requirements.
Although hypervisors provide high level of isolation by definition, they need to be
properly isolated with no mutual interference, or a misbehaving module may endanger
the timely execution of a high-criticality domain, affecting safety qualification.
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Figure 3.1: Physical and virtualization approaches.
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Different approaches can be used to develop and implement an hypervisor with
diverse influence in the throughput of the virtual machines under execution [43]. In
particular, hypervisors can be classified as follows (see Figure 3.2):

• Type-1 or bare metal that runs directly on the system hardware, maximizing
the efficiency with minimum overhead, close to the performance of bare metal
operating systems.

• Type-2 or hosted hypervisor that runs on top of a host operating system. Guest
hypervisors execute as another process in the operating system.
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Figure 3.2: Hypervisor design, Type 1 (right) & Type 2 (left)

Mixed criticality systems designed without hypervisors implies the use of a plurality
of devices; usually, a restricted number of them are running a general purpose operating
system (like Linux or Windows), while other specific devices are running a Real-Time
Operative System (RTOS) for managing highly critical tasks. A multi-device solution
is therefore unacceptable due to very demanding energy consumption and amount of
area required, making a single board managed through a hypervisor the most preferable
approach.

In order to provide real-time guarantees, hypervisors either dynamically schedule
virtual machines according to a given on-line policy, or they statically partition virtual
machines to the available hardware resources. An example of the first category is
RT-Xen [44] (now merged into mainline Xen [45]), which implements a hierarchical
virtual machine scheduler managing both real-time and non-real-time workloads using
the Global Earliest Deadline First (G-EDF) algorithm. On the other hand, statically
partitioned solutions tend to isolate virtual machines onto dedicated cores, with an
exclusive assignment of hardware resources. An example of this approach is given by
Jailhouse [46]. Jailhouse, developed by Siemens, is a Linux-based hypervisor oriented
to real-time, it isolates the virtual machines in small cells with few lines of code (13513
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written in C), removing all of the unnecessary features (e.g., hooks for diagnostic tools),
and allocates the virtual machines by pinning them to the computing cores. It also allows
running bare-metal applications aside to Linux. Accordingly, Jailhouse does not allow
multiple virtual machines to share the same core. An advantage of this latter approach
is that the resulting hypervisors have a typically smaller code footprint, implying much
lower certification costs. Indeed, reducing the code size is a prominent characteristic
of other recent VMMs, like NOVA [47] and bhyve1. Indeed, NOVA OS Virtualization
Architecture is even smaller (approx, 9K LoCs written in C++), and, similarly to Jailhouse,
it is capable of running virtual machines and bare metal applications side-by-side.
However, unlike Jailhouse, NOVA is not pinning physical cores, but it implements
preemptive priority-driven round-robin scheduler.

No matter which virtualization approach is taken, I/O for storage devices might
become a bottleneck. This is due to the added layer of complexity introduced by the
hypervisor itself, as shown in Section 3.6. Most of the current literature on resource access
arbitration for virtualized environments mainly focuses on CPU scheduling (see for
example surveys [48] and [49]), neglecting the huge impact that the access to other shared
hardware resources, like Hard Disk Drives (HDD) and Solid State Disks (SSD), may
have on time-critical tasks. In view of this consideration, this chapter provides a survey
on the state-of-the-art on I/O virtualization and concurrent HDD/SSD read/write
operations. We will discuss the applicability of previously introduced solutions to I/O
arbitration for enhancing the real-time guarantees that may be provided in a virtualized
environment. Main limitations of classic fair provisioning schemes to resource sharing
will be highlighted.

We are interested in software-based solutions that do not require customized device
controllers and hardware mechanisms to obtain the desired behavior. Therefore, most of
the addressed works deal with virtualized approaches that schedule the access to storage
devices by means of a hypervisor or similar mechanisms, shaping the I/O requests to
guarantee a given I/O bandwidth to multiple partitions/cores. For each of the presented
works, we will highlight the main weaknesses and limitations, in order to stimulate
the real-time research community to undertake a more rigorous and structured effort
towards achieving the required predictability guarantees.

Contributions are divided by contexts. In this respect, a first coarse-grained dis-
tinction is made considering the technology used for data storage: rotational or non
rotational. HDDs and flash-based devices, such as SSDs, may have similar issues when
it comes to arbitration of concurrent accesses, but their radically different operating
principles entail different problems to solve in order to ensure a predictable behavior. A
finer-grained distinction is related to arbitration policies, examining how different I/O

1https://wiki.freebsd.org/bhyve
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scheduling algorithms behave in a virtualized environment and whether they are able
to satisfy hard/soft real-time guarantees. It is worth stressing that most of the work on
virtualization in I/O environments is based on or concerned with the Xen hypervisor
due to its popularity.

3.2 Motivation

There are multiple motivations under this chapter. The initial reason triggering
this study relates to the problems encountered when trying to guarantee bounded
shared resource access times to tasks concurrently executing on a multi-core platform.
Even if often neglected by theoretical works on real-time scheduling, a great share
of the predictability problems of modern multi-core platforms is due to potentially
conflicting requests to shared hardware resources like caches, bus, main memory, I/O
devices, network controllers, acceleration engines, etc. The arbitration of the access to
the mentioned shared resources is often hardwired and cannot be easily controlled via
software. The enforced policies are mostly tailored to improve average case performance
and throughput, often conflicting with the predictability requirements of real-time
applications. Finally, low level details on the arbitration policies are difficult to obtain
and may significantly vary on different architectures. This makes it extremely difficult to
develop a tight timing analysis even for simpler platforms. To sidestep these problems,
we are studying scheduling solutions that aim at avoiding conflicts on the device arbiter,
by properly shaping the device requests from the different cores. Hypervisors are natural
candidates in this sense, providing a centralized decision point with a global view of
the requests from the various partitions. This would allow taking the unpredictable
arbiters out of the scheduling loop, leaving the resource management at hypervisor level.
Before implementing such a solution, we examined the existing related approaches for
managing shared resources in virtualized environments, taking storage devices as a
representative example.

This choice is mainly due to the large interest in I/O scheduling within the open
source community. Modifications to the current Linux schedulers are constantly being
proposed and evaluated. For example, at the time of writing, a new scheduler denoted
as BFQ (Budget Fair Queuing) [50] is undergoing evaluation for being merged into
mainline Linux. This I/O scheduler is based on CFQ, the default I/O scheduler in
most Linux systems. Among other goals, BFQ is designed to outperform CFQ in terms
of the soft real-time requirements that can be guaranteed to multimedia applications.
However, it remains unclear how the proposed modifications can deal with harder
real-time constraints, given the unpredictable technical characteristics of storage devices.
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A second motivation descends from the consideration that sub-optimal arbitration
policies of an I/O storage device can be the primary cause of blocking delays and
performance drops. This is due to the considerably worse latencies and bandwidths of
storage devices with respect to other shared resources, such as central memory or CPU
caches. As an example, the random access times to L1, L2, L3 and DDR main memory
on an Intel® i7 architecture are in the order of 1ns, 10ns, 50ns and 100ns 2, respectively.
In contrast, the random access times to SSDs and HDDS are considerably higher, in the
order of 100us and 10ms 3, respectively. Despite the cost of SSDs random accesses is
predicted to drop to 10/50us in the next years, the gap from the main memory access
times would still be of at least two orders of magnitude. Due to this difference, it is
of paramount importance to properly schedule and coordinate the access to storage
peripherals.

Figure 3.3: Summary of I/O experiments in Xen.

A third motivation is related to the abundant presence of I/O scheduling research
in cloud and server virtualized scenarios. The major concerns in these fields are per-
formance and fairness, rather than real-time constraints. Also, the concept of fairness
is mainly applied to CPU scheduling, rather than on the access to shared resources.
Consider the widely known Xen hypervisor [45]. Xen allows the system administrator
to specify the policies that regulate how guests are scheduled on the various cores. We

2Intel Performance Analysis Guide http://software.intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf Last accessed on May 2017.

3HP Solid State Drives (SSDs) for Workstations http://h18000.www1.hp.com/products/quickspecs/
13379_na/13379_na.html Last accessed on May 2017

© Università di Modena e Reggio Emilia Ignacio Sañudo

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://h18000.www1.hp.com/products/quickspecs/13379_na/13379_na.html
http://h18000.www1.hp.com/products/quickspecs/13379_na/13379_na.html


Towards predictability in virtualization platforms 31

can specify that a VM can be scheduled with RTDS (Real-Time Deferred Scheduling)
and a different CPU with a Credit scheduler. By doing so, we are not going to arbitrate
access to the CPU (as they are scheduled in different cores) but we want to specify
requirements for the first VM and a non real-time domain for the credit scheduled VM.
However, a Credit-scheduled virtual machine that runs an I/O intensive task can cause
a priority inversion towards other RTDS-scheduled machines, even if the latter require
much less I/O bandwidth. In order to further prove the validity of this motivation,
we reproduced this priority inversion with a simple experiment in a Xen virtualized
environment. The experiment involved a workstation managed with Xen 4.5.0 and
equipped with a quad-core Intel® i7 processor, disabling hyperthreading. We setup two
virtualized disk partitions using LVM (Logical Volume Manager) on a rotative HDD.
The read peak rate of the HDD was ∼130MB/s. The device was paravirtualized. We
created two guests pv1 and pv2, pinned to two different cores, each accessing one of the
two partitions. The workload executed by these two virtual machines is as follows:

• pv1 is a Credit-scheduled virtual machine, associated with the Xen default schedul-
ing weight (see Section 3.4 for a brief introduction of the Xen Credit scheduler and
the description of its parameters). pv1 executes a non-critical, non-real-time, I/O-
intensive application, sequentially reading a single 1GB-file. Such an application
acts as an interfering workload to other real-time tasks on a different domain.

• pv2 is an RTDS-scheduled virtual machine that runs a single task with a 50ms
period. The end of the period is assumed to coincide with its relative deadline.
Within its period, this guest has to read a memory-page-sized (4KB) chunk of data,
randomly chosen out of a 1GB-file in its partition. This setup allows reproducing
the worst-case HDD access latency, which, for random reads, has a bandwidth
of ∼0.63 MB/s, corresponding to an average latency of around 5ms for a 4KB
memory-page read.

In order to rule out any performance bottlenecks into the privileged domain we
assign the remaining memory and cores to Dom0. Despite the large slack of the RTDS
guest (pv2) to complete its memory read and its higher priority, the I/O interference
causes pv2 to experience a large number of deadline misses. Figure 3.3 shows the results
of the experiment sampling 40 periodic I/O read accesses (x axis) by the RTDS domain.
The y axis represents the time taken by each request in µs. Each bar represents the actual
I/O request time. The horizontal black line indicates the period between subsequent
requests, while the vertical green line corresponds to the instant when the interference
operated by the Credit scheduled domain (pv1) is over. As can be easily seen, pv2’s
requests starve during the read process of the Credit guest, which almost monopolizes
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the access to the HDD. In contrast, when the interference created by pv1 is over, pv2 does
not experience any deadline miss. In retrospect, this behavior is not surprising, as the
higher priority provided to an RDTS guest affects only the scheduling on different CPUs,
but it has no effect on I/O scheduling. In other words, the priority is not transferred
from CPU to I/O.

Last but not least, providing freedom from interference between ECUs in virtu-
alization platforms, is an important issue in the automotive domain. In Section 2.1.1
we highlighted some of the constraints defined by the ISO-26262 in terms of spatial
and temporal isolation. In this sense, the ISO-26262 establishes good directives for
providing freedom from interference. In the next sections we focus on disk-I/O sources
of interference, and existing solutions for providing temporal and spatial isolation in the
state of the art in this context.

3.3 Virtualization and safety issues

As we argued in the beginning of this dissertation, the exponential increase in the
vehicle’s complexity and the integration of multiple functionalities in the same on-board
platform have completely changed the way in which vendors designed it’s vehicle-
solutions. In this sense, car makers are not only concerned with safety and reliability but
also with the costs of the components. Indeed, that is why most of the car makers are
transitioning from single-core to multi-core architectures. However, the development of
safety-related components is still the main concern in the automotive domain.

The integration of multiple applications in the same platform leads to implement
safety-related and non-safety-related applications in the same MPSoC. In this context,
applications can communicate among each other at inter- and intra-core level. However,
an error in one partition can corrupt the other partitions triggering unwanted fault
propagation problems. This is one easy example, but there are a lot of safety related
problems that can be presented in a vehicle’s software.

At certification level, it is still challenging how to design and validate a system that
integrates mixed-criticality components. In order to ensure safeness in the development
of safety-critical systems, the Part 6 of the ISO-26262 standard establishes a guidance
document that should be considered during the development of software components.
This part of the standard provides further recommendations for the development of
safety critical software for automotive systems, from the planning of the functional
safety activities for the software development, to the specification of software safety
requirements. From a timing perspective, the standard specifies that the development
process shall consider the “Execution or reaction time derived from the required re-
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sponse time at the system level.” 4. It is worthwhile to mention that the standard
includes a set of requirements for software design and implementation. For instance, it
defines software constraints for the use of pointers and recursion. Both constraints are
mandatory requirements for ASIL-D software components.

Turning to the integration of mixed-criticality components in the same on-board
platform, software components implemented on a multi-core platform have to comply
with a safety assessment process. Many of the software safety requirements are derived
from technical safety requirements. In order to comply with these technical safety
requirements, it is needed to achieve the so called Freedom from Interference (FFI). In
this context, considering that software components cannot be physically separated,
providing freedom from interference is a very important issue. According to the annex
D, "FFI is the absence of cascading failures between two or more elements that could lead
to the violation of a safety requirement". To better clarify this concept, let us consider
the following example: an ASIL C software component that controls periodically the
acceleration of the vehicle, establishes a communication with an ASIL D component that
is in charge of the lane keeping assist system (LKAS). In this case, the ASIL D component
is considered free from interference with respect to the ASIL C component, if a failure of
the component ASIL C component does not interfere ASIL D component and vice versa.
Specifically, Freedom From Interference is provided if:

1. "Element 1 is free of interference from element 2 if no failure of element 2 can cause
element 1 to fail" - Figure 3.4a

2. "Element 3 interferes with element 4 if there exists a failure of element 3 that causes
element 4 to fail." - Figure 3.4b

(a)

Element 4 Element 3

(b)

Figure 3.4: Freedom From Interference Example - ISO-26262. Definition 1.49.

Achieving freedom from interference between partitions allows deploying software
components with different ASIL levels in the same system. In this way, lowest ASIL
components involved in the certification process do not inherit the integrity level of
highest ASIL software components, reducing in this way design and production costs.

4In Chapter 4 we derived a timing and schedulability analysis of an automotive application that is in
charge of the engine management system (EMS)
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At implementation level, software components can be interfered in many different
ways. The purpose of the standard is to guarantee that there is no interference between
components. ISO-26262 defines three types of freedom from interference:

• Temporal interference: it is necessary to ensure that one application does not
interfere with another application in terms of time execution, for instance, con-
suming its CPU execution time or blocking a shared resource used by another
application. This kind of interference can lead to blocking of execution, deadlocks
or livelocks. According to the standard, the strategies that can be considered to
avoid temporal interference are: cyclic execution scheduling, fixed priority based
scheduling, time triggered scheduling, monitoring of processor execution time,
program sequence monitoring and arrival rate monitoring. On the other hand,
there are some novel mechanisms in the literature that aims to provide temporal
isolation using cache coloring techniques. For instance in [51], [52], authors pro-
posed page coloring and cache lockdown mechanisms to enforce a deterministic
cache hit rate on the most frequently accessed memory pages. In some sense these
techniques can be considered mechanisms to provide also spatial isolation since
the data is “partitioned”.

• Spatial interference: in this case, one partition cannot change data nor the code of
another partition. For instance, the access to the shared memory by the software
on one core can cause data inconsistency in the software allocated on a different
core leading to such problems as race conditions, data starvation or deadlocks.
Typically, freedom from spatial interference is avoided using mechanisms like MPU
(Memory Protection Unit) to control access to the shared memory, or CRC (Cyclic
Redundancy Check) for error detecting data or even the Intel’s Cache Allocation
Technology (CAT) 5 CAT helps managing the cache by providing mechanisms
to control where the data is allocated in the last-level cache. In this way, it is
possible to provide isolation between partitions and prioritization in the accesses
at software level.

• Communication interference: generally, ECUs communicate among each other
sending signals, data or messages through network or CAN bus. In this case, it is
necessary to protect this communication against missing or corrupted data. The
mechanism proposed to protect such a communication is called E2E (end-to-end)
protection, it provides a protocol to detect and protect the effects of faults when
exchanging data.

5https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology Last access
1/10/2017
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Summing up, we believe that the partitioning techniques described above, combined
with the isolation mechanisms provided by virtualization technologies (like type 1
hypervisors), fit perfectly to meet the requirements recommended by the ISO-26262.
Indeed according to the standard: "Virtualization technologies can support the argument
to guarantee freedom from interference between software elements running on a multi-
core platform." Temporal and spatial isolation can be provided by statically partitioning
virtual machines into the available hardware and improved using the mechanisms
described above.

In this context, open source solutions like Automotive Grade Linux 6, Jailhouse [53]
or commercial solutions like QNX [54] or PikeOS [55], aim at integrating hypervisors as
a solution to provide strong isolation between software components.

3.4 I/O scheduling in virtualized environments

A significant number of contributions addressed I/O virtualization issues by mod-
ifying the existing Xen Credit scheduler. The Credit scheduler is the default CPU
scheduler, and it works by distributing credits among virtual machines in proportion to
their weights. Weights can be freely set on guest creation. A virtual machine consumes
its credits while running on a physical CPU, and is in an over or under priority status
depending on whether it has exceeded or not its share of CPU resource within a consid-
ered time window. Credits are redistributed for each virtual machine by a specifically
designed system-wide thread. For a deeper explanation of the Xen Credit scheduler,
please refer to the official documentation7.

The part of the credit scheduler that relates to I/O scheduling is connected to
what is known as boosting mechanism, i.e., an additional boost priority status that allows
performance improvements for I/O-intensive guests [56]. A very demanding I/O task
running on a guest causes the virtual machine to get blocked often, leading to a very
limited credit consumption, with the guest always in the under state. When waking up
after completing an I/O request, the VMM will grant the guest a boost priority, allowing
it to preempt other running virtual machines to process the requested data.

Different works tried to improve I/O scheduling in virtualized environments by
acting on the mechanisms used by Xen to assign priority statuses within guests and on
the above described boosting mechanism. In [57], the authors developed a solution that
extends the mechanisms of the Xen Credit scheduler. They introduced the notion of
task-aware (I/O) scheduling arguing that a task-aware model is beneficial for scheduling
purposes, especially in situations where mixed resource usage and I/O-intensive tasks

6https://www.automotivelinux.org/
7http://wiki.xen.org/wiki/Credit_Scheduler
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are concentrated in specific domains. Once the VMM has knowledge of which guest
has higher I/O bandwidth requirements or specific latency-related constraints, the
hypervisor will use this information to decide how and when to assign the boost priority
to those I/O-bound guests. In [58], the authors followed a somehow similar, but more
complex, approach. They developed a technique for speeding up I/O virtualization
using direct I/O with hardware IOMMU. To support a real-time response for high quality
I/O virtualization, a new REAL_TIME priority state is added to the Xen Credit scheduler
supporting preemption. Consider a latency-sensitive application running inside a guest
to which the associated latency-critical pass-through device is assigned. Whenever the
pass-through device fires an interrupt, the associated virtual machine is automatically
promoted to the REAL_TIME state, triggering a preemption of any non REAL_TIME guest
to schedule that particular machine right away. While the first contribution [57] mainly
focuses on achieving a fair behavior among domains, the latter [58] shows promising
results in terms of I/O throughput and latencies. Due to the low latency values obtained,
the authors in [58] claim to have designed a real-time virtualized environment, but no
experimental or analytical evidence has been provided to support these claims using
classic real-time metrics, such as schedulability ratio, worst-case response times, deadline
misses, etc.

Another interesting approach is presented in [59] and [60]. Both works are focused
on adaptive time-slice sizing in Xen. In the first contribution, the authors modified the
Xen Credit scheduler to guarantee Quality of Service (QoS) requirements for streaming
audio applications in virtualized environments. They designed an adaptive modifier
of the Xen Credit scheduler that allows flexible time-slices and real-time priority flags
to be dynamically assigned to guests. According to their presented results, the authors
were able to improve the responsiveness of latency-sensitive applications, achieving
some kind of soft real-time guarantee. They tested their implementation by pinning
multiple virtual CPUs (vCPUs) to the same physical core, hence testing concurrent
I/O requests rather than parallel I/O operations. In [60], the authors adopt a similar
mechanism for an on-the-fly adaptation of the time slices within the I/O scheduling
policies (mainly CFQ and Anticipatory) of the Linux kernels that are executing within
the Xen unprivileged domains. Here, parallel HDD requests are explicitly considered,
showing an improved latency. However, even if improving latencies is an important
step towards predictability, a system that dynamically adapts scheduling constraints,
such as time slices, makes it very difficult to identify worst-case scheduling settings
where to build a tight timing and schedulability analysis.
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3.5 Multi-Core partitioning and virtualization

Another promising direction to obtain a predictable behavior is to exploit the
multi-core nature of today’s CPUs, assigning specific I/O handling functions to specific
cores. This can be accomplished with CPU hardware extensions and/or a different
virtualization paradigm using partitioning-based hypervisors. The work in [61] proposes
a Xen implementation monitoring runtime information of the bandwidth requirements
of the different guests. Specific functions related to I/O handling are pinned to specific
cores, e.g., one core is used for driver-related aspects, another one to handle I/O events,
another one for generic computations. Performance improvements are claimed in terms
of bandwidth and latencies with a slight drop in the performance of compute-intensive
tasks.

Another interesting contribution that relates to core specialization is presented
in [62]. A VMM based on hardware resource partitioning is taken into account, proposing
a hypervisor (SplitX) that resembles the operating mechanisms of Jailhouse8. Specialized
cores can handle I/O related interrupt and hypervisor instructions. The authors claim
that I/O level performance is expected to reach near bare-metal performance, by means
of hardware extensions to allow directed inter-core signals for events notification but also
for managing resources belonging to other cores. An example of this latter feature may
allow a core to assign specific values to the registers of a different core. Unfortunately,
this latter batch of related works mainly deals with performance improvements. Even
if a considerable drop on latency values is a promising start for achieving real-time
guarantees, these approaches are not concerned with obtaining worst-case delay bounds
and a tight timing analysis.

In a recent publication [63], a scratch pad centric non-virtualized architecture is
presented in which real-time requirements are explicitly taken into considerations. Simi-
larly to the other approaches presented in this section, a specific core is delegated for
I/O operations exploiting a dedicated I/O bus. Task executions are decoupled from
instruction and data loading using a Time Division Multiplexing (TDM) approach. I/O
operations are included in the same time slice used for task loading/unloading. While
this latter contribution present a very rigorous and sound timing analysis, it does not ex-
plore I/O intrinsics threats to predictability in virtualized environments, nor it addresses
the problems of having multiple I/O tasks hogging the dedicated core.

8Jailhouse does not yet support any mechanism to predictably manage the concurrent access to shared
resources like I/O devices, each of which is statically pinned to a given partition/core having exclusive
access to it.
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3.6 Perfomance and security issues introduced by I/O
virtualization

It is straightforward to observe that a hypervisor allowing its guests to run entire
operating systems can easily introduce noticeable overheads due to the local CPU and
I/O schedulers. Virtualized platforms, such as Xen, have their own CPU arbitration
policies for scheduling guests, but also privileged domains have to go through their own
block layer, while each guest runs its own kernel with different local scheduling policies
for both CPU and I/O, hence providing an added level of complexity when accessing
the storage device. This hierarchical structure is known to cause performance drops
compared to bare-metal systems, but it also exposes a more complex architecture that
dramatically increases the difficulties of deriving a sound timing analysis.

The performance overhead issue has been studied in different works [56], [64],
[65]. In a recent paper [66] the authors measured the overhead of I/O stack duplication
between host and virtual machines running KVM as VMM. It also provided a very
complete survey on previous tests on different VMMs that eliminated a layer of the IO
scheduler. A simple QEMU + virtIO solution is shown to outperform almost all tested
scenarios.

The hierarchical organization of these kind of hypervisors also poses significant
security threats. In [67], an untamed I/O intensive task running within a compromised/-
malicious guest is used to slow down and interfere with other supposedly separated
domains. For this reasons, the authors recommend to adopt a separate and unique I/O
scheduler for virtualized environments.

We believe that such an I/O scheduler should be designed with the same guidelines
considered when implementing efficient CPU real-time schedulers, ensuring a proper
isolation among tasks that require disk access, while allowing them to complete their
workload within given deadlines. On this latter consideration, it has to be pointed out
that the Linux kernel provides features such as control groups (cgroups) that can be
used to isolate, limit and control disk (rotational or SSD storage device) accesses of
sets of processes. For example, cgroups can be set within privileged domains to limit
resource usage by unprivileged guests. However, this feature does not provide for
specific scheduling policies, rather it relies on the underlying I/O scheduler, and on its
policy, for enforcement. In this respect, current Linux I/O schedulers implement too
coarse policies for typical real-time requirements. In addition, the resource allocation
scheme of cgroups is based only on weights, which is not sufficient scheme for most
real-time applications.
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3.7 Deadline-aware I/O scheduling

The need to provide tighter real-time guarantees to tasks accessing disk I/O has
been a problem addressed since the early 90’s. In [68], Reddy et al. presented a schedul-
ing algorithm called SCAN-EDF that combined the Earliest Deadline First (EDF) [69]
and SCAN schedulers for minimizing request latency in HDD while serving deadline
constrained tasks. During the years, this algorithm has also been modified and improved
by means of heuristics, such as batching and delaying requests, or aggregating multiple
queues of requests. In [70], [71] and [72], the Xen I/O architecture has been modified to
include deadline-based scheduling for the storage in a virtualized environment. In [70],
[71], a two level scheduler called Flubber is introduced. The first level defines the
throughput using a credit-rate controller to ensure performance isolation, while the
second level applies Batch and Delay EDF (BD-EDF) to manage the request queues from
the different guests. Even if the authors claim that Flubber improves Xen performance
and allows the system administrator to specify deadlines, no results are provided to
evaluate the worst-case delays and blocking times needed to establish a sound timing
analysis. In [72], a similar approach is used, where the first level accumulates the amount
of I/O requests in a fixed time slice while analyzing the disk bandwidth, and the second
level exploits the deadline-modified SCAN algorithm reordering the requests according
to the deadline group and to their location on the disk. While there is a performance
enhancement for I/O intensive workloads, neither this work appears to lend itself to the
analytical guarantees required in a real-time setting.

3.8 Real-time issues in SSDs

Solid State Drive based storage devices deliver from 5 to 10 times the bandwidth of
a HDD, while maintaining a low power consumption and a much stronger resistance to
shocks and vibrations. These features make SSDs the primary choice for applications
in the automotive and avionics sectors, in which embedded platforms have to sustain
prolonged vibrations while still delivering high performance. This makes it particularly
interesting to understand whether the previous considerations coming from experiments
executed on HDDs equivalently hold for guests sharing access to a SSD. In this respect,
it has to be pointed out that the intrinsic operating mechanisms of SSDs pose significant
problems towards the design of predictable hard real-time systems. This is due to the
fact that flash memories are a write-once and bulk-erase medium, that implies that a
flash translation layer (FTL) and a Garbage Collection (GC) mechanism are needed to
provide applications a transparent storage service. A naïve best effort GC policy can
unpredictably start segmentation operations causing tasks to wait for potentially long

© Università di Modena e Reggio Emilia Ignacio Sañudo



Towards predictability in virtualization platforms 40

blocking times. The authors in [73] focused on providing hard real-time guarantees for
the GC phase in small NAND flash devices by proposing a token based garbage collec-
tion system. The presented results showed that the implemented system is predictable
and robust to interferences introduced by non real-time tasks. A prototype is tested
in a 16MB NAND-flash drive with two real-time tasks and one non real-time task in a
manufacturing system scenario, with no deadline violations until high CPU utilization.
A more recent contribution [74] observed that the previous solution does not scale well,
making it impossible to apply to modern SSDs having a much larger storage capacity.
An FTL implementation (KAST) is then proposed to allow the user to control the worst
case blocking time by tuning some GC parameters.

3.9 Summary

Hypervisors represent a possible solution to bypass unpredictable scheduling poli-
cies enforced by off-the-shelf arbiters for the access to shared hardware resources. By
taking informed decisions on the scheduling of the different requests coming from
multiple tasks, a hypervisor may provide stronger timing guarantees to real-time tasks,
predictably limiting the delays due to interfering requests on the shared devices. Taking
I/O scheduling as a representative case for resource sharing, we highlighted the main re-
sults concerned with improving the delays due to competing accesses to storage devices
in virtualized environments. We showed how I/O intensive tasks within non-critical
virtual machines can easily cause more critical partitions to experience high blocking
delays, leading to repeated deadline misses. This was the case with the Xen hypervisor,
whose critical partitions are “privileged” only when assigning processing bandwidth,
but not when arbitrating the access to other shared resources. We argued that smarter
scheduling policies are needed, that take into account the timing requirements of the
different tasks/partitions also when arbitrating the access to shared devices.

We showed that existing mechanisms help to improve the blocking delays are
mainly tailored to obtain better average performance or achieve a fairer behavior, but
cannot be leveraged to develop a sound timing and schedulability analysis. While it
would be possible to manually tune the bandwidth allocated to each partition when
accessing an I/O device, e.g., by playing with cgroups parameters in Xen, such a solution
has clear limits in terms of flexibility, efficiency and responsiveness, preventing a tight
timing analysis. Moreover, we pointed out that hypervisors like Xen and KVM add
further layers of complexity to guest operating systems, with repeated scheduling and
block layers coupled with para-virtualized driver architectures, making it very difficult
to formalize the I/O scheduling model. Partitioned hypervisors seem more suitable
in this sense, especially when the number of cores increases and each domain can be
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statically assigned to one or more dedicated cores. Still, most of the available partitioned
VMMs do not allow for a predictable and concurrent access to shared devices, but they
either exclusively pin each resource to a selected domain, preventing tasks running on
other partitions to access it, or they implement para-virtualized schemes that are not
aware of the different real-time requirements.
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4 Towards predictability in AUTOSAR

In the last chapter we highlighted the drawbacks concerning I/O shared resource
management within virtualized environments. Applications typically communicate
data among each other, as we discussed before, an error in one partition may lead to
errors in other partitions producing undesired fault propagation problems (see Section
3.3). While virtualization is popular to isolate and subdivide the resources, concepts
like data consistency or determinism in the partition or task communication are out
of the virtualization scope. Different mechanisms can be used to provide determinism
and data consistency. Those mechanisms are used to communicate tasks at software
level. However, we believe that they are promising to guarantee determinism and data
consistency if needed in the communication of distributed tasks, i.e., those mechanisms
are useful not only to communicate tasks allocated in the same partition but also in
different partitions (VMs or ECUs for instance). Nevertheless, they are usually used to
manage the communication at inter- and intra-ECU level. In this chapter we analyze and
propose the implementation of different techniques that are used for shared-memory
inter-task communication in the automotive domain.

We will consider the automotive domain. In this context, modern automotive
embedded systems are composed of multiple real-time tasks communicating by means
of shared variables. The effect of an initial event is typically propagated to an actuation
signal through sequences of tasks writing/reading shared variables, creating an “effect
chain”. The responsiveness, performance and stability of the control algorithms of an
automotive application typically depend on the propagation delays of selected effect
chains. Different types of communication have been proposed to ensure data consistency,
with different impacts on the resulting propagation delays of effect chains, as well as in
terms of overhead and memory footprint.

In this chapter, we explore the trade-offs between three communication patterns that
are increasingly being adopted for industrial automotive systems, namely, Explicit, Im-
plicit, and Logical Execution Time (LET). Furthermore, a novel timing and schedulability
analysis is provided for tasks scheduled following a mixed preemptive configuration, as
specified in the AUTOSAR model. Moreover, an end-to-end latency characterization is
then proposed, deriving different latency metrics for effect chains under each one of the
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considered patterns. Finally, the results are compared against an industrial case study
consisting of an automotive engine control system provided by Bosch [75].

4.1 Introduction

In recent years, the amount of electronics in automotive vehicles has risen dramati-
cally, constituting a significant share of the overall cost of the vehicle. The technological
reason behind such a trend in the automotive industry is due to an increased number
of safety and control functionalities that are being integrated in modern cars, as well
as to the replacement of older hydraulic and mechanical direct actuation systems with
modern by-wire counterparts, leading to an increased safety and comfort at a reduced
unit cost. Well-known examples are electronic engine control, ABS, electronic stability
program (ESP), active suspension, etc.

As we discussed at the beginning of this dissertation, the introduction of multi-
core processors in the industry allow application providers to counter the thermal and
power-related limitations to the Moore law demand for computing power without
incurring thermal and power problems. In the automotive domain, multi-core platforms
bring major improvements for some applications requiring high performance such as
high-end engine controllers, electric and hybrid powertrains, advanced driver assistance
systems, etc. Moreover, the increased computational power of multi-core platforms
allows integrating into a single controller multiple functionalities that were spread
around different electronic control units (ECUs), reducing the number of computing
units as well as communication overhead. Some of the cores are dedicated to handling
low-level services (AUTOSAR’s Basic Software) or high-level services (AUTOSAR’s
Application Software), provided the necessary timing and safety constraints are satisfied,
adapting existing design methods to the new multi-core paradigm.

However, distributing tasks and runnables over multiple cores may have a signifi-
cant impact over the control performance of a given application, due to the concurrent
execution of multiple tasks partitioned on different cores that communicate through
shared memory. The typical way tasks communicate in the AUTOSAR model is through
shared labels, that are written/read by two or more runnables. Different communica-
tion patterns have been proposed in the automotive industry to ensure a consistent
management of shared labels, i.e., Explicit, Implicit and Logical Execution Time. Each
of this patterns has a different impact over the communication latencies experienced
by tasks accessing the same shared variable. In particular, automotive applications
are particularly concerned with optimizing end-to-end propagation latencies of input
events that trigger a chain of computations leading to a final actuation or control action.
An “effect chain” (EC) is defined as a chain of tasks, where each task has a runnable
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writing a shared label that is then read by a second task; this latter task processes the
read variable, and then writes a different shared label, which is then read by a third task.
And so on, until the end of the chain. The amount of time that elapses from the first
input event until the end of the chain may significantly affect the control performance of
the considered application.

In this chapter, we analyze in detail the propagation latencies of event chains
composed of multiple tasks under different types of communication. We propose and
characterize meaningful latency metrics to evaluate the control performance of selected
event chains. For each considered communication pattern, we characterize wort-case
scenarios that lead to the largest latency of the event chain, deriving analytical upper
bounds of the worst-case propagation time of an input event. We also provide valid
upper bounds of the response time of each runnable for tasks scheduled either under
the preemptive or the cooperative scheduling policy supported in AUTOSAR. To our
knowledge, this is the first work that provides such an analytical characterization and
comparison of end-to-end latencies under different industrial-grade communication
patterns, for task systems compliant with the AUTOSAR scheduling model.

The Chapter is organized as follows. The following section introduces the related
work. Section 4.3 presents the scheduling model, as well as the preemptive and cooper-
ative scheduling algorithms, and related response-time analysis, for AUTOSAR tasks.
Section 4.4 describes the considered communication models, discussing the additional
memory and communication overhead implied by each communication pattern. Section
4.5 derives analytical upper bounds of meaningful end-to-end latencies for each consid-
ered communication pattern. The analytical bounds are then instantiated in Section 4.6
to an automotive industrial case study, consisting of an engine control system by Bosch
[12], based on concurrent AUTOSAR tasks partitioned onto a multi-core system. Finally,
section 4.7 presents our conclusions and directions for future works.

4.1.1 Data consistency and time determinism issues

In this subsection we will discuss the importance of data consistency and time
determinism.

Data consistency. Data consistency is a broad and ambiguous term. This concern
is typically given in database management systems (ACID transactions). We will refer
to it as the “data model” that do not lead to a critical state, i.e, a data model in which
each entity expects always the correct data. In real-time systems data consistency is
an important issue and in certain applications may be critical. For instance, consider
Figure 4.1, we have two tasks that shares a variable. In the first case (the upper part of
the figure) τ2 starts the execution, then it initialize a variable x to 0, at some point in the
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execution τ1 preempts τ2 that changes the value to -1 and turns the data inconsistent.
When τ2 resume the execution, it executes a square root of -1 that causes an error. We
have a very similar situation in the second case (write conflict) where τ2 produce an
error when it tries to execute a division by zero.

Figure 4.1: Write and read conflicts.

One way to maintain data consistency is restrain simultaneous access to shared
resources. This can be achieved using locking mechanisms. A lock is a synchroniza-
tion mechanism that may be used to enforce data consistency when accessing shared
resources by blocking the resource during the execution. Another possible mechanism is
based on the use of buffers. For instance in Figure 4.2, the read conflict is avoided by
prefetching or buffering all shared data into local variables, in this way, τ1 can not affect
the data changed by τ1 during the execution. At the end of the execution tau1 “publish”
it changes. The second part of the Figure denotes how the write conflicts can be avoided
using locking mechanisms.

Figure 4.2: Buffer (Implicit) and lock mechanisms.
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Both mechanisms have different impact in terms of blocking delay (i.e, the perfor-
mance decreases) and memory footprint. However, we have to consider that for certain
applications the performance or the memory footprint can be trade off for guarantee
data consistency. In the next sections we will characterize this impact.

Time determinism. The above mentioned mechanisms (locking or buffering)
disregard of time determinism. To better understand this concept, let’s suppose that
tasks communicates among each other in a producer-consumer fashion. Following this
assumption, let us consider the example presented in Figure 4.3, where an effect chain
composed of τ1, τ2 and τ3 is shown. Task τ1 has a runnable writing a shared label that is
then read by τ2; this latter task processes the read variable, and then writes a different
shared label, which is then read by a runnable in τ3. In the end, this runnable outputs
an actuation signal that completes the previously introduced, effect chain. In this case,
the amount of time that elapses from the first input event until the end of the chain,
also known as the end-to-end latency, is 3. If the computation time of some runnables
is modified, or more runnables are added as in Figure 4.4, the end-to-end latency may
increase (19 for the case in the figure).

Figure 4.3: End-to-end effect chains composed of three tasks with parameters
T1 = 5, T2 = 10, T3 = 20 and C1 = C2 = C3 = 1.

Control tasks are typically executed periodically, i.e., at a given sampling period.
The resulting control performance is highly dependent on task jitter, task response times,
scheduling policy and end-to-end latency of effect chains. Even a small change in one of
these parameters might be detrimental to control performance, potentially requiring a
system redesign, with related additional cost and time.
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Figure 4.4: End-to-end effect chains composed of three tasks with parameters
T1 = 5,C1 = 3, T2 = 10,C2 = 2, T3 = 20 and C3 = 3.

The LET concept has been introduced in the automotive industry to explicitly
address this issue. The LET semantics decouples control algorithms from task jitter, task
response times, scheduling policy and hardware dependence, enabling more robust
algorithms and more deterministic and predictable systems. The LET model requires that
inputs and outputs be logically updated at reading and publishing points, respectively.
To see the effect of this paradigm on end-to-end latency, let’s apply its semantics to
the examples shown in Figure 4.3 and 4.4. The results are shown in Figure 4.11a and
4.11b, where it is easy to see that the age latency is the same in both cases. Clearly, this
communication pattern allows not only deterministically setting publishing and reading
points, but also setting the age latency of an effect chain to a fixed value, regardless of
the actual execution time and core allocation of the involved communicating tasks.

4.2 Related Work

The characterization of end-to-end timing latencies of effect chains between commu-
nicating AUTOSAR tasks 1 is an important problem for many automotive applications
with tight real-time requirements. An analysis of worst-case latencies along effect chains
in critical avionic systems is presented in [76], proposing a mixed integer linear program-
ming (MILP) formulation focusing on end-to-end latency and temporal consistency. In
the automotive domain, multiple communication patterns have been proposed, affecting
the resulting end-to-end latencies of event chains in different ways. Beside Explicit and

1To better understand the background where the considered communication patterns have been proposed,
see Section 2.2
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Figure 4.5: End-to-end effect chain with LET composed of three tasks with parameters
T1 = 5, T2 = 10, T3 = 20 and C1 = C2 = C3 = 1.

Figure 4.6: End-to-end effect chain with LET composed of three tasks with parameters
T1 = 3, T2 = 5, T3 = 6 and C1 = C2 = C3 = 1.

Implicit communication modes, the Logical Execution Time (LET) paradigm has been
proposed within the time-triggered programming language Giotto [10], [77]. This com-
munication semantic allows determining the time it takes from reading program input
to writing program output regardless of the actual execution time of a real-time program.
As stated in [9], LET evolved from a highly controversial idea to a well-understood
principle of real-time programming, motivated by the observation that the relevant
behavior of real-time programs is determined by when inputs are read and outputs
are written. This concept has been adopted by the automotive industry as a way of
introducing determinism in their systems.

In [24], an overview of the different communication patterns used in the automotive
domain is provided, highlighting the importance of the end-to-end latencies of effect
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chains in an engine management system. Moreover, a method to transform LET and
implicit communication into their corresponding direct communication analogues is
presented. The impact on end-to-end latencies and communication overheads in terms of
temporal determinism and data consistency is shown using the SymTA/S tool2. In [78],
an end-to-end timing latency analysis for effect chains with specified age-constraints is
presented. The analysis is based on deriving all possible data propagation paths. These
paths are used to compute minimum and maximum end-to-end latencies of the cause-
effect chains. In [79], the analysis is extended including the Implicit communication and
the Logical Execution Time paradigms, providing techniques for deriving the maximum
data age of cause-effect chains.

To the best of our knowledge, the work proposed in this chapter represents the first
complete study that combines three communication patterns: Explicit, Implicit, and LET,
with a concise mathematical end-to-end latency timing analysis that encompasses two
end-to-end timing semantics, namely Age and Reaction latency, for automotive systems.
To that end, we give a tight schedulability and timing analysis of a mixed-preemptive
cooperative task setting, that will enable us to provide upper bounds on the end-to-end
latency of effect chains in an automotive setting. Detailed considerations are provided
concerning the implementation and mathematical models of the aforementioned com-
munication patterns, comparing the resulting latencies of the different semantics against
an industrial case study.

4.3 System model, terminology and notation

This section describes the terminology and notation used throughout the following
sections considering the constraints defined in the AUTOSAR standard and AMALTHEA
model. As we introduced in Section 2.2. The smallest functional entity in AUTOSAR is
called runnable. A SWC is made up of one or more runnables. Runnables having the same
functional period according to the control dynamics are grouped into the same task. In
the simplest case, one functionality is realized by means of a single runnable. However,
more complex functionalities are typically accomplished using several communicating
runnables, possibly distributed over multiple tasks.

The model is assumed to comprise m identical cores, with tasks and runnables
statically partitioned to the cores, and no migration support. Each task τi is specified
by a tuple (Ci, Di, Ti, Pi, PTi), where Ci stands for the worst-case execution time (WCET),
Di is the relative deadline, Ti is the period, Pi is the priority, and PTi defines the type
of preemption. Every period Ti, each task releases a job composed of γi subsequent
runnables, where τr

i represents the rth runnable of τi, with 1≤ r ≤ γi.
2https://auto.luxoft.com/uth/timing-analysis-tools/
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The worst-case execution time of τr
i is denoted as Cr

i . Therefore,

Ci = ∑
k∈[1,γi ]

Ck
i . (4.1)

We also denote as Cr
i the cumulative execution time of runnables τ,

i . . . ,τr
i , i.e.,

Cr
i = ∑

k∈[1,r]
Ck

i . (4.2)

Moreover each task is characterized by a worst-case response time Ri as the longest
possible time from the time release until the execution completion.

Tasks are scheduled by the operating system based on the assigned (fixed) priorities.
The scheduling policy may be either preemptive or cooperative, as specified by PTi.
Preemptive tasks always preempt lower priority tasks, while cooperative tasks preempt
a lower priority one only at runnable boundaries. Preemptive tasks are assumed to have
always a higher priority than any cooperative task. The mixed cooperative-preemptive
nature allows modeling automotive systems where hard real-time tasks (preemptive
tasks) co-exist with soft and firm real-time tasks (cooperative tasks), providing the
proper balance between preemption latency and context switch overhead according to
the needs of each task.

Tasks communicate with one another through shared labels, that abstract a message-
passing communication mechanism, typically implemented with a shared memory (see
Figure 4.7). Regarding the type of access, a task can be either a sender or a receiver of
a label. A sender is a task that writes a label. We assume there is only one sender per
label, while there may be multiple receiving tasks reading that label. Even though the
microcontroller used for this analysis, AURIX TC38X3, allows more than one instruction-
per-cycle (IPC), the complexity of autmotive software makes the actual average value
less than that. We, therefore, consider IPC = 1. The execution time of a runnable τr

i ,
without taking memory computation into account, can then be computed as Cr

i = Er
i / f ,

where Er
i is a bound on the number of instructions for the considered runnable given

by its Weibull distribution, and f is the core frequency. The computational phase is
also characterized by a parameter FR/W

` that represents the number of times a runnable
accesses a label (a.k.a. frequency access in the AMALTHEA model).

Considering the memory constraints of the AMALTHEA model, the time it takes to
access a label depends on the memory the label is mapped on to. If the label is allocated
to the local memory, the considered task may access it within 1 clock cycle. Otherwise, if
the label is in the LRAM of a different core or it is in the GRAM, the task pays an access

3https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
aurix-safety-joins-performance/aurix-2nd-generation-tc3xx/#!documents
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Figure 4.7: Task communication example.

penalty of 8 time units. Since multiple cores may concurrently access the same shared
memory, an additional contention penalty is paid when accessing external memories
due to the arbitration mechanism. The model assumes a FIFO arbitration, so that a core
may wait up to m cycles to obtain access to the addressed memory, where m = 4 is the
number of cores. Moreover, it is also necessary to obtain LGRAM

i , LLRAMo
i and LLRAMe

i ,
where these values represent the number of labels allocated to the global RAM, GRAM,
local scratchpad, LRAMo, and external scratchpad, LRAMe. These parameters are used
to compute the WCET of each runnable. Since reading and writing times are assumed to
be equivalent in the model, we denote as ξ`(x) the time it takes to access a shared label
` from memory x, where x may be GRAM, local LRAM (LRAML) or external LRAM
(LRAME). In the considered model, we thus have ξ`(GRAM) = ξ`(LRAME) = 8 + m,
and ξ`(LRAML) = 1.

The overall worst-case execution time Cr
i of runnable τr

i can then be derived taking
into account also the access time of each label ` of τr

i ,

Cr
i =

Er
i

f
+ ∑

`∈τr
i

{
Fr

i,` ∗ ξ`
}

(4.3)

where Fr
i,` represents the number of times the label ` is accessed by runnable τr

i , and ξ` is
the time it takes to access `.
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In the same way, we can also obtain the best-case execution time (BCET) of runnable
τr

i , br
i , by taking into consideration the minimum number of intructions, er

i , given by its
Weibull distribution:

br
i =

er
i
f
+ ∑

`∈τr
i

{
Fr

i,` ∗ ξ`
}

(4.4)

Thus the best-case start time of runnable τr
i , sr

i , can be computed as the sum of all the
BCET of the preceding runnables:

sr
i = ∑

k∈[1,r−1]
bk

i . (4.5)

4.3.1 Analysis for Preemptive Tasks

According to the considered model, preemptive runnables can only be preempted by
higher priority preemptive runnables, and they can always preempt any lower priority
task. Therefore, a preemptive task will never experience any blocking delay due to lower
priority (preemptive or cooperative) tasks. Hence, the response time for preemptive
tasks can be computed adapting the classic response time analysis for arbitrary deadlines
presented in [80]. The arbitrary deadline model is used instead of the simpler analysis
for constrained deadlines because there are configurations where the response time Ri

of a task τi may be later than the activation of the subsequent job of the same task, i.e.,
Ri > Ti. Under these conditions, the maximum response time of a task is not necessarily
given by the first instance released after the synchronous arrival of all higher priority
tasks (also called critical instant), but may be due to later jobs.

For each task τi, the analysis requires checking multiple jobs until the end of the
level-i busy period, i.e., the maximum consecutive amount of time for which a processor
is continuously executing tasks of priority Pi or higher. The longest Level-i active period
(Li) can be calculated by fixed-point iteration of the following relation, starting with
Li = Ci:

Li = ∑
j:Pj≥Pi

⌈
Li

Tj

⌉
Cj. (4.6)

The number of τi’s instances to check are therefore:

Ki =

⌈
Li

Ti

⌉
. (4.7)
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The finishing time of the k-th instance (k ∈ [1,Ki]) of runnable τr
i in the level-i busy

period can be iteratively computed as

f r,k
i = ∑

j:Pj>Pi

⌈
f r,k
i
Tj

⌉
Cj + (k− 1)Ci + Cr

i , (4.8)

where the first term in the sum accounts for the higher priority interference, the second
term accounts for the (k − 1) preceding jobs of τi, and the last term considers the
contribution of the k-th job limited to τr

i and its preceding runnables. The response time
of the k-th instance of τr

i can then be easily found subtracting its arrival time:

Rr,k
i = f r,k

i − (k− 1)Ti. (4.9)

The worst-case response time of runnable τr
i can be found by taking the maximum

among all Ki jobs in the level-i busy period:

Rr
i = max

k∈[1,Ki ]
{Rr,k

i }. (4.10)

Finally, the worst-case response time of task τi is computed in the following way:

Ri = ∑
k∈[1,γi ]

Rk
i . (4.11)

4.3.2 Analysis for Cooperative Tasks

While the main advantage of preemptive scheduling is real-time response, coopera-
tive scheduling limits the number of preemptions between cooperative tasks, reducing
the overhead due to context switches and simplifying re-entrance problems. Moreover,
in classic automotive platforms based on single core technologies, cooperative schedul-
ing was a way to provide implicit data consistency at runnable level, avoiding the need
for mutual exclusion primitives.

The analysis for cooperative tasks is somewhat more complicated, since it needs to
take into account (i) the blocking delays due to lower priority cooperative tasks that can
be preempted only at runnable boundaries; (ii) the interference due to higher priority
cooperative tasks that can preempt the considered task only at runnable boundaries; (iii)
the interference of preemptive tasks that may preempt even within a runnable. To tackle
this problem, we will modify and merge the analysis for limited-preemption systems
with Fixed Preemption Points (FPP) and for Preemption Threshold Scheduling (PTS),
both summarized in [81]. The outcome will be a necessary and sufficient response-time
analysis for the considered mixed preemptive-cooperative task model.
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Under this model, a preemption threshold is assigned to cooperative tasks. This
priority is higher than that of any cooperative task, but lower than that of any preemptive
tasks. When a cooperative task τi is executing one of its runnables, its nominal priority
Pi is raised to the threshold θi, so that cooperative tasks cannot preempt it. The nominal
priority is restored when the runnable is completed, allowing cooperative preemptions
from higher priority tasks.

As with preemptive tasks, it is also necessary to consider multiple jobs within a
busy period. However, the busy period must also include the blocking due to lower
priority tasks. The longest Level-i active period can be calculated adding a blocking
factor to the recurring relation of Equation (4.6):

Li = Bi + ∑
j:Pj≥Pi

⌈
Li

Tj

⌉
Cj. (4.12)

Since a task can only be blocked once by lower priority instances, Bi corresponds to the
largest execution time among lower priority runnables4:

Bi = max
j,r:Pj<Pi

{Cr
j }. (4.13)

Equation (4.7) can then be used to compute the number of instances to check in the busy
period.

The worst-case starting time ŝr,k
i of the k-th instance of runnable τr

i can be computed
taking into consideration the blocking time Bi, the interference produced by higher
priority tasks before τi,r can start, the preceding (k-1) instances of τi, and the execution
time of the preceding runnables of τi,r:

ŝr,k
i = Bi + ∑

j:Pj>Pi

(⌊
sr,k

i
Tj

⌋
+ 1

)
Cj + (k− 1)Ci + Cr−1

i . (4.14)

The best-case starting time can instead be easily computed as sr,k
i = Cr−1

i . The formula is
similar to Equation (4.8), adding the blocking term and subtracting the execution time
of the considered runnable since we are considering its starting time.

The worst-case finishing time f r,k
i is calculated by adding to the worst-case starting

time ŝr,k
i , the execution time of the considered runnable Ck

i , along with the interference
of the tasks that can preempt τr

i , i.e., the preemptive tasks which have a nominal priority
higher than the preemption threshold of any cooperative task. To compute this last

4Since the lower priority task must have already arrived before the critical instant, the actual blocking term
is actually an infinitesimal amount smaller. We neglect infinitesimal amounts to simplify the formula.
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interfering term, we compute the higher priority instances that arrive from the critical
instant until the finishing time, and subtract those that arrived before the starting time:

f r,k
i = ŝr,k

i + Cr
i +∑

j:Pj>θi

(⌈
f r,k
i
Tj

⌉
−
(⌊

ŝr,k
i
Tj

⌋
+1

))
Cj. (4.15)

Equation (4.10) and (4.11) can then be identically used to compute the worst-case
response time of the considered runnable and task, respectively.

4.4 Inter task communication

In line with the multi-core complexity trend, automotive applications are evolving
towards more complicated task and runnable settings. As tasks communicate across the
memory hierarchy, data consistency problems may arise. On the other hand, as control
algorithms need deterministic timing, non-deterministic behavior, such as task jitter,
might cause different levels of control performance degradation that might even lead to
system instability. Thus, distinct communication patterns have been proposed in order
to provide different levels of determinism and consistency: (i) Explicit, (ii) Implicit and
(iii) Logical Execution Time (LET).

1. Explicit communication means that a runnable makes an explicit RTE API call in
order to directly write or read labels, i.e. a runnable or a task may have unrestricted
access to variables at any point during its execution (see Figure 4.8). To avoid data
inconsistency issues, accesses must be protected through explicit synchronization
or locking constructs. A memory-aware analysis of Explicit communication is
proposed in [82].

Figure 4.8: Explicit communication example.

2. Implicit communication aims at data consistency and defines two kinds of oper-
ations: Implicit Read and Implicit Write. The former implies that if a runnable
reads a label, a copy of this label, instead of the original, should become available
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for the runnable, when it starts at the latest. The RTE ensures that this copy does
not change during the execution of the runnable. Implicit write means that a label
modified by a runnable should be made available to other runnables at the earliest
when the runnable execution is over. The RTE makes sure that this update is done
by means of a copy mechanism. One way to implement this is that tasks accessing
shared labels work on task-local copies instead of the original labels. To avoid
data inconsistency, each task instance performs a copy of the required labels at
the beginning of its execution. After working on local copies in an exclusive way,
it then publishes its results at the end of its execution. If needed, extra buffers
or locking support might be used. The latter is only required at the beginning of
a reading task, and at the end of a writing task, which signifies a much lighter
synchronization overhead than in the explicit model.

3. As mentioned above, Logical Execution Time (LET) is a hard real-time program-
ming abstraction that was introduced by Giotto programming model. As the
relevant behavior of real-time tasks is determined by when inputs are read and
outputs are written, the LET semantics requires that inputs and outputs be logically
updated at the beginning and at the end of the so called communication interval, i.e.,
in correspondence to the release times of the communicating tasks. This allows
deterministically fixing the time it takes from reading an input to writing an output
regardless of the actual response time of the involved communicating tasks.

The LET implementation we consider in this dissertation adopts a lock-free paradigm
that tries to closely resemble the above-mentioned behavior at the cost of a slightly higher
use of local buffers, as will be shown in Section 4.4.2. An implementation of the Implicit
communication pattern that tries to duplicate the behavior of this communication is
presented in the follwoing section.

4.4.1 Implicit communication

Let Ii and Oi be the set of all shared labels read and written by tasks τi, respectively.
Ii and Oi therefore represent the inputs and outputs of the considered task. Our im-
plementation for Implicit communication assumes any task τi accessing a shared label
works on a copy instead of the original label. Copies are created, statically allocated to
the task-local scratchpad and inserted in runnables at compile time. Furthermore, two
task-specific runnables τ0

i and τ
(γi+1)
i (also called τlast

i for simplicity) are to be inserted at
the beginning and at the end of the task. Runnable τ0

i is responsible of reading shared la-
bels to the local copies, while τlast

i will write the local copies to the corresponding shared
variables. If İi and Ȯi represent the set of τi-local copies of the labels contained in Ii and
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Oi, respectively, runnable τ0
i updates İi, whereas runnable τlast

i publishes its updates by
writing Ȯi to the corresponding shared variables in Oi. See Figure 4.9. Observe that if a
task writes and reads the same label, only one copy is created.

Figure 4.9: Implicit communication implementation.

For example, suppose a task τi reads shared label L1 and writes to shared label
L2. Let Li,1 and Li,2 represent the τi-local copies of L1 and L2 respectively. This model
dictates that Li,1 is to be updated by runnable τ0

i at the beginning of task τi. After that,
τi reads Li,1 and writes to Li,2, never accessing the original labels L1 and L2. In the end,
runnable τlast

i writes the latest value of Li,2 to L2. It does not need to publish L1, since it
did not modify it. See Figure 4.10.

Figure 4.10: Implicit communication example.

An upper bound on the overhead introduced by the copy-in (τ0
i ) and copy-out (τlast

i )
runnables can be easily computed as

C0
i = ∑

`∈Ii

ξ`, (4.16)

and
Clast

i = ∑
`∈Oi

ξ`, (4.17)
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where the sum is extended over all shared labels read (resp. written) by the considered
task τi. The total execution time of τi is computed as

Ci = C0
i + Clast

i + ∑
r∈[1,γi ]

Cr
i , (4.18)

where the execution time of a runnable can be expressed as

Cr
i =

Er
i

f
+ ξ ∑

`∈τi

Fr
i,`, (4.19)

considering a fixed cost ξ for each one of the Fr
i,` accesses by the considered runnable to

the local memory, whether they be to a label only accessed by this task, or to a local copy
of a shared label.

The additional memory occupancy in the Implicit model is given by the local copies
created for shared labels, i.e., all labels in Ii ∪Oi for all tasks τi.

4.4.2 LET communication

Differently from the Implicit case, LET enforces task communications at determinis-
tic times, corresponding to task activation times. In our implementation, each reader
creates one or more local copies of the shared label. Since the considered model allows
just one writer task for each label, the writer task is allowed to directly modify the
original label, updating the readers copies at well-determined times.

We hereafter consider the communication between the writer and one of the readers.
Assume the writer has period TW = 2 and the reader TR = 5, as in Figure 4.11a: while
τW may repeatedly write the considered label L, these updates are not visible to the
concurrently executing reader, until a publishing point Pn

W,R, where the value is updated
for the next reader instance. This point corresponds to the first upcoming writer release
that directly precedes a reader release, i.e., where no other write release appears before
the arrival of the following reader instance. We call publishing instance the writing
instance that updates the shared value for the next reading instance, i.e., the writer’s
job that directly precedes a publishing point. Note that not all writing instance are
publishing instances. See Figure 4.11a, where publishing instances are marked in bold
red.

It is also convenient to define reading points Qn
R,W , which correspond to the arrival

of the reading instance that will first use the new data published in the preceding
publishing point Pn

R,W . Figure 4.11a & 4.11b shows publishing and reading points for a
case where the writer task has a smaller (a) or larger (b) period than the reader task.
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(a)

(b)

Figure 4.11: Publishing and reading points when the reader has a larger (a) or smaller
(b) period than the writer.

We define the hyperperiod of two communicating tasks as the least common multiple
LCM of their periods. The publishing and reading points of two communicating tasks
can be computed as a function of their periods, as shown in the next theorem.

Theorem 1. Given two communicating tasks τW and τR, the publishing and the reading points
can be computed as

Pn
W,R =

⌊
nTmax

TW

⌋
TW , ∀n ∈ [0,nW,R], (4.20)

Qn
W,R =

⌈
nTmax

TR

⌉
TR, ∀n ∈ [0,nW,R], (4.21)

where Tmax = max(TW , TR) and nW,R is the number of jobs released in a hyperperiod by the task
with the longest period, i.e.,

nW,R =
LCM(TW , TR)

Tmax
= nR,W . (4.22)

Proof. If the writer τW has a smaller or equal period than the reader τR, i.e., TW ≤ TR as
in Figure 4.11a, there is one publishing and one reading point for each reading instance.
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There are LCM(τW ,τR)/τR = nW,R such instances. Reading points trivially correspond
to each reading task release, i.e.,

Qn
W,R = nTR, ∀n ∈ [0,nW,R],

while publishing points correspond to the last writer release before such a reading
instance, i.e.,

Pn
W,R =

⌊
nTR

TW

⌋
TW , ∀n ∈ [0,nW,R].

Otherwise, when the writer τW has a larger period than the reader τR, i.e., TW ≥ TR

as in Figure 4.11b, there is one publishing and one reading point for each writing

instance. Again, there are
LCM(TW , TR)

TW
= nw,r such instances. Publishing points

trivially correspond to each writing task release, i.e.,

Pn
W,R = nTW , ∀n ∈ [0,nW,R],

while reading points correspond to the last reader release before such a writing instance,
i.e.,

Qn
W,R =

⌈
nTmax

TR

⌉
TR, ∀n ∈ [0,nW,R],

It is easy to see that, in both cases TW ≤ TR and TW ≥ TR, the formula for Pn
W,R

and Qn
W,R are generalized by Equations (4.20) and (4.21). Note that, when TW = TR,

Pn
W,R = Qn

W,R = nTW .

Let IW,R denote the set of labels written by τW and read by τR. For each of these
labels, the reading task τR creates a local copy to which it has exclusive access. Let
İW,R denote the set of τR-local copies of the labels contained in IW,R. A communication-
specific runnable is to be inserted to update İi,j at the end of the communication period,
i.e., by the latest completing task before a publishing point.

In the automotive domain we can easily make a distinction between different
kinds of tasks that co-exists in the same ECU following different activation patterns,
for instance, periodic tasks (classified into harmonic and non harmonic tasks), sporadic
tasks, Interrupt Service Routine (ISR) tasks or adaptive variable-rate (AVR) tasks [83]. In
this work we considered the cases of (i) harmonic synchronous communication and (ii)
non-harmonic synchronous communication. The asynchronous case will be considered
as future work.
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Harmonic Synchronous Communication (HSC)

Two communicating tasks τW and τR have harmonic periods if the period of one of
them is an integer multiple of the other. When a harmonic synchronous communication
(HSC) is established, the following relations hold: LCM(TW , TR) = Tmax, nW,R = nR,W =

1 and Pn
W,R = Qn

W,R = nTmax, i.e., publishing and reading points are integer multiples of
the largest period of the communicating tasks.

Consider the example in Figure 4.12, where two tasks τl and τs, with Tl/Ts = 2,
both read shared labels L1 and L2. Moreover, τl writes to L1, while τs writes to L2. The
proposal suggests that τs and τl are to read Ls,1 and Ll,2 instead of the original labels.
Notice that τl and τs directly write to L1 and L2. These copies are to be updated by
either runnable τlast

s or runnable τlast
l depending on whichever job finishes last before

the next publishing point. In other words, the responsibility to update the copies is
given either to the reader or to the writer, depending on which one completes last in the
communication interval. The first reader instance after the publishing point is the first
one that accesses the updated value. Such a value will be used by all reading instances
until the next reading point.

Figure 4.12: LET harmonic communication.

Unlike the Implicit communication, only one task pays the overhead for maintaining
the determinism in the communication. Assuming such a task is τi, its worst-case
execution time can be computed as

Ctotal
i = ∑

k∈[1,γi ]

Ck
i + ∑

`∈Ii∪Oi

ξ`(x), (4.23)

where τi is assumed to update all its shared labels. Better estimations are possible
considering which task effectively finishes last in each communication period, making
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the analysis significantly more complex. The additional memory occupancy is given by
the local copies created for shared labels, i.e., all labels in Ii for all tasks τi.

Non-Harmonic Synchronous Communication (NHSC)

When two communicating tasks do not have harmonic periods, a non-harmonic syn-
chronous communication (NHSC) is established. The general formulas of Section 4.4.2
apply.

Like in the HSC case, the reading task of a shared label accesses a local copy instead
of the original label. However, due to the misaligned activations of the communicating
tasks, at least two copies of the same shared label are needed in a NHSC. A task-specific
runnable is to be inserted at the end of the writer in order to update the copies of IW,R

before the publishing point. If only one copy was used, a task could be writing it while
the reader is reading it, leading to an inconsistent state. With two copies, instead, a
reader reads a local copy, while the writer may freely write a new value for the next
reading instance in a different buffer.

For example, consider a reading task τR and a writing task τW communicating
through a shared variable L2, with 2TR = 5TW as in Figure 4.13. There are two τR-local
copies, LR,2,1 and LR,2,2, of the shared label L2. The reading task τR reads from one of
these copies instead of the original label. These copies are to be updated by the last
runnable τlast

W of the writing task. Note that τW directly writes to L2 instead of a local
copy.

Figure 4.13: NHSC: 2TR = 5TR.

There might also be cases where three copies per labels are needed in order to
fulfill the LET determinism. Consider Figure 4.14 where 5TR = 2TW . Note that τW may
directly access L1, while τR reads from one of the three copies LR,1,1, LR,1,2 or LR,1,3, which
are to be updated by runnable τlast

W . An extra copy of L1 is needed because the value
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Figure 4.14: NHSC: 5TR = 2TR.

computed by the second writing instance may be available either before or after the next
reading point Q1

R,W , depending on the response time of τW . If the second instance of
τW finishes before (resp. after) Q1

R,W , the reading instance after Q1
R,W would read the

data of the second (resp. first) writing instance. Therefore, the value read at Q1
R,W is not

deterministic, as it might correspond either to the first or to the second writing instance.
Introducing a third buffer allows obtaining a deterministic behavior, as desired with the
LET semantics, where the values published by the first and second writing instances are
always read at Q1

R,W and Q2
R,W , respectively.

In general, this happens when a publishing instance has a best-case finishing time
that precedes the next reading point. Let us define wn

W,R as the window of time between
a publishing point Pn

W,R and the next reading point Qn
W,R. Then, using Equations (4.20)

and (4.21),

wn
W,R = Qn

W,R − Pn
W,R =

⌈
nTmax

TR

⌉
TR −

⌊
nTmax

TW

⌋
TW , ∀n ∈ [0,nW,R]. (4.24)

It is worth pointing out that if a HSC is established, then wn
W,R = 0. Furthermore, if

the best-case response time of a publishing instance is smaller than the corresponding
wn

W,R, a third buffer is needed to store the new value. Depending on the above condition,
the additional memory occupancy due to the local copies is two or three times the size
of the labels in Ii for all tasks τi.

4.5 End-To-End latency characterization

In this section, we propose a method for computing the end-to-end propagation
delay of effect chains taking into consideration different communication patterns.
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An effect chain is a producer/consumer relationship between runnables working
on shared labels. Effects chains are assumed to be triggered by an event or a task release.
The first task in the chain produces an output (i.e., writes to a shared label) for another
task following in the event chain. The second task reads the shared label to write an
output to a different shared label, which may be then read by a third task, and so on.
When the last task produces its final output, the event chain is over.

In [84], four different end-to-end timing semantics are described to characterize the
timing delays of effect chains given by multi-rate tasks communicating by means of
shared variables. Depending on the application requirements, different end-to-end delay
metrics can be of interest. Control systems driving external actuators are interested in
the “age” of an input data, i.e., for how long a given sensor data will be used to take
actuation decisions. For example, how long a radar or camera frame will be used as a
valid reference by a localization or object detection system to perceive the environment:
the older the frame, the less precise is the system. Similar considerations are valid for an
engine control or a fuel injection system, where correct actuation decisions depend on
the “freshness” of sensed data.

Another metric of interest is the “reaction” latency to a change of the input, i.e.,
how long will it take for the system to react on a new sensed data. Multiple body and
chassis automotive applications are concerned with this metric. For example, for a door
locking system, it is important to know the time it takes to effectively lock the doors
after receiving the corresponding signal.

To more formally characterize age and reaction latencies, consider Figure 4.15,
showing an event chain triggered by a periodic sensor (upwards black arrows). The
upper task reads the sensor data, elaborates it, and shares the result with the next task.
And so on, until the end of the event chain. Green arrows denote when an input is
propagated to the next task. In this case, we call it a valid input. Red arrows correspond
to elaborations that are not propagated, also called invalid inputs, because they are
overwritten before being read by the next task in the chain. The age latency is defined as
the delay between a valid sensor input until the last output related to this input in the
event chain. The reaction latency is defined as the delay between a valid sensor input until
the first output of the event chain that reflects such an input. It measures how much time
it takes for a new event to propagate to the end of the event chain. Depending on tasks
alignments, the reaction latency may significantly vary. In Figure 4.16, the first sensor
input arrives just a bit after the runnable that is responsible of elaborating it (marked as
a green dot in the first job of τi). This causes the reaction latency to increase substantially,
as the output task τk will continue working with an older input for three further jobs
(marked as A, B and C in the figure).
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Figure 4.15: Age semantics

Figure 4.16: Reaction semantics

In [84], age and reaction latencies are also referred to as last-to-last (L2L) and first-
to-first (F2F) delay, respectively. However, no method is presented to formally compute
these metrics.

Before computing end-to-end age and reaction latencies of an effect chain, we first
compute the maximum delay φr

i between two operations on the same variable executed
by two consecutive instances of the same runnable τr

i . In Figure 4.17, φr
i is derived as a

function of the best-case start time sr
i and the worst-case response time Rr

i of runnable τr
i :

φr
i = Ti − sr

i + Rr
i − (ε1 + ε2). (4.25)

Where ε1 (resp. ε2) stands for the time between sr
1 (resp. Rr

i ) and the first (resp. last)
operation on the label performed by the runnable. Assuming the first and the second
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runnable instance access the shared label at the beginning and at the end of their
execution, respectively, it follows ε1 = ε2 = 0, and

φr
i = Ti − sr

i + Rr
i . (4.26)

Figure 4.17: Calculation of φr
i

In the following, we compute age and reaction latencies for the considered commu-
nication patterns. From now on, downwards (resp. upwards) black arrows mean read
(resp. write) operations. We first examine the Explicit communication in detail, since it
establishes the basis for the latency characterization of its Implicit counterpart.

4.5.1 Explicit Communication

Consider an effect sub-chain, where a runnable τi
W writes to a label L, which is in

turn read by another runnable τ
j
R. We hereafter compute the worst-case sub-chain age

latency α
i,j
W,R and worst-case sub-chain reaction latency δ

i,j
W,R. To do this, we consider

different worst-case settings where the following conditions hold:

C1. τi
W stores L right after τ

j
R started loading it.

C2. Two subsequent read operations are φ
j
R time-units apart.

C3. Two subsequent write operations are φi
W time-units apart.

Theorem 2. The worst-case sub-chain age latency of two communicating tasks τW and τR is

α
i,j
W,R = φi

W (4.27)

Proof. To compute the age latency α
i,j
W,R, we separately consider the cases with φ

j
R ≥ φi

W

and φ
j
R < φi

W . When φ
j
R ≥ φi

W , the worst-case situation is that of Figure 4.18a, where
α

i,j
W,R = φi

W . Shifting the reading instance of τR earlier would cause a proportional
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decrement in the age latency, while postponing it right after the second update of τW

would cause a sudden drop of the age latency to zero, as the read would refer to the
new writing update. When instead φ

j
R < φi

W , the worst-case scenario is that of Figure
4.18b, where the latest instance of τR reads just before the next update of τW . In this
case, the age latency is φi

W . Shifting the reading instance to the left would proportionally
decrement the age latency, whereas postponing it right after the update would decrease
the age latency by one reading period.

In both considered cases, the age latency is α
i,j
W,R = φi

W , proving the theorem.

Theorem 3. The worst-case sub-chain reaction latency of two communicating tasks τW and τR

is
δ

i,j
W,R = φ

j
R (4.28)

Proof. To compute the reaction latency δ
i,j
W,R, we again separately consider the cases with

φ
j
R ≥ φi

W and φ
j
R < φi

W . When φ
j
R ≥ φi

W , the worst-case situation is shown in Figure 4.19a,
where the reaction latency is equal to φ

j
R. Shifting earlier the reading instance would

cause a proportional decrease of the reaction latency, while moving it later wold make it
refer to the last write update, leading to a null reaction latency. Note that earlier writing
instances within the considered window do not need to be considered for the reaction
latency because they are overwritten, i.e., they do not cause any “reaction” in the system.
When instead φ

j
R < φi

W , the worst-case scenario is that of Figure 4.19b, where δ
i,j
W,R = φ

j
R.

Shifting the writing instance to the right would cause a proportional decrement in the
reaction latency, while moving it a bit earlier would cause a sudden drop of the reaction
latency to zero.

In both considered cases, the reaction latency is δ
i,j
W,R = φ

j
R, proving the theorem.

(a) (b)

Figure 4.18: Worst-case sub-chain age latency α
i,j
W,R when φ

j
R ≥ φi

W (a) and φ
j
R < φi

W (b).
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(a) (b)

Figure 4.19: Worst case sub-chain reaction latency δ
i,j
W,R when φ

j
R ≥ φi

W (a) and φ
j
R < φi

W
(b).

For simplicity, we will drop the apexes on δ
i,j
W,R, α

i,j
W,R, φi

W and φ
j
R when we do not

need to explicitly refer to the communicating tasks. An upper bound on the overall
end-to-end age latency of an effect chain α(EC) can therefore be computed as

α(EC) =
η−1

∑
h=0

αh,h+1 =
η−1

∑
h=0

φh, (4.29)

where η is the number of tasks constituting the effect chain EC.
Similarly, an upper bound on the overall end-to-end reaction latency of an effect

chain δ(EC) can be computed as:

δ(EC) =
η−1

∑
h=0

δh,h+1 =
η

∑
h=1

φh. (4.30)

4.5.2 Implicit Communication

As explained in Section 4.4.1, our Implicit communication model introduces two
extras runnables at task boundaries in charge of reading and publishing the shared labels.
From an end-to-end latency perspective, the Implicit communication can be considered
as a particular case of its Explicit counterpart, considering τlast

W and τ0
R as writing and

reading runnables, respectively. For instance, the worst-case sub-chain propagation
delay δ

i,j
W,R for any pair of communicating runnables τi

W and τ
j
R is equal to δlast,0

W,R , plus
an extra delay ∆R due to the fact that τR publishes all its shared labels at the end of its
execution. For any task τi, φ0

i and φlast
i can be calculated as

φ0
i = Ti + R0

i . (4.31)
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φlast
i = Ti − slast

i + Ri (4.32)

Figure 4.20: Worst-case sub-chain reaction latency (φ0
R < φlast

W ) for the Implicit
communication.

Figure 4.20 shows the worst-case sub-chain reaction latency with φ0
R < φlast

W . It is
easy to see that ∆R = RR − R0

R. A similar situation has been verified to happen in all
other possible settings. Sub-chain age and reaction latencies in the implicit case can
then be simply computed adding ∆R to the corresponding explicit counterparts given
by Equation (4.27) and (4.28):

α
i,j
W,R = αlast,0

W,R + ∆R = φlast
W + ∆R (4.33)

δ
i,j
W,R = δlast,0

W,R + ∆R = φ0
R + ∆R. (4.34)

An upper bound on the overall end-to-end age and reaction latency can then be
computed as

α(EC) =
η−1

∑
h=0

αh,h+1 =
η−1

∑
h=0

(φlast
h + ∆h+1) (4.35)

δ(EC) =
η−1

∑
h=0

δh,h+1 =
η

∑
h=1

(φ0
h + ∆h). (4.36)
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Figure 4.21: End-To-End latency characterization of the LET communication.

4.5.3 LET Communication

If we define the hyperperiod of an EC, HEC, as the LCM of the periods of the tasks
composing the chain, i.e. HEC = LCMη

i=1(Ti), then there is a fixed number of possible
communication paths in a hyperperiod, starting from the end of the period of the first
task (the starting points must be different) and finishing with the release of the last one
in the EC. We call these chains basic paths. Note that if all tasks in the EC have harmonic
periods then there is only one basic path. We also extend the domain of equations (4.20),
(4.21), and (4.24) to N. In order to calculate the length of the n-th basic path we need
to obtain the first publishing point, Ṗn

1,2, and last reading point, Q̇n
η−1,η , composing this

path (Note that Ṗn
1,2 = Pn

1,2 and Q̇n
η−1,η = Qn

η−1,η is not necessarily true, see Section 4.6).
For this purpose, given two communicating tasks, τi and τj, that form part of an EC,
let ni,j denote the number of finished jobs released in the hyperperiod of the EC by the
task with the longest period in the pair, i.e. ni,j =

HEC
max(Ti ,Tj)

. Let us also define P and Q as

the arrays containing the publishing points < P0
j,k, P1

j,k, ..., P
nj,k
j,k > and the reading points

< Q0
i,j, Q1

i,j, ..., Q
ni,j
i,j > respectively. Thus, find-publishing-point returns the publishing

point in P, Ṗm
j,k, that corresponds to a given reading point, Q̇m

i,j. Similarly, find-reading-
point returns the reading point in Q, Q̇m

i,j, that corresponds to a given publishing point,
Ṗm

j,k. See Figure 4.21 for an example of a 3-task EC. By applying the combination of both
algorithms 0 to every pair of consecutive tasks composing the EC and then getting rid
of paths having the same starting points, the length θn

EC of the n-th basic path of the EC
can be computed as:

θn
EC = Q̇n

η−1,η − Ṗn
0,1 (4.37)
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Table 4.1: Find-Publishing-Point Algorithm (left) Find-Reading-Point Algorithm (right)
1: procedure FIND-PUBLISHING-

POINT(Q̇m
j,k, P)

2: d← Q̇m
j,k − P[l]

3: l← 0
4: while l ≤ nj,k and d ≥ 0 do
5: Ṗm

j,k← P[l]
6: l← l + 1
7: end while
8: return Ṗm

j,k
9: end procedure

1: procedure FIND-READING-
POINT(Ṗm

j,k, Q)
2: d← Ṗm

j,k −Q[l]
3: l← 0
4: while l ≤ ni,j and d > 0 do
5: Q̇m

i,j← Q[l]
6: l← l + 1
7: end while
8: return Q̇m

i,j
9: end procedure

If G denotes the set of lengths of the basic paths, i.e. G = {θ1
EC,θ2

EC, ...}, then the
worst-case end-to-end age latency α(EC), can be computed as:

α(EC) = max
u∈G

{
θu

EC + Q̇u+1
η−1,η − Q̇u

η−1,η

}
(4.38)

With regard to the other semantic, the worst-case scenario occurs when the sensor
data of interest arrives right after the first reading point of the EC as shown by the
upwards red arrow in Figure 4.21. Therefore, the worst-case end-to-end reaction latency,
δ(EC), is given by:

δ(EC) = max
u∈G

{
θu

EC + Q̇u+1
η−1,η − Q̇u

η−1,η

}
+ Tη = α(EC) + Tη , (4.39)

4.6 System analysis

In this section we carry out an entire analysis of the system. We derived a response
time analysis and an end-to-end worst-case latency analysis describing the advantages
and disadvantages of the communication patterns analyzed before. In this context, we
characterized the end-to-end latency analysis for the effect chains depicted in Figure
4.22, those chains are taken from the Formal Methods for Timing Verification (FMTV)
challenge [85][12]. Specifically, the task set is produced from a real engine application
and generated in the AMALTHEA model.

4.6.1 System and model constraints

The hardware described in the given AMALTHEA model consists of 4 cores, running
at 300 MHz, 4 core-local RAMs, and one global DRAM. Non-local RAMs and the GRAM
are accessible via a cross-bar interconnection network. We assume that all labels can be
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Figure 4.22: Proposed ECs.

accessed with a single memory read, neglecting the fact that there are labels which are
larger than the bus width (i.e., occupy 64 or 128 bits against a 32-bit bus), hence more
consecutive memory accesses may be required for a label transfer. Tasks are distributed
among the four cores with different preemption schemes and types of activations. Notice
that all cooperative tasks run on the same core. See Figure 4.23. As it can be easily seen

Core 0

CROSSBAR

GRAM

Core 3Core 1 Core 2

ISR_10

Task_50ms

ISR_6

ISR_9
ISR_7

ISR_5
ISR_4

ISR_8
Angle_sync

Task_1ms

Task_5ms

ISR_11
Task_2ms

Task_200ms
ISR_2

ISR_1 ISR_3

Task_10ms

Task_1000ms

Task_20ms

Task_100ms

LRAM 0 LRAM 1 LRAM 2 LRAM 3

Preemptive task

Cooperative task

Figure 4.23: Hardware model with task distribution.

in the figure, the effect chain represents a producer consumer relationship between
runnables mapped onto different tasks, which in turn, are allocated to different cores.

In order to get a clear vision of the model and to find out possible ways to optimize
the end-to-end characterization, we performed a preliminary analysis of the memory
accesses realized by all runnables in the given AMALTHEA use-case. We categorized
the data items (labels) in three sets:

1. PRIVATE labels, which are exclusively accessed by one runnable;

2. SHARED labels, which are accessed by multiple runnables (e.g., in a producer-
consumer fashion);
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3. UNUSED labels, which we ignore.

Table 4.2 shows the number of labels in the proposed model, and their total memory
occupation in KBytes, while Figure 4.24 shows how many (PRIVATE and SHARED)
labels are accessed by (runnables assigned to) each core, and their size in bytes (right).

# Size (KB)
PRIVATE 8293 22.1
SHARED 1690 9.50
UNUSED 17 -

Table 4.2: System memory usage
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Figure 4.24: Distribution of labels on runnables/cores.

Then, we performed an experiment to measure the response time of the tasks given in
the AMALTHEA model. We derived it for the Explicit, Implicit and LET communication
patterns. In this context, we have to clarify that LET is a concept introduced to model
the logical execution of an application, disregarding the physical execution. However,
from an analytical perspective, it is necessary to guarantee that the physical execution
respect the logical execution. Since the implementations proposed for the Implicit and
LET communication only differ in when the inputs and outputs are produced, i.e., only
affects the end-to-end latency, the response times for both communication patterns can
be considered the same, because the worst case scenario for a LET task is when a given
task read and publish the data in the same instance, that is the same behavior as the
Implicit communication pattern. The respective results are shown in Figure 4.25. A first
consideration that can be drawn from the previous analysis is that unfortunately the
benefits of the communication mechanisms proposed can barely be observed because the
tasks given in the model are not memory-intensive. In the future we consider the analysis
of different task sets in order to characterize the positive effect of the aforementioned
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Figure 4.25: Task response times considering Explicit and Implicit/LET communication
patterns.

mechanisms. On the other hand, we can observe that there is enough space to store all
labels in any of the memories of the system, either in LRAMs (size 128 KB, according
to the specifications) or GRAM (256 KB). Hence, it is possible to devise label-mapping
strategies for minimizing a given constraint, for instance, design a methodology for
shared label mapping which “optimizes” end-to-end latencies.

4.6.2 End-To-End latency analysis

The first effect chain under analysis (EC1 in Figure 4.22) is composed of three
runnables mapped on to three (η = 3) different tasks τ1, τ2 and τ3 with the following
harmonic periods: 100ms, 10ms, and 2ms respectively. The second effect chain (EC2 in
Figure 4.22) is also composed of three runnables mapped on to three tasks, however,
while the last two tasks have periods of 2ms and 50ms respectively, the first task is
sporadic with an interarrival time between 700µs and 800µs.

In the following we characterize the end-to-end latency of the first effect chain for the
three communication patterns discussed in this chapter. Results of the characterization
of both ECs are summarized in Table 4.3a. Even though the characterization of EC2 is
similar to that of the other EC, it is worth mentioning that for the Explicit and Implicit
patterns, the worst-case scenario occurs when the sporadic task releases jobs that are
spaced 800µs apart since that enlarges the results obtained through (4.29), (4.30), (4.35)
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and (4.36). For the LET pattern, however, 799µs lengthens the effect chain the most
as it can be corroborated by means of (4.38). Since no sensor information is given, we
assume that an EC starts at the release time of the task that initiates the chain. Therefore,
in order to compute the worst-case end-to-end age latency for the Explicit and Implicit
communication pattern, we append the best-case start time of the runnable that initiates
the effect chain EC, sI

1, and the best-case start time of its copy-out runnable, slast
1 , to (4.29)

and (4.35) respectively.

Explicit Communication

From (4.5), (4.10), (4.11), and (4.29), α(EC) = sI
1 + φ

R100ms_7
1 + φ

R10ms_19
2 = 70,333µs +

φ
R100ms_7
1 +φ

R10ms_19
2 . From (4.26) φ

R100ms_7
1 = T1− sR100ms_7

1 +RR100ms_7
1 = 100000µs− 70,333µs+

13294,876µs = 113225µs, and φ
R10ms_19
2 = T2− sR10ms_19

2 + RR10ms_19
2 = 10000µs− 196,366µs +

619,43µs = 10423µs. Thus, α(EC) = 70,333µs + 113225µs + 10423µs = 123,718ms. Sim-
ilarly, from (4.30), we obtain δ(EC) = φ

R100ms_7
1 + φ

R10ms_19
2 + φ

R2ms_8
3 = 123648µs + φ

R2ms_8
3 .

From (4.26), φ
R2ms_8
3 = T3 − sR2ms_8

3 + RR2ms_8
3 = 2000µs− 36,053µs + 99µs = 2062µs. Then,

δ(EC) = 125,710ms

Implicit Communication

From (4.35) we know α(EC) = slast
1 + φlast

1 + ∆2 + φlast
2 + ∆3 and from (4.5), (4.10),

(4.11), and (4.32), slast
1 = 2191,530µs, φlast

1 = T1 − slast
1 + R1 = 100000µs− 2191,530µs +

31556,579µs = 129365,049µs, ∆2 = R2 − R0
2 = 8019,393µs − 73,523µs = 7945,87µs,

φlast
2 = T2 − slast

2 + R2 = 10000µs− 2812,369µs + 8019,393µs = 15207,024µs, and ∆3 =

R3 − R0
3 = 279,596µs− 0,3µs = 279,296µs. Then, α(EC) = 2191,530µs + 129365,049µs +

7945,87µs + 15207,024µs + 279,296µs = 154,988ms. In a similar way, from (4.5), (4.10),
(4.11), and (4.31), φ0

1 = T1 + R0
1 = 100000µs + 13043,313µs = 113043,313µs, φ0

2 = T2 +

R0
2 = 10000µs + 73,523µs = 10073,523µs, φ0

3 = T3 + R0
3 = 2000µs + 0,3µs = 2000,3µs

and ∆1 = R1 − R0
1 = 31556,579µs − 13043,313µs = 18513,266µs. Finally δ(EC) =

φ0
1 +∆1 +φ0

2 +∆2 +φ0
3 +∆3 = 113043,313µs+ 18513,266µs+ 10073,523µs+ 7945,87µs+

2000,3µs + 279,296µs = 151,855ms

LET Communication

Due to the lack of sensor information, we assume P1
0,1 = 0ms and P1

1,2 = 100ms.
Since the three tasks composing the EC have harmonic periods, then there is only one
basic path. By using find-publishing-point and find-reading-point in conjunction with
(4.37) we get θ1

EC = Q1
2,3 − P1

0,1 = 110ms− 0ms = 110ms. Moreover, from (4.38) we have
α(EC) = θ1

EC + Q̇2
2,3 − Q̇1

2,3 = θ1
EC + Q21

2,3 −Q11
2,3 = 110ms + 210ms− 110ms = 210ms and

© Università di Modena e Reggio Emilia Ignacio Sañudo



Towards predictability in AUTOSAR 76

from (4.39) ρ(EC) = α(EC) + T3 = 210ms + 2ms = 212ms.

Semantics Explicit Implicit LET
Age 123,718ms 154,988ms 210ms
Reaction 125,710ms 151,855ms 212ms

(a)

Semantics Explicit Implicit LET
Age 2,844ms 6,54ms 53,597ms
Reaction 64,894ms 66,33ms 103,597ms

(b)

Table 4.3: End-to-End latency characterization of EC1 (top) and EC2 (bottom).

Conclusions of the End-To-End analysis
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Figure 4.26: Fig. 13. Normalized End-To-End latencies: Age latency (a) Reaction latency
(b).

In order to get a better idea of the behavior of our three communication patterns,
we need a more representative sample of effect chains, so with this end in view and
due to the fact that very little has been published concerning effect chain benchmarks,
we built our own effect chains based on the AMALTHEA model under discussion. As
previously mentioned, an effect chain is a producer/consumer relationship between
runnables, therefore, given a runnable that produces an output, we explore all the
possible runnables, mapped on to a different task, that consume this output. By iterating
over the whole model, our new effect chain set consists of over 1000 ECs composed
of up to 5 tasks. Figure 4.26a & 4.26b depict two box plots of the normalized age
and reaction end-to-end latency of our effect chain set respectively. In order to better
appreciate the results obtained through this analysis, the data between the third quartile
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and the maximum is omitted. In spite of the pessimism over the upper bounds of the
end-to-end latency calculated for the Explicit and Implicit communication patterns and
the lack of representative samples of large ECs (composed of more than three tasks),
we can conclude from the plot that the end-to-end latency of the LET communication
pattern tends to be larger than their counterparts. On the other hand, not only does the
LET communication guarantee a deterministic inter-task communication but also data
consistency. Yet this pattern introduces more copies, in the case of NHSC, and therefore
more overhead with regard to the other two types of task-communication.

One of the advantages of the Implicit Communication is the fact that it might reduce
the response time of a task since the penalty for accessing shared labels mapped onto the
GRAM and/or non-local RAMs is paid by the copy-in and copy-out runnables only, a
similar effect is also shown by [8]. With this sort of communication, runnables working
on copies of shared labels only access their local RAM. The main advantage of this type
of communication is data consistency but its downside is the extra footprint introduced
by the copies and the longer end-to-end latency characterization in comparison with
its Explicit counterpart. See Table 4.3a. The additional memory footprint introduced by
the use of the communication patterns aforementioned, is depicted in Figure 4.27. From
the results, we can consider the Explicit model as "baseline" since the implementation
proposed does not introduce an additional overhead in terms of memory. However in
the case of Implicit and LET, the memory footprint doubles. Specifically, LET consumes
a little more memory footprint since there is a non-harmonic communication (NHSC)
between two tasks (τ20ms and τ50ms), in that case, the task involved in the non harmonic
communication, triple the copies performed (for further information see Section 4.4.2).
4.27 Basically, the Implicit implementation presented in this dissertation, which is
derived from AUTOSAR, does not make use of locks; therefore, if data consistency
between two (or more) variables is needed, e.g. between two labels representing the
coordinates of an object, the operations on these labels performed by the copy-in and
copy-out runnables should be surrounded by locks, when and where necessary, or
should work on extra copies. It is also worth mentioning that in the automotive domain
race conditions arise when two tasks, with different priorities or running in parallel
to one another, modify the same label(s). This so-called multiple-writer scenario is
discouraged since data consistency cannot be guaranteed through copies. In such a case
Implicit communication should not be used. The use of Explicit communication with
locking mechanism is one way to cope with this issue. Needless to say, the Explicit
communication has the shortest end-to-end latency characterization, does not introduce
extra memory footprint and relies on atomic operations, provided by the hardware, or
other mechanisms, such as locks, semaphores, etc. in order to guarantee data consistency.
On the other hand, neither the Explicit nor the Implicit communication take the concept

© Università di Modena e Reggio Emilia Ignacio Sañudo



Towards predictability in AUTOSAR 78

0

20000

40000

60000

80000

100000

120000

140000

LRAM0 LRAM1 LRAM2 LRAM3

F
o

o
tp

ri
n

t 
(i

n
 b

it
s)

Explicit Implicit LET

Figure 4.27: Memory footprint considering the communication patterns.

of determinism into account. This concept is very important for control algorithms as
shown by [86] and [87]. Not only does the LET communication guarantee a deterministic
inter-task communication but also data consistency. Indeed, since all the shared labels
read by a given task are updated before and made available at the activation time
of the task, there is no need to use locks in order to cope with data inconsistency,
which makes the implementation lock-free. Nevertheless this pattern introduces more
copies, in the case of NHSC, and therefore more overhead and lengthens the end-to-end
latency of a given EC, as shown in Table 4.3a, with regard to the other two types of
task-communication.

4.7 Summary

This chapter presented a study motivated by the industrial need to characterize
the end-to-end latencies of effect chains of automotive real-time tasks communicating
through shared variables in a multi-core system. As we discussed determinism in auto-
motive is very important, especially for control applications. Different communication
patterns adopted to ensure a consistent task communication were analyzed from a
memory and timing perspective, characterizing the overhead introduced. A formal
implementation has been proposed for two of them, namely Implicit communication
and LET, analyzing the impact introduced in terms of memory footprint and communi-
cation delay. Moreover, an analytical characterization has been presented to compute
valid upper bounds of end-to-end propagation delays of age and reaction latencies for a
selected effect-chain taking into account the three communication patterns mentioned
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in this work. The pros and cons of each of them were also discussed in order to assess
which type(s) might suit best an application. The results have then been applied to an
automotive industrial use case composed of multiple real-time tasks partitioned on a
four-core setting.

While in Chaper 3 we covered issues like time predictability or isolation at virtual-
ization level, in the future we intend to explore the concept of Logical Execution Time
on top of virtualization platforms.

A Java implementation is available for the algorithms described in this chapter,
available in5.

5https://github.com/nachoSO/ChallengeWaters
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5 Code generation support for automotive
and general purpose platforms

The analysis derived in the last chapter characterizes the end-to-end latency of
automotive task chains. Since it is no possible to test the real behavior of the application
(because the representation used to perform the analysis is an abstraction of the real
application), we developed a code-generator tool that automatically generates ready-to-
use synthetic code that correctly mimics it.

As we described in Section 2.3, model-driven software development is a well-
known paradigm in the automotive industry, where modularity and isolation between
components are key to build safe, secure and certifiable systems. In this sense, the
introduction of the AUTOSAR standard greatly improved the software development
cycle, and the subsequent safety qualification process. Unfortunately, IPR limitations
at industrial level often prevent academic researchers to apply their findings to real
application settings. In this chapter, we introduce the HiPeRT Generator Tool that helps
researchers creating synthetic yet realistic test cases, using a variety of techniques based
on the model-driven development approach. The result is an open-source framework,
that generates ready to use ANSI C code from different high-level modeling languages
that are represented with a Directed acyclic graph (DAG). These modeling abstractions
are: RT-DOT that is the real-time representation of DOT (graph description language) and
the previously presented AMALTHEA framework.

This chapter is organized as follows. The next section describes the motivation
behind this work and reviews the related work. Then, the code generator is presented in
Section 5.3. Section 5.3.3 presents the AMALTHEA model interpretation and the code
mapping process, showing a validation benchmark in Section 5.4, before a concluding
discussion.

5.1 Motivation

Combining predictability and performance (i.e., worst-case vs. average-case per-
formance) in systems with more than two/four cores is one of the most challenging
tasks that automotive software engineers are facing today. The architectural complexity
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of tightly-coupled computing engines makes timing and schedulability analysis sig-
nificantly more complex, often leading to an over-estimation of the worst-case timing
behavior. Multiple research projects aim at investigating the predictability vs. efficiency
trade-off of multi-/many-core embedded platforms, proposing original solutions to
the real-time scheduling problem [88], [89]. However, it is difficult to validate the ef-
fectiveness of these research findings to real industrial settings. The main reason is
that even companies that are interested in cooperating with academia cannot share
much information on their software architectures, ecosystems, neither the source code
of applications, due to IPR restrictions.

This issue can be tackled leveraging well-known software design paradigms al-
ready adopted in industry, such as Model-Driven Development (MDD) (see Section 2.3)
This common practice supports the design of complex software architectures and the
Verification and Validation (V&V) process of real-time, safety-critical systems. Using a
MDD approach, it is possible to abstract and represent high-level software components
without the need to share “IP-critical” source code.

Currently, researchers from academia struggle to find a way for effectively char-
acterizing the behavior real application code when running on multi- and many-cores
platforms. To do so, they typically run benchmarks that stress and analyze the distinct
components of the computing platforms, such as memory1, disk2 or CPU3, or they use
benchmarking suites to effectively validate their novel methodologies and techniques on
platforms that are as similar as possible to the real ones. Significant examples from the
real-time community are the Malardalen benchmark [90] and TACLeBench [91]. These
benchmarks provide a collection of open-source programs to effectively validate tools
and methodologies, but, unfortunately, they cannot capture the exact dynamics of real
industrial applications.

We developed the HiPeRT Generator Tool – HGT4, an open source tool to generate
synthetic task code that is representative of the timing and precedence relations of
concurrent industrial applications. Thanks to its scalable and easy-to-extend structure,
HGT allows mimicking the timing behavior of parallel real-time applications represented
as (i) Directed Acyclic Graphs (DAG) model that we called RT-DOT representation, or (ii)
using the AMALTHEA model. HGT receives as input a set of task dependencies, timing
and memory constraints of the modeled application. These constraints are parsed into
an internal model (RT-DAG) and then transformed into ANSI C code. The generated
code is then executed on top of a runtime that currently has PThreads as a parallel
execution engine. The HGT runtime (HGR) is optimized for behavioral code emulation,

1http://www.bitmover.com/lmbench/
2https://www.coker.com.au/bonnie++/
3https://www.spec.org/cpu2006/
4Source code is released under GPL at: https://github.com/HiPeRT/HGT
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including the replication of meaningful memory access patterns of the modeled tasks.
This allows a tighter and more representative emulation of the timing behavior and
contention sources of the considered application than existing approaches.

5.2 Related Work

There are several frameworks and tools offering the possibility to generate code
from a metamodel instance. A widely used commercial tool is Simulink, which allows
the generation of ANSI C and C++ code for real-time and non real-time applications
from Matlab and Simulink diagrams. Another commercial tool is E4Coder [92]. E4Coder
provides a set of tools used to simulate control algorithms and to generate code for
embedded micro-controllers. The code generator tool translates ScicosLab and XCos dia-
grams into C language. In [93], the authors present edROOM, a graphical environment
to edit ROOM models that automatically generates real-time C++ code. edROOM uses
the model to describe the structure, communication topology and behavior of the system,
automatically generating the application code. In [94], a MDD framework is proposed
based on Java and XSLT called JComposer, for the automatic generation of real-time
C-code for safety-critical embedded systems. JComposer runs on top of Linux-RTAI.
In [95], a code generation framework is proposed to generate code for different target
platforms modeled using AADL. In [96], another framework is presented for generating
real-time code based on ADA. In this work, the functional behavior is characterized
using UML2 adding the real time constraints using MARTE.

The main differences between these tools and the work presented in this dissertation
are: 1) HGT generates code written in C (and soon OpenMP) that can seamlessly run on
single-, multi- or many-core embedded platforms; 2) HGT hardware independent, i.e.,
we generate code for Intel and ARM architectures, replicating the timing behavior and
precedence constraints in a very precisely way; 3) HGT is an open source tool, designed
to be scalable in a very simple way, in contrast with the rest of works, that are closed
or commercial. We are developing support for OpenMP and CUDA as potential code
generation backend to target a wide set of commercial platforms.

5.3 Hipert Generator Tool - HGT

In this section, we describe the design of the HiPeRT Generator Tool (HGT). Fig-
ure 5.1 describes the overall system architecture and the three main components.

HGT is structured in three different layers.
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Figure 5.1: HGT framework organization.

• The front-end parses input files containing the task semantics to be translated into
code. These files can be of different formats.

• The core layer translates the model semantic into the HGT task model, which is
described in Section 5.3.2.

• The back-end generates code that mimics the behavior of the model on one or
multiple platforms. It currently runs on top of PTask/Posix threads library[97],
that provides RT tasking service.

5.3.1 Front-end

The goal of the front-end layer is to read the task/system representation that ex-
presses the task constraints, e.g, period, deadline, worst-case execution time, etc. In-
tuitively, the more behavioral information is provided, the more accurate is the HGT
system representation.

As shown in Figure 5.1, the front-end layer supports the AMALTHEA model, as
well as an enhanced DOT representation5 that allows expressing parallel task structures
in the form of Directed Acyclic Graphs (DAG). DOT is a graph description language
used for graph representation. A DOT file is basically composed of the definition of
nodes and edges, where a node is the basic element of a graph and an edge represents

5https://en.wikipedia.org/wiki/DOT_(graph_description_language)
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the precedence relationship between nodes. Inspired by the work done in [89], the DOT
format has been specialized to include additional features that are typical of real-time
systems, such as task periods and deadlines. We called such a specialized format RT-
DOT, and it also inspired the HGT internal system representation, that is discussed in
the next section. It is inspired by the P-SOCRATES FP7 project [89]. This HGT internal
representation of DAGs, directly come from this. The RT-DOT file can be either written
by-hand, or generated by a compiler, as it was done using the Mercurium source-to-
source compiler6. For the sake of simplicity, we will not discuss in detail the RT-DOT
semantics here, and we will focus only on how we generate code from the AMALTHEA
model, because it inherently covers the complexity of the RT-DOT task model with small
differences. Figure 5.2 summarizes the difference between the supported AMALTHEA
and RT-DOT task model.

Figure 5.2: Example of RT-DOT and AMALTHEA files and models.

Accordingly with the task model defined in 4.3 and the AMALTHEA model, an
AMALTHEA task τ is described using a Directed Acyclic Graph (DAG) G(T) = (V; E),
where V correspond to serial sequences of nodes and E the edges that denotes the
precedence relationship between nodes. Each task τi is characterized by a period Ti,
a priority Pi and a scheduling policy specified by PTi. The scheduling policy may be
either preemptive or cooperative, as Each node τi,j represent a different runnable, where
j stands for the j-th task of the i-th task, with an associated worst-case computation time

6https://pm.bsc.es/mcxx
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Ci,j and a worst-case memory access size Mi,j. At runtime, a task τi releases a sequence
of runnables. Each task needs to finish the execution before the deadline.

Figure 5.3: AMALTHEA task with 4 runnables.

The memory access models supported by the AMALTHEA model and implemented
into our code generator can be summarized as follows:

• Sparse. The “traditional” execution model, where computation and memory ac-
cesses are interleaved.

• Predictable execution model (PREM) [8]. Under this model, the execution is decou-
pled into three different phases: a read phase, during which the task pre-fetches
the required data into local memory; an execution phase, where the task performs
pure computation workload, with local memory access; and a write phase, when
the task publishes the labels it modified. Indeed, it is very similar to the Implicit
task model defined previously. This technique allows improving both average
and worst-case execution time, ensuring a more predictable behavior in a shared
memory multi-core system, avoiding cache misses and memory interference [98].
Because it employs ordered prefetch and post-store phases from the global to the
per-core local memory, that ultimately removed concurrent memory accesses due
to uncontrolled cache misses. This model is very similar to the model proposed
in [7] in the avionic domain.

5.3.2 Core

The HGT core layer processes the parsed DAG representation, through the AMALTHEA
or the RT-DOT model, and does the following:

1. it determines a task grammar, where it precisely defines the task constraints;

2. it maps the input constraints into the defined previously task grammar; and

3. it defines the rules adopted to translate the model constraints into code.
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An overview of the core layer process is shown in the Figure 5.4.
The first step consisted in creating a metamodel compliant with the constraints

specified in the input file. In this case, we will consider the metamodel defined in
AMALTHEA as a metalanguage to generate code (See Section 2). Several metamodeling
frameworks exist to support this activity, like Ecore or MOF [99]. Eclipse Modeling
Framework (EMF) [36] provides a modeling environment and runtime support for the
model language manipulation. EMF provides a metamodel language called Ecore used
for the model description. It also allows the specification of attributes contained in the
language and their relation through class diagrams very similar to UML diagrams.

In a second step, when the metamodel is defined it is possible to create a model that
complies with the metamodel created previously. In this case, the AMALTHEA model is
generated based on an engine control application provide by Bosch. When the model is
defined, it is translated onto the HGT Task Model, as shown in Table 5.1 and discussed
in Section 5.3.3. The internal HGT model is based on XMI (XML Metadata Interchange),
a subset of XML used for the model representation, enhanced with parameters to
accurately capture the semantics of typical real-time tasks. The adoption of standard
XML files as internal representation lets us completely decouple the frontend and
backend representation, and makes the overall tool completely scalable. Yet, our custom
XMI format is complete and scalable enough to capture all RT-related system properties
such as task periods, deadlines, etc. The most important features of the system model
are:

1. Job execution model. It represents the memory access model, either PREM or Sparse.
If in Sparse mode, it is possible to define whether the memory accesses are se-
quential or random, as well as the access granularity, i.e., the minimum memory-
computation unit defined in bytes. Note that the use of PREM implies that memory
accesses are pre-fetched “in block” into the last level cache or in a local scratchpad
memory [8]. In the AMALTHEA case, different memory access granularities may
be specified following different semantics (see Section 5.3.3): at task boundaries
(implicit model) or at task release times (Logical Execution Time, LET).

2. Task scheduling policy. Inspired by Posix Threads standard, it can be FIFO or Round
Robin. In the future we plan to add support for scheduling policies used in the
automotive industry such as the co-operative scheme.

With these rules and the DAG representation, task or nodes of the HGT model are
translated, e.g., into a PTask [97], and edges are translated into POSIX mutex for the ANSI
C code (see Table 5.1).

The front-end and core layers are implemented using the Epsilon framework [100].
Epsilon is a family of languages that provide an infrastructure for code generation,
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model-to-model and model-to-text transformation, for the Eclipse platform. Specif-
ically, the language used for translating the model into code is Epsilon Generation
Language (EGL). EGL [101] is a template-based model-to-text language for generating
code, documentation and other textual artifacts from models. It provides a template-
based framework with so-called translation rules for the different attributes defined in
the model. To port AMALTHEA and RT-DOT on the internal HGT representation, we

Figure 5.4: Example of code generation process from AMALTHEA model.

developed a lightweight parser for the input file, and the necessary code (written in
Java) for HGT. This process is explained in the following subsection.

5.3.3 AMALTHEA mapping onto HGT

In this subsection, we provide a description of the AMALTHEA software constraints
and how they are mapped into the HGT task model (RT-DAG) and, ultimately, into C
code complying with these constraints. Similar considerations are valid for applications
specified under the RT-DOT model.

As mentioned in Section 2.3.1, some elements of the metamodel are not mappable
into code. For instance, OS-level scheduling artifacts such as limited preemption support
[42] or SCHED_DEADLINE [39]) are implicitly assumed to be present in the backend
emulation platform. Similarly, hardware properties‘ like the number of cores or the
memory hierarchy cannot be “enforced” in a given machine, even though AMALTHEA
model can express them (for instance, you cannot simulate an application running on
8 cores if there are only 2 available on a target machine). For this reason, and for the
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sake of simplicity, in this dissertation we only cover the properties related to software
components, such as, e.g., the task-runnable relation and the effect chain mapping.

In the AMALTHEA model, the main software component is a task. The metamodel
defines a task as a sequential directed acyclic graph whose nodes are called runnables. A
task can be seen as a “container” of runnables, represented with a call graph. Therefore,
according to the AMALTHEA model, runnables within the same task are executed
sequentially (See also Figure 5.2). There is a direct correspondence between AMALTHEA
runnables and AUTOSAR runnables. I While AUTOSAR tasks may have functional
dependencies between them (implemented, for instance, with mutexes, semaphores or
locks), the AMALTHEA model does not capture this feature. This greatly simplifies
the AMALTHEA-to-HGT mapping, avoiding the need of implementing additional
synchronization constructs within the task code.

In a first step, we map those elements into code. Tasks and runnables could be
seen as “classic” POSIX threads, which are also assigned a period, a deadline and
a priority. We leverage the PTask library to implement this additional features [97].
Each AMALTHEA task is mapped onto a PTasks, while runnables are implemented as
PThreads. AMALTHEA tasks have a period, a deadline and a priority. These features
are not natively supported in any “standard” programming API, such as POSIX threads.
Instead of re-writing them by-hand, we leverage the open-source PTask library to
support them. In this library, every PTask is composed of multiple PThreads. As a
consequence, we map AMALTHEA tasks into PTasks, and runnables as PThreads.

In AMALTHEA, tasks communicate through shared labels. A task can be either a
sender or a receiver, namely a writer or a reader of a shared label. While there may be
multiple receivers per label, each label has at most one writer. AMALTHEA defines the
concept of effect chains to model asynchronous inter-/intra-task communication with a
producer/consumer relationship between runnables.

As we shown in the last chapter, the end-to-end latency of effect chains is the main
performance metric for engineers, and it is defined as the maximum propagation delay
for an event affecting the first runnable of the chain (i.e., when an input label is modified)
to the final one (when it writes its output label). It is worth noting that effect chains do
not have a blocking semantic, i.e., runnables are always active and periodically activated,
independently on other runnables and/or external events. In HGT, event chains can
be translated merely as an asynchronous communication between threads, where one
thread writes in the reader memory region. No additional mechanisms are needed to
support task communication, other than read/write accesses to shared labels.
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Figure 5.5: AMALTHEA communication models.

As we argued, different patterns are proposed to support a deterministic com-
munication that maintains data consistency7. These patterns can be summarized as
follows:

1. The Explicit model represents a “traditional” communication mode, where no
pre-fetching is performed, but tasks freely access the shared labels in an unsynchro-
nized way. When the same label may be accessed by different tasks, this model
may lead to race conditions and data inconsistencies.

2. With the Implicit communication model, the communication is performed at task
boundaries. In order to avoid data inconsistency, tasks accessing shared labels
work on task-local copies created at the beginning of the job execution. After
working on these local copies, the task writes back its local copies to the original
labels, i.e., it publishes its results at the end of its execution.

3. The Logical Execution Time (LET) model LET requires that the input and output
variables are updated at the beginning and at the end of the communication
interval respectively. The communication interval is determined by the release
times of the tasks involved in the communication.

From a design perspective, Figure 5.5 depicts these patterns. At implementation level, the
Explicit communication pattern can be simply implemented with a direct communication
through shared memory banks (e.g., mailboxes). The model ignores the potential

7Implicit and LET communication patterns are not available in the current AMALTHEA specifications,
but they will be included in upcoming versions.
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performance and data consistency issues that may arise following this approach. On the
other hand, to implement the Implicit and the LET communication pattern, runnables
create local working copies for the shared labels before the task starts in order to maintain
the data consistency. Then, the difference between the Implicit and LET models is when
the publishing time or write-back of the modified labels is defined. In this sense,
replacing the shared labels with the modified local copies, happens at task completion in
the implicit case, and at the end of the communication interval in the LET case. In LET,
When tasks have harmonic periods, the communication interval is the hyperperiod of
the communicating tasks. See 4.3 for more details about the conceptual implementation
of the LET model. Table 5.1 depicts the equivalence between the RT-DOT and the
AMALTHEA model.

RT-DOT AMALTHEA PTask
Name Properties Name Properties Name Properties
RT-Task Period, deadline Task Period, deadline, concurrent, {map} Real-time PTask Period, deadline, concurrent
Job/Thread Core map, concurrent Runnable mapping{Task, no mapping} PThread Concurrent, sched. policy
Dependency Exec. dependency, block Dependency Implicit in runnable PThread mutex Blocking, preempt. point
Comm. channel Thread and shared labels Event chain Runnable and shared labels Shared vars –

Table 5.1: AMALTHEA and RT-DOT model mapping.

5.3.4 Back-end

Finally, to allow HGT to be portable onto different platforms, we wanted to provide
the necessary software abstraction to transparently support execution of the same code
across different architectures. For this reason, our tool generate code that runs on top of
a simple API layer, called HG-Runtime (HGR). The HGR API allows:

1. generating RT-tasks with their own period, deadline, priority, etc;

2. spawning concurrent RT-threads/jobs within a single task, and managing their
dependencies;

3. simulating the execution of ’C’ clock cycles on a platform core, with or without
performing memory accesses (simulating cache misses);

4. accessing ’M’ bytes in the main platform memory.

We implemented a first version of HGR based on the PTask library [97], a research
API that enhances PThreads with real-time characteristics, like task periods, deadlines,
priorities, and OS scheduling policy. Tasks in the HGT model are translated into PTasks,
nodes into PThreads, and edges are implemented as POSIX mutex (see Table 5.1). This
backend is used in Section 5.4 to validate our tool.
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We are currently developing backends for (i) the Kalray MPPA many-core platform
[102], by implementing HGT on top of the OpenMP runtime developed within the
P-SOCRATES project[89]; (ii) automotive-grade heterogeneous SoCs based on tightly-
coupled NVIDIA GPUs [103], [104], porting the HGR API on top of CUDA [105], and
(iii) Infineon Aurix Tricore [106], a well-known platform that is already ASIL-D certified
and shipped within real industrial systems.

5.4 Experimental evaluation

In this section, we show how we implemented the synthetic tasks generated by
the HGT tool so that they replicate the timing behavior of the AMALTHEA tasks given
as input. The main problem was to accurately model memory and execution phases
running on top of a general purpose OS. We ran different experiments, measuring the
error between the expected emulated time and the actual one (both M and C phases).
Measures are taken on an i7-4770T CPU @ 2.50GHz, with 32GB of RAM, running on an
standard Ubuntu 4.4.0-53 with real-time extensions.

5.4.1 Memory Phase
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Figure 5.6: Memory performance test.
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We first compared the memory transfer delay of the different memcopy variants we
implemented in HGT, namely:

• the linux standard version of memcpy;

• a byte-to-byte copy;

• AFmemcpy8, an optimization of the memcpy written in assembly; and

• ASM memcpy, our implementation of the memcpy written in x86 assembly.

As shown in Figure 5.6, the standard implementation of the AF memcpy performs
slightly better than the “standard” memcpy. Still, the former implementation is preferable,
because it relies on a standard memcpy that is available on all platforms that support a C
development toolchain. For the very same reason, it might not be worth implementing
non-portable ASM code for the M phase, even if in some cases it might be the best
performing one.

5.4.2 Execution Phase

As explained in section 5.3, in its “generic” form, the front-end reads the AMALTHEA
model. According to the model defined (see Section 4.3), each runnable (or node) is char-
acterized by a worst-case execution time, specified in time-units, and a memory access
size, specified in bytes. 9 Depending on the execution model adopted, PREM or Sparse,
the HGT implementation of memory accesses at node level varies. Under the PREM
model, memory phases are implemented using a single memcpy of corresponding size,
followed by an execution phase lasting for the specified WCET. Under the Sparse model,
we evenly divide the memory accesses into multiple sequential blocks, each accessing
memory with a given granularity (specified in the front-end), and then performing a
given amount of computation (see Figure 5.7). The number of blocks for a node τi,j can
therefore be computed as

φi,j = Mi,j/granularity. (5.1)

Similarly, the worst-case execution time of the considered node is accordingly distributed
among the blocks, so that each block has an execution time of βi,j, where

βi,j = Ci,j/φi,j. (5.2)

An example of both approaches is illustrated in Figure 5.7. We experimented two
different ways to reproduce a given execution time: ASM and CLOCK. The ASM

8http://www.agner.org/optimize
9Both terms are calculated by a WCET analysis. This aspect is out of the scope of our work, at the moment.
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Figure 5.7: Task execution model.

implementation executes βi,j ∗ F NOP ALU operations, coded in assembly, where F is
the CPU frequency. The CLOCK implementation employs a spinning approach where
the task continuously reads a timer to check when βi,j time units have elapsed. We are
planning to improve this process in next versions. To compare the effectiveness of both
approaches, we characterized the difference between the expected and the measured
execution times under different configurations, i.e., for different Ci,j-φi,j combinations.
Each configuration was ran 10K times, measuring the largest divergence w.r.t. the desired
value. Results are summarized in Figure 5.8, showing the percentage of the accuracy
error of our ASM implementation against the reference CLOCK. As expected, the most
accurate approach is the ASM. Still, there are problems when reproducing tasks with
a small execution time and a large data size (thus, a small C/φ ratio – columns in red,
on the top-right of Figure 5.8). We are working on more enhanced ASM methods that
may obtain a higher accuracy also for smaller block sizes. The drawback of ASM-based
approaches is that they are not platform-independent, but they need to be re-written
for every core Instruction Set Architecture that one wants to support as a backend. Still,
these are very few lines of code, and they are wrapped within a HGR-specific subroutine.

With regard to the communication patterns we already give support to the code
generation complying with the semantics defined previously, however, because we use
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PHI 512 1024 10240 102400 1024k 10240k 102400k

CLOCK 6,10 10,27 89,37 889,25 9598,57 96614,45 966825,65

ASM 2,70 3,97 11,39 32,60 78,19 1667,25 17589,36

CLOCK 0,90 1,82 10,75 86,05 879,84 9572,47 96624,53

ASM 3,71 2,15 2,47 9,47 13,73 76,47 1664,93

CLOCK 0,11 0,23 1,22 8,61 83,31 866,89 9569,64

ASM 0,62 0,48 0,79 1,07 8,19 11,60 73,29

CLOCK 0,05 0,09 0,33 2,07 16,72 141,41 1833,61

ASM 0,39 0,33 0,34 0,48 1,87 15,41 17,22

CLOCK 0,03 0,05 0,19 1,06 8,41 82,54 866,99

ASM 0,40 0,39 0,22 0,34 0,95 8,05 10,97

CLOCK 0,00 0,01 0,07 0,58 4,31 46,79 383,48

ASM 0,41 0,20 0,23 0,28 0,54 4,21 38,18
2 sec

1 ms

10 ms

100 ms

500 ms

1 sec

Figure 5.8: Computation performance test.

a general purpose operating system there are several limitations in the creation of a
representative representation of the model. In order to fill this gap, we plan to give
code generation support for the real-time operating system Erika using the Aurix TC275
microcontroller 10.

5.5 Summary

In this chapter, we presented an open-source tool for generating synthetic real-time
tasks complying with different memory and execution models: parallel or sequential,
DAG-based or AUTOSAR, PREM or sparse. We introduced a formal basis for the gener-
ation of synthetic AUTOSAR based tasks, complying with different memory and execu-
tion models. We proposed a software mapping from the RT-DOT and the AMALTHEA
model, that extracts and translates into code the modeled software properties. The tool
has been designed following a model-driven development approach, to allow for an
easier extensibility and customization to different hardware and software architectures.
The generated code can be adopted to test the effectiveness of scheduling algorithms,
operating systems and runtimes under a variety of configurable workloads, allowing
one to test the impact of different execution models over a considered architecture.

HGT is licensed under GPL, and a final version of the code is be released as open
source. The source code and the tool may be downloaded from the website11.

10https://www.infineon.com/cms/de/product/evaluation-boards/kit_aurix_tc275_ard_sb/
11https://github.com/HiPeRT/HGT

© Università di Modena e Reggio Emilia Ignacio Sañudo

https://www.infineon.com/cms/de/product/evaluation-boards/kit_aurix_tc275_ard_sb/
https://github.com/HiPeRT/HGT


Conclusions 95

6 Conclusions

Finally, we briefly review the results achieved and draw a conclusion from this
dissertation. We addressed several research problems related to the allocation, analysis
and development of real-time applications in many different domains.

First, we summarized many of the the key concepts behind functional safety giving a
higher level insight of how ISO-26262 works at software level and how this development
is managed. Moreover, we reviewed the AUTOSAR standard. We described many of the
mechanisms at operating system level and how those mechanisms are translated in the
real-time scheduling theory such as, scheduling algorithms or communication patterns.
Then, we explained the Model based development concept.

Chapter 3 presented a comprehensive and up-to-date survey of the literature on I/O
management within virtualized environments. We exposed observations and considera-
tions concerning predictability on shared hardware devices. Specifically, we considered
I/O-disk scheduling as a particular case for resource sharing, we highlighted the main
results concerned with improving the delays due to competing accesses to storage de-
vices in virtualized environments. Furthermore, we demonstrated how I/O intensive
tasks executing on top of non-critical virtual machines can easily cause more critical
partitions to experience high blocking delays. In this context, we presented the concept
of Freedom From Interference and the mechanisms proposed by ISO-26262 to guarantee
a certain level of determinism and isolation. We believe that this contribution can help an
interested reader in understanding the importance of Freedom From Interference and the
metrics used to certificate those kinds of systems under automotive safety assessments
for the execution of mixed-criticality applications.

In Chapter 4 we proposed and analyzed the implementation of different commu-
nication patterns that are used for shared-memory inter-task communication in the
automotive domain. Specifically, we presented a tight schedulability analysis for the
AUTOSAR task model in which cooperative and preemptive tasks are concurrently
scheduled on the same partitioned platform. Moreover, we proposed a formal imple-
mentation for the Explicit, Implicit and LET communication patterns. In this context, we
introduced a precise calculation of two propagation delay semantics: Age and Reaction.
We presented an analysis of a real engine control application. As proved in the analysis,
neither the Explicit nor the Implicit communication consider the concept of time deter-
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minism that is very important for control applications in the automotive context. On
the other hand, the LET communication implementation proposed, guarantees a deter-
ministic behavior in the execution but also a deterministic inter-task communication
while guaranteeing data consistency. Furthermore, we discussed the trade-off between
the communication patterns in terms of memory footprint. This contribution can serve
as a guidance for automotive engineers in the partitioning and implementation of the
different communication models proposed. The metrics and trade-offs presented may
be also used to consider how communication must be performed in function of the
application requirements.

Chapter 5 presented the Hipert Generator Tool (HGT) a framework that generates
code from different modeling languages following a Model-based approach. This tool
was motivated by the lack of real-time frameworks for the test and execution of synthetic
benchmarks. Moreover, in order to test the advantages and disadvantages of the com-
munication mechanisms described in the previous chapter, we defined the constraints
needed for code generation of the Explicit, Implicit and LET communication patterns.
The tool is already compatible with AUTOSAR-specific mechanisms and synchronization
constructs. Moreover, the tool was developed to support the DOT modeling language.
Furthermore, we provided the performance model of our implementation in terms of
execution and memory accuracy. This framework can help researchers in the creation of
synthetic and realistic test cases.

6.1 Future Work

Many issues remain still open concerning the topics treated in this dissertation. In
this sense, the work presented can be extended towards several directions for future
research.

Future work, Virtualization. In the survey presented in Chapter 3 we were
concerned with shared resource management within virtualization platforms at I/O
level. Furthermore, in Chapter 4 we showed that LET provides mechanisms to improve
the determinism while guaranteeing data consistency. In this sense, we intend to explore
LET as a mechanism for provide determinism and data consistency within virtualized
environments. To better understand this idea, consider two different virtual machines
with different applications that communicates through the shared memory among each
other. Both virtual machines read data from the shared memory at fixed temporal
intervals, one of the virtual machines also writes into the shared memory region the
information that is produced at the end of the execution. As can be easily observed, this
can lead to data inconsistency issues. Data consistency among partitions can be achieved
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using lock-based protocols, leading to high blocking delays on the reader partition.
Many lock-based resource sharing protocols have been proposed in the literature, most
of these protocols are complex in the analysis or difficult to implement, for example,
Multiprocessor Stack Resource Policy (MSRP) or Multiprocessor Priority Ceiling Protocol
(MPCP). Thanks to its simplicity, we believe that the Logical Execution Time model
and/or wait-free mechanisms are suitable for providing determinism, data consistency
and consequently for managing the access to shared resources. We will explore this idea
in depth in the near future using the Jailhouse hypervisor.

Future work, End-To-End. As a future work, we plan to extend the presented
analysis to integrate different task models, like adaptive variable rate tasks (AVR) and
aperiodic arrivals. Furthermore, we plan to improve the provided end-to-end bounds
increasing the complexity of the analysis for ruling out pessimistic scenarios that may not
appear for selected effect chains. We plan to propose task-to-core partitioning strategies
to improve, i.e., reduce the latency metrics of selected effect chains. Moreover, since in
this dissertation we dealt with the end-to-end latency of tasks that are allocated in the
same ECU (intra-ECU communication). In the near future we will derive an analysis of
the presented communication patterns (Explicit, Implicit and LET), when the communi-
cation is established between two or more different ECUs (Inter-ECU communication)
that are potentially composed of multi-core processors. In this sense, the problem is
more related to synchronization between buses. For instance, let us suppose that we
have a periodic task that triggers a communication with a task allocated onto a different
ECU. Local clocks placed on different ECUs are not synchronized. However, in [107]
authors proposed a period optimization for distributed ECUs satisfying end-to-end
latency constraints. We are interested in the behavior and determinism provided by
the mentioned communication patterns in this communication setting. We also plan to
explore static offset assignment with the LET model. In this sense, the real-time perfor-
mance of non-harmonic tasks may improve, getting closer to the constant end-to-end
latency experienced in the harmonic case. The introduction of offsets not only may
reduce response times and end-to-end latencies, but it also allows decreasing the jitter of
important control parameters.

Future work, HGT. Regarding the code generator, we plan to use the tool to gen-
erate synthetic benchmarks to test the effectiveness of PREM-based execution models
with respect to standard approaches under different multi/many-core architectures
and operating systems. The tool will be enhanced to include a configurable number
of shared resources and critical sections for more realistic modeling of real industrial
applications. Due to the impossibility to execute particular model mechanisms, like
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scheduling algorithms or particular task activations, we excluded to test the effective-
ness of the AMALTHEA execution model. In this context, the implementation for the
communication patterns are ready to be ported to an AUTOSAR/OSEK OS. We plan to
port the code generator to be executed on top of the Erika operating system, to prove the
effectiveness of the execution model and mechanisms proposed. Moreover, the backend
will be ported on a ECU based on a quad-core Aurix microcontroller [106], as well as on
top of the OpenMP/CUDA runtimes supported by Kalray MPPA and NVIDIA GPUs.
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