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Soft Information for Localization-of-Things
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Soft information is much richer than single-value estimates.

Its exploitation opens the way to a new level of accuracy for the Localization-of-Things.

Abstract—Location awareness is vital for emerging Internet-
of-Things applications and opens a new era for Localization-of-
Things. This paper first reviews classical localization techniques
based on single-value metrics, such as range and angle estimates,
and on fixed measurement models, such as Gaussian distributions
with mean equal to the true value of the metric. Then, it
presents a new localization approach based on soft information
(SI) extracted from intra- and inter-node measurements, as
well as from contextual data. In particular, efficient techniques
for learning and fusing different kinds of SI are described.
Case studies are presented for two scenarios in which sensing
measurements are based on (i) noisy features and non-line-of-
sight detector outputs, and (ii) IEEE 802.15.4a standard. Results
show that SI-based localization is highly efficient, can significantly
outperform classical techniques, and provides robustness to harsh
propagation conditions.

Index Terms—Localization, wireless networks, learning, soft
information, Internet-of-things, localization-of-things.

I. INTRODUCTION

Location awareness enables numerous wireless applications

that rely on information associated with the positions of nodes

such as anchors, agents, and targets in wireless networks

[1]–[5]. These applications include autonomy [6]–[10], crowd

sensing [11]–[19], smart environments [20]–[25], assets track-

ing [26]–[30], and the Internet-of-Things (IoT) [31]–[36]. The

process of locating, tracking, and navigating any possible

collaborative or non-collaborative nodes (devices, objects,
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Fig. 1. Pictorial view of LoT relying on SI: blue circles represents nodes,
dashed lines represents wireless connectivity between nodes, and red contours
represent the SI values associated with node positions.

people, and vehicles) is referred to as Localization-of-Things

(LoT). The positional information of network nodes is encap-

sulated by soft information (SI), the ensemble of positional

and environmental information respectively associated with

measurements and contextual data. The SI can be extracted via

sensing measurements (e.g., using radio, optical, and inertial

signals) and contextual data (e.g., using digital map, dynamic

model, and node profile). Fig. 1 provides a pictorial view of

LoT relying on SI associated with each node. Accurate LoT

depends on reliable acquisition and exploitation of SI, which

can be challenging, especially in harsh wireless propagation

environments. In particular, conventional approaches, based

on fixed models, are often inadequate for describing SI as

a function of the operating environment, signal features, and

filtering techniques.

The demand for accurate localization is growing rapidly

despite the difficulty in extracting positional information from

received waveforms in most wireless environments. Research

in localization and navigation has been carried out along four

main strands: (a) fundamental limits [37]–[46]; (b) algorithm

design [47]–[79]; (c) network operation [80]–[91]; and (d)

network experimentation [92]–[96]. Conventional approaches
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to localization typically rely on the estimation of single

values such as distances and angles from inter-node mea-

surements, and accelerations and orientations from intra-node

measurements. In particular, conventional approaches divide

the localization process into two stages: (i) a single-value

estimation stage in which distances, angles, accelerations, or

other position-dependent quantities are estimated; and (ii) a

localization stage in which prior knowledge and single-value

estimates (SVEs) serve as inputs to a localization algorithm for

position inference. For example, in conventional range-based

localization and navigation, the positions of agents or targets

are inferred from anchor positions and distance estimates [59]–

[61]. Localization accuracy obtained by such methods depends

heavily on the quality of the SVEs [96]–[114].

Typically, the accuracy and reliability of conventional lo-

calization techniques degrade in wireless environments due

to biases in SVEs caused by multipath propagation and non-

line-of-sight (NLOS) conditions. Performance limits on rang-

ing were established in [115]–[127], while tractable models

for range information were derived in [51]. To cope with

wireless propagation impairments, conventional localization

approaches focus on improving the estimation of single values

[97]–[102], [128], [129]. Techniques to refine the SVE have

been exploited by relying on models for SVEs errors (e.g.,

the bias induced by NLOS conditions) [98], [128], [129].

In addition, received waveforms containing reliable positional

information can be selected based on features extracted from

their samples [130]. Data fusion techniques can be used to

improve the performance of SVE-based localization by consid-

ering the SVE of different features as independent [131]–[133]

or by involving hybrid models that account for the relationship

among different features [134]–[137].

To overcome the limitations of SVE-based localization, one-

stage techniques that employ measurements to directly obtain

positions based on a prior model, namely direct positioning

(DP), have been explored [138]–[146]. Recently, localization

techniques that rely on a set of possible values rather than on

single distance estimates (DEs), namely soft range information

(SRI), have been developed [55]. In particular, algorithms

to learn SRI based on unsupervised machine learning have

been developed. To improve the localization performance it

is essential to design localization networks that exploit SI,

such as SRI or soft angle information (SAI), together with

environmental information, such as contextual data. Contextual

data for localization include digital maps, dynamic models,

and user profiles [147]–[155].

The LoT scenarios offer the possibility to exploit differ-

ent sensors that have limited resources for communication,

computing, and memory [156]–[164]. In fact, unleashing the

multi-sensor LoT requires fusion of data and measurements

collected from heterogeneous sensors with limited resources

for communication, computing, and memory [5], and design

of efficient network operation strategies [80], [81], [85], [88],

[90], [91], [165]–[167]. Multi-sensor LoT calls for distributed

implementation of SI-based localization capable of fusing in-

formation from multimodal measurements and environmental

knowledge. In addition, distributed localization algorithms re-

quire the communication of messages [47]–[49], [168], which

may involve high dimensionality depending on the kind of SI.

Therefore, it is vital to develop techniques for reducing the

dimensionality of SI to make message-passing amenable for

SI-based localization.

The fundamental questions related to SI for localization and

navigation are:

• what gain can be reaped with SI-based methods compared

to classical ones;

• how the SI can be learned from sensing measurements

like received waveform samples;

• would SI be enriched by fusing information from different

observables and information from the environment; and

• can SI-based algorithms for LoT be implemented effi-

ciently and distributively?

The answers to these questions provide insights into the

evolution of positional information at different stages of the

localization process, which are essential for the design and

analysis of localization systems. The goal of this paper is to

establish the use of SI-based methods for LoT and quantify

their performance gain with respect to classical ones. We

advocate the exploitation of SI, which opens the way to a new

level of accuracy for LoT.

This paper establishes SI-based methods for localization and

navigation. In particular, it describes techniques for learning

the SI and determines the benefits of fusing different types of

positional information. It also demonstrates that SI is much

richer than SVEs for localization and navigation. The key

contributions of this paper include:

• introduction of SI-based techniques for LoT;

• methods for learning and fusing SI that is extracted from

sensing measurements and contextual data; and

• quantification of the benefits provided by SI-based tech-

niques compared to SVE-based and DP techniques.

Case studies are presented for two scenarios in which sensing

measurements are based on (i) noisy features and non-line-of-

sight detection, and (ii) IEEE 802.15.4a standard.

The remaining sections are organized as follows: Section II

provides an overview of techniques for LoT. Section III defines

SI for localization in terms of positional and environmental

information. Section IV describes how SI can be exploited in

localization and navigation. Section V provides performance

benchmarks for SI-based localization. Section VI presents

learning algorithms and data set reduction methods for SI-

based localization. Section VII provides performance results

for different case studies. Finally, Section VIII summarizes the

paper.

Notations: R denotes the set of real numbers (R+ for

non-negatives) and R
M its M -th Cartesian power. Random

variables are displayed in sans-serif, upright fonts; their re-

alizations in serif, italic fonts. Vectors are denoted by bold

lowercase letters. For example, a random variable (RV) and

its realization are denoted by x and x; a random vector and its

realization are denoted by x and x. The function fx(x) and,

for brevity when possible, f(x) denote the probability density

function (PDF) of a continuous RV x; fx|y(x|y) and, for

brevity when possible, f(x|y) denote the PDF of x conditional

on y = y; ϕ(x;m,Σ) denotes the PDF of a Gaussian random
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vector x with mean m and covariance matrix Σ; operators

E {·}, V {·}, and P {·} denote, respectively, the expectation,

variance, and probability of the argument, and Ex{·} denotes

the expectation with respect to RV x. Sets are denoted by

calligraphic fonts, e.g., Y , and empty set is denoted by ∅.

For a matrix A and a vector a the transpose is denoted by

AT and aT, respectively; tr{A} denotes the trace of the

matrix A; and ⊗ denotes the Kronecker product of matrices.

The norm of a vector u is denoted by ‖u‖. A positional

feature vector, a measurement vector,1 and contextual data are

respectively denoted by θ, y, and µ. This paper considers both

Bayesian and non-Bayesian formulations; in the former case,

the relevant parameters are modeled as random.

II. LOCALIZATION OF THINGS

This section provides the problem setting, discusses the key

aspects, and introduces techniques for LoT.

A. Preliminaries

A localization network is composed of Na agents2 with

index set Na = {1, 2, . . . , Na} at unknown positions, and Nb

anchors with index set Nb = {Na+1, Na+2, . . . , Na +Nb}
at known positions. Both the measurement collection and

localization process are performed at discrete time instants, tn,

with index set Nt = {1, 2, . . . , Nt}. The goal is to determine

the positional state of agents at different time instants. The

positional state of agent i at time tn, for i ∈ Na and

n ∈ Nt, is denoted by x
(n)
i ∈ R

D and includes the position

p
(n)
i and other mobility parameters such as velocity v

(n)
i ,

acceleration a
(n)
i , orientation φ

(n)
i , and angular velocity ω

(n)
i .

The concatenation of all agents’ positional states and that of all

agents’ positions are denoted by xNa and pNa , respectively.

Localization techniques determine each position estimate p̂i
based on a collection of measurements {yi,j}j∈N , where N ⊆
Na ∪ Nb is the index set of nodes involved in measurements

exchange with cardinality N , and on prior information such

as previous positional states and environmental information.

Measurements are related to a feature vector θ that is a

function of node positional states.3 Therefore, the positional

information can be extracted from measurements related to

nodes i and j at time tn, denoted by y
(n)
i,j for i, j ∈ Na ∪Nb

and n ∈ Nt, where i 6= j and i = j correspond to inter-

and intra-node measurements, respectively. An inter-node

measurement between node i and j is related to positional

states xi and xj . Inter-node measurements are commonly

obtained by radio measurement units and can include the

entire set of received waveform samples or metrics such as

received signal strength (RSS) [169]–[173], time-of-arrival

(TOA) [174]–[178], time-difference-of-arrival (TDOA) [179]–

[181], angle-of-arrival (AOA) [181]–[184], and Doppler shift

[185]–[187]. An intra-node measurement of node i is related

1In general, a measurement vector is a collection of measurements obtained
by different types of sensors.

2Agents refer to any possible collaborative or non-collaborative nodes to
be localized including devices, objects, people, and vehicles.

3For brevity, the dependence of θ on node positional states will not
explicitly be written in the following.

to the positional state xi. Intra-node measurements are com-

monly obtained by inertial measurement units (IMUs) and

can include magnetic field intensity measurements, Doppler

shift measurements, force measurements, and angular velocity

measurements [151]–[153].

The environmental information µi of agent i can be used

to enforce constraints on positional states. It is commonly

composed of digital maps, dynamic models, and agent profiles

[147]–[153]. A digital map for agent i is related to its position

p
(n)
i or consecutive positions p

(n−1)
i and p

(n)
i ; a dynamic

model for agent i is related to consecutive positional states

x
(n−1)
i and x

(n)
i ; and an agent profile for agent i is related

to its positional state x
(n)
i . In particular, digital maps can be

used to discard positions that do not comply with the map

(e.g., outside of a room or building, or not on a street) [147]–

[149]; dynamic models can be used to express a positional

state conditional to a previous state (e.g., moving within a

certain speed interval and in a favorable direction) [188]–

[191]; and agent profiles can be used to enforce relationships

among positional state components (e.g., to enforce zero lateral

and vertical velocities for vehicles when measured acceleration

and angular velocity fall below given thresholds) [151]–[155].

The performance of localization systems is strongly affected

by the quality of sensing measurements. For example, par-

tial or complete blockage of line-of-sight (LOS) propagation

conditions leads to positively biased range estimates for time-

based ranging [92]. In fact, harsh wireless propagation con-

ditions such as NLOS can result in highly biased estimates.

Those impairments can be mitigated by detecting the wireless

propagation conditions causing the bias. In such scenarios, a

measurement vector is y = [zT, δ]T where z is a measurement

vector related to a feature vector θ and δ ∈ {0, 1} is the NLOS

detector outcome with 0 and 1 corresponding to detecting

LOS and NLOS conditions, respectively.4 Detection errors are

accounted for by means of posterior probabilities of error

ǫNLOS , P {NLOS|δ = 0} =
pNLOS

P0
P {δ = 0|NLOS} (1a)

ǫLOS , P {LOS|δ = 1} =
1− pNLOS

1− P0
P {δ = 1|LOS} (1b)

where pNLOS = P {NLOS} = 1−P {LOS} is the probability

of NLOS condition and P0 = P {δ = 0} = 1− P {δ = 1}.

Classical approaches for identifying channel conditions are

based on hypothesis testing, for example on binary hypothesis

testing between LOS and NLOS conditions. Binary hypothesis

testing can be extended to multiple hypothesis testing to

identify one out of many (more than two) situations, for

example, related to the number of obstacles (e.g., walls and

furniture) that electromagnetic waves must traverse [92]. A key

step in designing the decision rule is choosing the appropriate

set of features extracted from received waveforms. Examples

of features include delay spread, maximum amplitude, and

kurtosis [98]–[101], [128], [129].5

4For generic nodes, times, and features, the corresponding subscripts and
superscripts will be omitted.

5In LOS conditions, the first path in the received signal is typically the
strongest. LOS propagation conditions typically give rise to smaller delay
spread and larger kurtosis compared to NLOS conditions [130].
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(a) Single Value Estimation (b) Direct Positioning (c) Soft Information

Fig. 2. Sketches of localization techniques based on single values, direct positioning, and soft information.

Inference methods can be classified according to how agent

positions are inferred (see Fig. 2) as described in the following.

B. SVE-Based Techniques

Classical techniques based on SVEs determine the position

of agent i ∈ Na in two stages (see Fig. 2(a)) as described in

the following.

(i) Estimation of single values: determine SVEs {θ̂i,j} from

inter- or intra-node measurements {yi,j}j∈N .

(ii) Positional inference: infer the positions pi from SVEs

{θ̂i,j}j∈N using SVE-based algorithms (e.g., range-

based or angle-based algorithms).

The first stage processes each sensing measurement yi,j to

obtain a SVE θ̂i,j , such as DE for range-based localization

[192]–[205], and angle estimate (AE) for direction-based

localization [206]–[209]. The second stage infers the agent

position p from the SVEs θ̂, obtained in the first stage, using

cooperative or non-cooperative algorithms.

An advantage of classical SVE-based techniques is that the

first stage can be accomplished by independent procedures for

each measurement yi,j . This can result in robust techniques

since each measurement can be processed in a different man-

ner (e.g., different procedures for processing measurements

in LOS or NLOS conditions). Another advantage of classical

SVE-based techniques is that the positional inference stage is

simplified as its inputs are single values (e.g., multilateration

localization algorithms). A disadvantage of classical SVE-

based techniques is that the SVEs do not capture all the

positional information contained in sensing measurements

such as received waveform samples.

The localization accuracy of the two-stage approaches can

be improved by:

(i) refining SVEs based on environmental information [92];

and

(ii) discarding SVEs from measurements that are unreliable

for providing agent positional information [130]–[133].

Features extracted from sensing measurements can provide

information useful in deciding whether a measurement is

representative of the agent position or not (i.e., it contains

information about agent position or it is due only to noise and

background clutter) [130]. In cases where sensing measure-

ments are not representative, they can be discarded and the

corresponding SVEs are not used in the location inference.

Other methods based on SVEs detect NLOS propagation

conditions and then mitigate the errors on feature estimates

when NLOS conditions are detected [97]–[101], [128], [129].

NLOS conditions typically introduce a bias β on the expected

value of the feature due to obstructed propagation. Therefore,

the SVE θ̂ for a measurement z, based on the minimum-mean-

square-error (MMSE) criterion, is given by [55]

θ̂ =

{

(1 − ǫNLOS)z + ǫNLOS(z − β) for δ = 0

ǫLOSz + (1− ǫLOS)(z − β) for δ = 1 .
(2)

Note that, when the NLOS detector is highly reliable (ǫNLOS ≈
0 , ǫLOS ≈ 0) the bias due to obstructed propagation is

correctly subtracted to refine the SVE [92]. However, in

the presence of NLOS detector error, SVEs are biased by

−(1 − ǫLOS)β in LOS cases and by (1 − ǫNLOS)β in NLOS

cases. For additive Gaussian noise with standard deviation σ
and ǫNLOS = ǫLOS = ǫ, the mean-square-error (MSE) of the

MMSE estimator is found to be

E

{

|θ̂− θ|2
}

= ǫ(1− ǫ)β2 + σ2 . (3)

This reduces to σ2, which is the MSE in LOS propagation

conditions, when the NLOS detector is totally reliable (ǫ = 0).

C. Direct Positioning Techniques

DP techniques [138]–[146] estimate the position of agent i
by relying on the measurement model

yi,j = g(θi,j) + n (4)
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(a) IEEE 802.15.4 a indoor residential (b) IEEE 802.15.4 a outdoor

Fig. 3. Examples of distance likelihood functions in two IEEE 802.15.4 a channels with NLOS probability pNLOS = 0 (red), 0.5 (blue), and 1 (green).
Empirical likelihoods (continuous lines) and Gaussian likelihoods with empirical mean and variance (dashed lines) are shown.

where the function g(·) is the same for all j ∈ N (see

Fig. 2(b)), θi,j depends on positions of nodes i and j, and

n represents additive white Gaussian noise. The position of

node i ∈ Na is estimated as the maximum likelihood (ML)

or least squares (LS) estimate based on (4). An advantage

of DP techniques is that they can improve the localization

accuracy with respect to SVE-based techniques since more

information, intrinsically contained in sensing measurements,

is used. Another advantage is that, when using a tractable g(·)
together with independent, identically distributed Gaussian

noise for each measurement, DP techniques can result in effi-

cient implementations. A disadvantage of DP is that it is non-

robust in scenarios involving different propagation conditions

(e.g., some measurements obtained in LOS and some other in

NLOS). Another disadvantage is that it provides an inadequate

performance when the knowledge of the function g(·) or the

distribution of the noise n is not sufficiently accurate.

D. SI-Based Techniques

The SI-based techniques [55] directly use sensing measure-

ments yi,j from node j ∈ N to infer the position of node i by

relying on the SI Lyi,j
(θi,j), which varies from measurement

to measurement (see Fig. 2(c)). Such SI can encapsulate all

the positional information in each sensing measurement. Then,

the agent position pi can be inferred from SI {Lyi,j
(·)}j∈N .

An advantage of SI-based localization techniques is that the

SI Ly(θ) can be obtained distributively by N independent

procedures tailored to the specific propagation conditions (e.g.,

either LOS or NLOS). Another advantage is that it can im-

prove the localization accuracy by exploiting all the positional

information in each sensing measurement. A disadvantage of

SI-based localization techniques is that estimating the SI can

be more complicated than estimating SVE.

To better understand the differences in models used for DP

and SI-based techniques, Fig. 3 shows examples of distance

likelihood function Ly(d) for a fixed measurement y, as a

function of d, under different settings. The parameter pNLOS

indicates the probability of NLOS propagation conditions.

Fig. 3(a) and Fig. 3(b) show likelihood functions for a

fixed sensing measurement y given by the maximum value

of the ultrawide-band (UWB) waveforms in IEEE 802.15.4 a

indoor residential and outdoor channels [210], respectively.

The figures compare the empirical likelihood function and

the Gaussian approximation (a model typically used in DP)

using the empirical mean and variance. It can be seen from

Figs. 3(a) and 3(b) that the Gaussian approximation is close

to the empirical one in LOS conditions (pNLOS = 0), whereas

it becomes less accurate as pNLOS increases. In particular, the

maxima of Gaussian approximations and empirical likelihoods

occur at different distances in severe NLOS conditions and in

equiprobable LOS/NLOS conditions. On the other hand, by

attempting to learn the empirical likelihood, SI-based tech-

niques can exploit richer information for better localization

performance compared to SVE-based and DP techniques,

especially in harsh propagation environments.

Remark 1: Note that, while DP considers the same form of

likelihood function regardless of the propagation conditions for

all sensing measurements, SI-based localization utilizes differ-

ent forms of likelihood functions for measurements in different

propagation conditions as depicted in Fig. 2. Observe that SI-

based techniques reduce to DP or SVE-based techniques in

specific cases. If yi,j = θi,j+n with n Gaussian noise, then the

three approaches are equivalent. If the likelihood Lyi,j
(θi,j)

is proportional to a Gaussian PDF, then the approach based on

SI is equivalent to that based on SVE. If the PDF f(θi,j|yi,j)
is proportional to fn(yi,j−g(θi,j)), where fn(·) is the PDF of

a zero-mean Gaussian random vector, then the approach based

on SI is equivalent to DP.

III. SOFT INFORMATION FOR LOCALIZATION

SI is composed of soft feature information (SFI) and soft

context information (SCI): SFI is the ensemble of positional

information associated with measurements and SCI is the

ensemble of environmental information associated with con-

textual data. SI-based localization infers agent positions by

exploiting both SFI and SCI.
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(a) Example scenario. (b) SRI example. (c) SAI example. (d) SCI example.

Fig. 4. Examples of scenario and associated SI: the area is 120 meters by 120 meters; for the associated SI, darker colors refer to larger values.

A. Soft Feature Information

SFI for a measurement y is a function of the feature vector

θ given by6

Ly(θ) ∝ fy|θ(y|θ) (5a)

Ly(θ) ∝ fy(y; θ) (5b)

where (5a) and (5b) display the Bayesian and non-Bayesian

formulation, respectively; in the latter case, SFI coincides with

the likelihood function of feature vector θ. Different types

of measurements give rise to different SFI. For instance, the

SFI associated with range-related, angle-related, and velocity-

related measurements is respectively given by Ly(d), Ly(α),
and Ly(v).

Refer to the example scenario in Fig. 4(a) with two anchors

(red annulus) and an agent (blue circle). The anchor in the

bottom-left collects range-related measurements, from which

the SRI of Fig. 4(b) is obtained. The anchor in the top-right

collects angle-related measurements, from which the SAI of

Fig. 4(c) is obtained. Thus, the SFI provides richer information

than its SVE θ̂ by quantifying the odds of different θ values.

The use of SFI enables soft-decision localization instead of

classical hard-decision localization.

B. Soft Context Information

SCI is a function of the feature vector θ provided by

contextual data µ. Different types of contextual data, such

as digital maps, dynamic models, and agent profiles, give rise

to different kinds of SCI as described below.

The SCI provided by a map can be incorporated as a prior

distribution of the position [147] (e.g., certain positions in the

map are very unlikely) or as a conditional distribution of the

position at time step n given the position at time step n − 1
(e.g., mobility in a corridor is more likely along the corridor

then in a perpendicular direction). In the former case, the SCI

is proportional to a prior distribution that depends on µ as

Φµ(p) ∝ fp(p;µ) (6)

while, in the latter case, it is proportional to a conditional PDF

that depends on µ as

Φµ(p
(n),p(n−1)) ∝ fp(n)|p(n−1)(p(n)|p(n−1);µ) . (7)

6The SFI and SCI are defined up to a proportionality constant, which is
sufficient for SI-based localization.

SCI provided by a dynamic model can be incorporated

as a conditional distribution of the positional state at time

step n, given the positional state at time step n − 1 (e.g.,

consecutive positions close to each other are highly likely

for an agent with low speed; similar considerations apply to

consecutive velocities for cars in a highway) [150]. Therefore,

SCI associated with a dynamic model µ is proportional to a

conditional PDF depending on µ

Φµ(x
(n),x(n−1)) ∝ fx(n)|x(n−1)(x(n)|x(n−1);µ) . (8)

A widely used dynamic model is that based on a linearization

of the positional state evolution via Taylor expansion and on

Gaussian noise, leading to

Φµ(x
(n),x(n−1)) ∝ ϕ(x(n);Fx(n−1),Σd) (9)

where F is known as the transition matrix and Σd is the

covariance of the process noise, both depending on µ.

SCI provided by an agent profile can be incorporated as

a distribution of several components in the positional state.

For instance, if the agent is a pedestrian carrying the IMU

on a foot, low values of acceleration and angular velocity

correspond to high likelihood for the low values of velocity

[153]. Therefore, the SCI provided by such agent profile µ is

proportional to a joint PDF of acceleration a, angular velocity

ω, and velocity v as

Φµ(a,ω,v) ∝ fa,ω,v(a,ω,v;µ) . (10)

For example, if the agent is a car, misalignments of velocity

vector and the direction of the car are highly unlikely. There-

fore, SCI provided by such agent profile µ is proportional to

a PDF of the angle γ between velocity v and heading h as

Φµ(γ) ∝ fγ(γ;µ) . (11)

Refer to the example scenario in Fig. 4(a) with SCI given by

the environment map depicted in Fig. 4(d). The SCI provides

additional information on positional states, thus improving the

performance of both soft-decision localization and classical

hard-decision localization.

C. Data Fusion Based on Soft Information

The exploitation of SI for localization also enables the

efficient fusion of sensing measurements and contextual data

via multiplication of the corresponding SFI and SCI.
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Sensing measurements gathered with different modalities

can be fused efficiently by multiplying their corresponding SFI

as long as the different measurement vectors are conditionally

independent given the positional features. Such conditional

independence is generally satisfied as long as the measurement

vectors are obtained from different sensors. In particular, for

measurement set Y = {y(k)}KF

k=1 related to the feature set

Θ = {θ(k)}KF

k=1, with each measurement y(k) related to feature

θ(k) for k = 1, 2, . . . ,KF, SFI can be written as

LY(Θ) =

KF∏

k=1

Ly(k)(θ(k)) . (12)

D. Soft Information in Harsh Propagation Environments

SI can encapsulate all the positional information inherent

in the sensing measurements obtained in harsh propagation

environments even with errors on the detection of propagation

conditions. Consider a measurement vector y = [zT, δ]T

where z is a measurement vector related to a feature vector

θ and δ is the NLOS detector outcome as described in

Section II-A. Assuming a constant reference prior for θ [211],

the SFI of y is given by [55]

Ly(θ) ∝
{
(1− ǫNLOS)LzLOS

(θ) + ǫNLOSLzNLOS
(θ) for δ = 0

ǫLOSLzLOS
(θ) + (1− ǫLOS)LzNLOS

(θ) for δ = 1
(13)

where LzLOS
(·) and LzNLOS

(·) denote the SFI for measure-

ments collected in LOS and NLOS conditions, respectively.

For instance, consider a one-dimensional measurement

model

z = θ+ n (14)

where n represents the Gaussian noise with PDF

fn(n) =

{
ϕ(n; 0, σ2

LOS) for LOS cases

ϕ(n;β, σ2
NLOS) for NLOS cases

(15)

in which β denotes the bias due to NLOS propagation. In such

a case,

LzLOS
(θ) = ϕ(θ; z, σ2

LOS) (16a)

LzNLOS
(θ) = ϕ(θ; z − β, σ2

NLOS) . (16b)

When the detector is highly reliable (ǫNLOS ≈ 0 , ǫLOS ≈ 0),

SFI is concentrated around the true feature, i.e., LzLOS
(θ)

for LOS and LzNLOS
(θ) for NLOS propagation conditions.

Moreover, SI-based techniques are more robust to detector

errors than classical techniques, as the SFI in (13) accounts

for the error probability of the detector and considers both the

true and biased features.

IV. SI-BASED LOCALIZATION

An SI-based localization system operates according to the

following steps:

(i) acquisition of feature-related measurements and contex-

tual data;

(ii) characterization of the SFI and SCI provided by each

measurement and contextual data; and

(iii) position inference by exploiting SFI and SCI.

To illustrate the benefits of SI for localization, we now

describe how SFI and SCI can be utilized to infer the positions

of the agents {pi}i∈Na from measurements y and contextual

data µ.7 Recall that the feature vector θ inherent in y is related

to the node positions p. In the following, we describe:

• localization without cooperation, where sensing measure-

ments and contextual data are related only to one agent

at a single time instant;

• network localization with spatial cooperation among

agents, where sensing measurements and contextual data

are related to neighboring agents at a single time instant;

• navigation with temporal cooperation, where sensing

measurements and contextual data are related only to one

agent at consecutive time instants; and

• network navigation with spatiotemporal cooperation,

where sensing measurements and contextual data are

related to neighboring agents at consecutive time instants.

A. SI-Based Localization without Cooperation

In non-cooperative localization systems, the positions of the

agents are inferred based on measurements with respect to

the anchors and contextual data. By modeling the positions of

agents as unknown parameters, the ML estimate of the position

of agent i ∈ Na is [55]

p̂i = argmax
pi

f({yi,j}j∈Nb
|pi)

= argmax
pi

∏

j∈Nb

Lyi,j
(θi,j) . (17)

If all the SFI in (17) are Gaussian with mean θi,j , then the ML

estimator leads to the LS estimator and to the weighted least

squares (WLS) estimator, respectively, for cases with same

variance and different variances for j ∈ Nb.

By modeling the positions of agents as RVs, contextual data

can be incorporated directly. The position of agent i ∈ Na

can be inferred from the posterior distribution. In particular,

MMSE and the maximum a posteriori (MAP) estimates are

given by the mean and mode of the posterior distribution

respectively as [55]

p̂i =

∫

pi f(pi|{yi,j}j∈Nb
;µi) dpi (18a)

p̂i = argmax
pi

f(pi|{yi,j}j∈Nb
;µi) (18b)

where for the posterior distribution

f(pi|{yi,j}j∈Nb
;µi) ∝ Φµi

(pi)
∏

j∈Nb

Lyi,j
(θi,j) . (19)

The contextual data µi may depend on the previously esti-

mated position of node i (e.g., a map-aided 3D localization in

which the map for node i depends on whether the previously

7For notational convenience, consider that, for each pair of nodes i and j,
there is a measurement vector yi,j or a contextual data vector µi available.
The expressions with unavailable measurements or data for some node pairs
can be obtained by removing the terms corresponding to those pairs.
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estimated position for node i was on a certain floor). Note that

the MAP estimator in (18b) coincides with the ML estimator

when contextual data are not available (i.e., Φµi
(pi) constant

with respect to pi).

B. SI-Based Localization with Spatial Cooperation

In network localization systems [1], the positions of the

agents are inferred based on measurements with respect to

neighboring agents, in addition to those with respect to the

anchors, and to contextual data. By modeling the positions

of agents as unknown parameters, the ML estimate of the

positions of all the agents is [55]

p̂Na = argmax
pNa

f({yi,j}i∈Na
j∈Na∪Nb

|pNa)

= argmax
pNa

∏

i∈Na
j∈Na∪Nb

Lyi,j
(θi,j) . (20)

If all the SFI used in (20) are Gaussian with mean θi,j , then

the ML estimate leads to LS or WLS estimates as in the non-

cooperative case.

By modeling the positions of agents as RVs, contextual

data can be incorporated directly. The MMSE and the MAP

estimates of all agent positions can be obtained analogously

to (18) using the posterior distribution

f(pNa |{yi,j}i∈Na
j∈Na∪Nb

;µNa)

∝
∏

i∈Na

[

Φµi
(pi)

∏

j∈Na∪Nb

Lyi,j
(θi,j)

]

.

(21)

Note that the MAP estimate coincides with ML estimate when

contextual data are not available.

C. SI-Based Navigation with Temporal Cooperation

Navigation systems [1] infer the positions of the agents at

different time instants based on inter-node measurements from

the anchors, intra-node measurements, and contextual data.

When positional states and measurements can be described

by a hidden Markov model (HMM) over time steps from

1 to n + 1, the posterior distribution of positional state for

each agent can be obtained sequentially [53]. In particular,

f(x
(n+1)
i |Y

(1:n+1)
i ;µi) can be obtained by performing a pre-

diction step using a dynamic model

f(x
(n+1)
i |Y

(1:n)
i ;µi) ∝

∫

Φµi
(x

(n+1)
i ,x

(n)
i )f(x

(n)
i |Y

(1:n)
i ;µi) dx

(n)
i (22)

followed by an update step using a new measurement

f(x
(n+1)
i |Y

(1:n+1)
i ;µi) ∝

∏

j∈Nb∪{i}

L
y
(n+1)
i,j

(θ
(n+1)
i,j ) f(x

(n+1)
i |Y

(1:n)
i ;µi) (23)

where Y
(1:k)
i = {y

(1:k)
i,j }j∈Nb∪{i}.8

8Notation y
(1:k)
i,j denotes the set {y

(h)
i,j }kh=1.

If both the SFI and SCI are Gaussian and linear with respect

to positional states, then the updates in (23) can be performed

in a closed form like those in Kalman filters (KFs) [212]–

[216]. Otherwise, the implementation of (23) has to resort to

approximations accounting for the complexity vs. accuracy

tradeoff. Examples of such approximations are those used

in extended Kalman filters (EKFs) [217], unscented Kalman

filters (UKFs) [218], and belief condensation filters (BCFs)

[53].

D. SI-Based Navigation with Spatiotemporal Cooperation

Network navigation systems [1] infer the positions of

the agents at different time instants based on inter-node

measurements with respect to both anchors and neighboring

agents, intra-node measurements, and contextual data. When

positional states and measurements can be described by a

HMM over time steps from 1 to n + 1, the joint posterior

distribution of positional states can be obtained sequentially

[40]. In particular, f(x
(n+1)
Na

|Y(1:n+1);µNa) can be obtained

by performing a prediction step using a dynamic model

f(x
(n+1)
Na

|Y(1:n);µNa) ∝
∫

ΦµNa
(x

(n+1)
Na

,x
(n)
Na

) f(x
(n)
Na

|Y(1:n);µNa) dx
(n)
Na

(24)

followed by an update step using a new measurement

f(x
(n+1)
Na

|Y(1:n+1);µNa) ∝
∏

i∈Na
j∈Na∪Nb

L
y
(n+1)
i,j

(θ
(n+1)
i,j ) f(x

(n+1)
Na

|Y(1:n);µNa) (25)

where Y(1:k) = {y
(1:k)
i,j }i∈Na, j∈Na∪Nb

.

If the movement of each agent is independent of any other

agent’s movement, then

ΦµNa
(x

(n+1)
Na

,x
(n)
Na

) =
∏

i∈Na

Φµi
(x

(n+1)
i ,x

(n)
i ) . (26)

If both the SFI and SCI are Gaussian and linear with respect

to positional states, then the updates in (25) can be performed

in closed form as those in KFs [212]–[216]. Otherwise, the

implementation of (25) has to resort to approximations ac-

counting for the complexity vs. accuracy trade-off. Examples

of such approximations are those used in EKFs [217], UKFs

[218], and BCFs [53].

E. SI-Based vs. SVE-Based Localization

SI-based localization is a new approach that exploits richer

information than classical SVE-based localization. Consider,

for instance, range and angle inter-node measurements: the

SI-based localization relies on SRI and SAI, whereas SVE

based localization relies on range and angle estimates. Refer

to the examples of SFI and SCI in Fig. 4. Fusion of all

available SFI and SCI provides enhanced SI (red contoured

areas in Fig. 5). In particular, Fig. 5(a) shows the fusion of

the SFI corresponding to the SRI in Fig. 4(b) and to the SAI in

Fig. 4(c). Fig. 5(b) shows the enhanced SI obtained by fusion
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(b) Fusion of SRI, SAI, and SCI.

Fig. 5. Example of data fusion for enhanced SI (red contoured area): the coordinates on the axes are in meters.
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(a) Localization based on SVEs.
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(b) Localization based on SI.

Fig. 6. Example of SVEs vs. SI-based localization: the coordinates on the axes are in meters.

of the SRI in Fig. 4(b), the SAI in Fig. 4(c), and the SCI in

Fig. 4(d).

Fig. 6 shows an example of comparison between the clas-

sical and the new approach. In particular, refer to the scenario

depicted in Fig. 4(a) where the bottom-left anchor provides

range measurements to the target, whereas the top-right anchor

provides angle measurements. Due to the harsh propagation

environment, the angle measurements are affected by a bias,

which results in an erroneous AE for SVE-based localization

while it results in bimodal SAI for SI-based localization.

These two situations are respectively depicted in Fig. 6(a) and

Fig. 6(b). In particular, the cross in Fig. 6(a) represents the

wrongly estimated position using the LS algorithm with DE

and AE as inputs, whereas the dark red area in Fig. 6(b) shows

that the maximum of the positional feature likelihood is near

the true position. This simple example illustrates how SI on

θ provides richer information than that offered by its SVE θ̂,

thus improving the localization accuracy.

F. Distributed Implementation

Distributed implementation is particularly important in sce-

narios with networks of nodes having limited capabilities such

as those in LoT. Cooperation in space and time can improve

the localization accuracy. However, the use of measurements

related to several agents causes information coupling [219],

[220], resulting in highly interrelated inference for different

agents. This fact is reflected in the concatenated arguments in

the posterior distribution in (21) and (25), compared to that in

(19) and (23). The optimal implementation of noncooperative

approaches described in (19) and (23) can be performed

in a distributed fashion since each agent can determine its

own posterior distribution. On the other hand, the optimal

implementation of cooperative approaches described in (21)

and (25) requires a centralized implementation to determine

the joint posterior distribution of all the agents.

Techniques have been developed for distributed implemen-

tation by approximating the joint posterior distribution via
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Fig. 7. Example of distributed implementation: (left) network factor graph with message passing involving node 1; and (right) computation based on different
SFI and SCI inside node 1.

marginalization. For example, the loopy belief propagation

technique approximates the marginal posterior distribution of

each agent by disregarding the cycles in the graph describing

the network connectivity [49]. Specifically, an approximate

marginal posterior f̃(xi|Y̌) for the positional state of agent

i, based on measurement set Y̌ = {Y, y̌i,j}, can be obtained

sequentially from f̃(xi|Y) when a new measurement y̌i,j is

available, as

f̃(xi|Y̌) ∝ f̃(xi|Y)mj,i (27)

where

mj,i ∝

∫

f̃(xj |Y)Ly̌i,j
(θi,j)dxj (28)

is usually referred to as message from node j to node i. Equa-

tion (27) forms the basis for developing network messaging

algorithms.

Fig. 7 shows an example of a network factor graph with

messaging for distributed implementation of network localiza-

tion and navigation (NLN). In particular, messages entering to

and exiting from node 1 are highlighted, and the computation

blocks inside node 1 are depicted.

V. SOFT INFORMATION AND PERFORMANCE LIMITS

Fundamental limits provide performance benchmarks,

which are essential for network design. In [37]–[41], a perfor-

mance measure called squared position error bound has been

derived as a function of the Fisher information matrix (FIM).

In the following, we will derive the FIM as a function of SFI

and SCI.

Let xNt

Na
be a random vector composed of positional states,

for Na agents at Nt time instants, in which the (i+(n−1)Na)-

th element is x
(n)
i . The positional state is inferred from inter-

node measurements y
(n)
i,j related to x

(n)
i − x

(n)
j , intra-node

measurements y
(n)
i,i related to x

(n)
i , and a dynamic model µ

related to x
(n)
i − x

(m)
i , where i ∈ Na, j ∈ Na ∪ Nb with

j 6= i, and n,m ∈ Nt.

According to the Fisher information inequality, an estimator

x̂
(n)
i of positional state x

(n)
i satisfies

E

{

‖x̂
(n)
i − x

(n)
i ‖2

}

≥ tr
{

[J−1]
(n)
i

}

(29)

where [J−1]
(n)
i denotes the (i+(n−1)Na)-th D×D diagonal

block in the inverse of the Bayesian FIM [221] for positional

states xNt

Na
. The FIM for xNt

Na
is given by [40]

J = Jp + Js + Jt (30)

where Jp is the FIM corresponding to prior knowledge of

xNt

Na
; Js is the FIM consisting of two terms: the first term

corresponds to the inter-node measurements (with anchors)

and the second corresponds to the spatial cooperation (with

other agents); and Jt is the FIM consisting of two terms: the

first term corresponds to the intra-node measurements (at a

particular time step) and the second corresponds to temporal

cooperation (between different time steps). In particular,

Js =

inter-node meas. with anchors
︷ ︸︸ ︷
∑

i ∈ Na

n ∈ Nt

G
(n,n)
i,i ⊗

∑

j∈Nb

K
(n,n)
i,j +

spatial coop. with agents
︷ ︸︸ ︷
∑

i, j ∈ Na : i < j

n ∈ Nt

G
(n,n)
i,j ⊗K

(n,n)
i,j

(31a)

Jt =

intra-node meas. at one time step
︷ ︸︸ ︷
∑

i ∈ Na

n ∈ Nt

G
(n,n)
i,i ⊗K

(n,n)
i,i +

temporal coop. at different time steps
︷ ︸︸ ︷
∑

i ∈ Na

n,m ∈ Nt : m < n

G
(n,m)
i,i ⊗K

(n,m)
i,i

(31b)

where

G
(n,m)
i,j =

{
(ek − el)(ek − el)

T for (i, n) 6= (j,m)
ek(ek)

T for (i, n) = (j,m)
(32)

in which k = (i+ (n− 1)Na), l = (j + (m− 1)Na), and ek
is an NaNt-dimensional vector with all zeros except a one at

the k-th element. The matrices K’s in (31) will be described

in the following.

Define

sf
(
y; θ1, θ2, θ3

)
,
∂ lnLy(θ)

∂θ1

∂ lnLy(θ)

∂θT
2

sc
(
µ; θ1, θ2, θ3

)
,
∂ lnΦµ(θ)

∂θ1

∂ lnΦµ(θ)

∂θT
2
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for soft features and soft context, respectively, where the

parameter vector θ is a function of θ1, θ2, and the nuisance pa-

rameter vector θ3. It is important to note that sf
(
y; θ1, θ2, θ3

)

is a function of Ly(θ) that depends on the type of mea-

surement y. Similarly, sc
(
µ; θ1, θ2, θ3

)
is a function of

Φµ(θ) that depends on the type of contextual data µ. The

matrix K
(n,m)
i,j ∈ R

D×D accounts for the pair-wise positional

information related to agent i ∈ Na at time step n ∈ Nt and

node j ∈ Na ∪ Nb at time step m ∈ Nt as elaborated below.

• The K
(n,n)
i,i accounts for the information that agent i

obtains at time step n from intra-node measurements

y
(n)
i,i . It can be written as

K
(n,n)
i,i = E

{

sf
(
y
(n)
i,i ; x

(n)
i , x

(n)
i , ∅

)}

. (33)

• The K
(n,n)
i,j for j ∈ Nb accounts for the information

that agent i obtains at time step n from inter-node

measurements y
(n)
i,j with respect to anchor j. It can be

written as

K
(n,n)
i,j = E

{

sf
(
y
(n)
i,j ; x

(n)
i , x

(n)
i , ∅

)}

. (34)

• The K
(n,n)
i,j for j ∈ Na\{i} accounts for the information

that agent i obtains at time step n from inter-node

measurements y
(n)
i,j with respect to neighboring agent j

(i.e., spatial cooperation). It can be written as

K
(n,n)
i,j = E

{

−sf
(
y
(n)
i,j ; x

(n)
i , x

(n)
j , ∅

)}

. (35)

• The K
(n,m)
i,i accounts for the information that agent i

obtains at time step n from its positional state at previous

time step m and the dynamic model µ (i.e., temporal

cooperation).9 It can be written as

K
(n,m)
i,i = E

{

−sc
(
µ; x

(n)
i , x

(m)
i , ∅

)}

. (36)

Consider a network with Na = 3 agents and Nt = 2
time steps. The FIM can be written as in (30), in which Js

(corresponding to spatial measurements) and Jt (correspond-

ing to temporal measurements) are given by (37) and (38),

respectively, at the top of the next two pages. In (37), the

first term represents the information coming from inter-node

measurements with anchors, while the second term represents

the information coming from spatial cooperation with other

agents. In (38), the first term represents the information

inherent in intra-node measurements at a particular time step,

while the second term represents the information coming from

temporal cooperation between different time steps.

A. FIM from SI Functions

The building blocks K
(n,n)
i,j of the FIM for some special

cases of SFI are detailed here.

Proposition 1: Consider two-dimensional node velocity v
(n)
i

and node position p
(n)
i and define the direction matrix (DM)

Jdm(φ) ,

[
cos2(φ) cos(φ) sin(φ)

cos(φ) sin(φ) sin2(φ)

]

. (39)

9Commonly, dynamic models provide information related to two consecu-

tive time steps, and in those cases K
(n,m)
i,i = 0 for m < n− 1.

The blocks K
(n,n)
i,j related to speed ‖v

(n)
i ‖, range d

(n)
i,j , and

angle α
(n)
i,j inherent in measurements involving nodes i and j

at time instant n are provided in the following.

• For intra-node measurements related to the speed,

K
(n,n)
i,i = eive

T
iv
⊗ E

v
(n)
i

{λsJs} (40)

where iv is the velocity component index in the state

vector x
(n)
i . In (40), λs is the speed information intensity

(SII) [220] and Js is the DM for speed measurements

given by

λs = E
y
(n)
i,i |v

(n)
i

{

sf
(
y
(n)
i,i ; ‖v

(n)
i ‖, ‖v

(n)
i ‖, ∅

)}

(41a)

Js = Jdm(αv) (41b)

where αv is the angle between vector v
(n)
i and the

horizontal axis.

• For inter-node measurements related to ranges,

K
(n,n)
i,j = eipe

T
ip
⊗ E

p
(n)
i , p

(n)
j

{λrJr} (42)

where ip is the position component index in the state

vector x
(n)
i . In (42), λr is the range information intensity

(RII) [38] and Jr is the DM for range measurements given

by

λr = E
y
(n)
i,j |p

(n)
i , p

(n)
j

{

sf
(
y
(n)
i,j ; d

(n)
i,j , d

(n)
i,j , ∅

)}

(43a)

Jr = Jdm(α
(n)
i,j ) (43b)

where d
(n)
i,j is the Euclidean distance between i-th and j-

th nodes, and α
(n)
i,j is the angle between vector p

(n)
j −p

(n)
i

and the horizontal axis.

• Finally, for inter-node measurements related to angles,

K
(n,n)
i,j = eipe

T
ip
⊗ E

p
(n)
i , p

(n)
j

{λaJa} (44)

where ip is the position component index in the state

vector x
(n)
i . In (44), λa is the angle information intensity

(AII) [41] and Ja is the DM for angle measurements given

by

λa =
1

(d
(n)
i,j )

2
E
y
(n)
i,j |p

(n)
i , p

(n)
j

{

sf
(
y
(n)
i,j ;α

(n)
i,j ,α

(n)
i,j , ∅

)}

(45a)

Ja = Jdm(α
(n)
i,j +

π

2
) . (45b)

Proof: In what follows, we provide the proof for the case

of intra-node measurements y
(n)
i,i related to speed ‖v

(n)
i ‖; the

other two cases can be obtained analogously. From (33),

K
(n,n)
i,i = E

y
(n)
i,i ,v

(n)
i

{

sf
(
y
(n)
i,i ; x

(n)
i , x

(n)
i , ∅

)}

which results in

K
(n,n)
i,i = eive

T
iv
⊗ E

y
(n)
i,i ,v

(n)
i

{

sf
(
y
(n)
i,i ; v

(n)
i , v

(n)
i , ∅

)}

(46)
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Js =































∑

j∈Nb

K
(1,1)
1,j 0 0 0 0 0

0

∑

j∈Nb

K
(1,1)
2,j 0 0 0 0

0 0

∑

j∈Nb

K
(1,1)
3,j 0 0 0

0 0 0

∑

j∈Nb

K
(2,2)
1,j 0 0

0 0 0 0

∑

j∈Nb

K
(2,2)
2,j 0

0 0 0 0 0

∑

j∈Nb

K
(2,2)
3,j































+
































∑

j∈Na\{1}

K
(1,1)
1,j −K

(1,1)
1,2 −K

(1,1)
1,3 0 0 0

−K
(1,1)
1,2

∑

j∈Na\{2}

K
(1,1)
2,j −K

(1,1)
2,3 0 0 0

−K
(1,1)
1,3 −K

(1,1)
2,3

∑

j∈Na\{3}

K
(1,1)
3,j 0 0 0

0 0 0

∑

j∈Na\{1}

K
(2,2)
1,j −K

(2,2)
1,2 −K

(2,2)
1,3

0 0 0 −K
(2,2)
1,2

∑

j∈Na\{2}

K
(2,2)
2,j −K

(2,2)
2,3

0 0 0 −K
(2,2)
1,3 −K

(2,2)
2,3

∑

j∈Na\{3}

K
(2,2)
3,j
































(37)

because y
(n)
i,i are measurements related to velocity. By using

the chain rule for derivatives,

sf
(
y
(n)
i,i ;v

(n)
i ,v

(n)
i , ∅

)
= sf

(
y
(n)
i,i ; ‖v

(n)
i ‖, ‖v

(n)
i ‖, ∅

)

×
∂‖v

(n)
i ‖

∂v
(n)
i

(

∂‖v
(n)
i ‖

∂v
(n)
i

)T

(47)

since y
(n)
i,i are measurements related to speed.

Performing the expectations in (46) using the law of iterated

expectations as E
y
(n)
i,i ,v

(n)
i

{·} = E
v
(n)
i

{
E
y
(n)
i,i |v

(n)
i

{·}
}

, we obtain

(40) in which λs in (41a) and Js in (41b) result respectively

from the expectation of the first and second term in the right

side of (47).

Remark 2: Proposition 1 indicates that measurements related

to the speed provide information with intensity λs in the

direction of v
(n)
i , since Js has only one eigenvector associ-

ated with non-zero eigenvalue in such direction. Similarly,

measurements related to the range provide information with

intensity λr in the direction of p
(n)
j − p

(n)
i , since Jr has only

one eigenvector associated with non-zero eigenvalue in such

direction. Finally, measurements related to the angle provide

information with intensity λa in the direction orthogonal to

p
(n)
j −p

(n)
i , since Ja has only one eigenvector associated with

non-zero eigenvalue in such direction.

B. FIM in Harsh Propagation Environments

This section provides the SFI from inter-node measure-

ments when a detector for NLOS propagation conditions is

employed, as described in Sections II-A and III-D.

Proposition 2: Consider the inter-node measurement

y
(n,n)
i,j = [zT, δ]T where z is a measurement related to a

feature θ and δ is the NLOS detector outcome as described

in Section II-A. When Ly(θ) follows (13), and z follows the

measurement model in (14) and (15) with σLOS = σNLOS =
σ, and ǫLOS = ǫNLOS = ǫ, then the FIM block corresponding

to y
(n,n)
i,j is given by

K
(n,n)
i,j = eipe

T
ip
⊗ Eθ{λθJθ} (48)
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Jt =























K
(1,1)
1,1 0 0 0 0 0

0 K
(1,1)
2,2 0 0 0 0

0 0 K
(1,1)
3,3 0 0 0

0 0 0 K
(2,2)
1,1 0 0

0 0 0 0 K
(2,2)
2,2 0

0 0 0 0 0 K
(2,2)
3,3























+























K
(2,1)
1,1 0 0 −K

(2,1)
1,1 0 0

0 K
(2,1)
2,2 0 0 −K

(2,1)
2,2 0

0 0 K
(2,1)
3,3 0 0 −K

(2,1)
3,3

−K
(2,1)
1,1 0 0 K

(2,1)
1,1 0 0

0 −K
(2,1)
2,2 0 0 K

(2,1)
2,2 0

0 0 −K
(2,1)
3,3 0 0 K

(2,1)
3,3























(38)

where λθ and Jθ have instantiations

λθ =
1

σ4

[
Ez|θ

{
(z− θ − χ0)

2|δ = 0
}
P {δ = 0}

+Ez|θ

{
(z− θ − χ1)

2|δ = 1
}
P {δ = 1}

]
(49a)

Jθ =

(

∂ θ

∂p
(n)
i

)(

∂ θ

∂p
(n)
i

)T

(49b)

as well as χ0 and χ1 have instantiations

χ0 =
β ǫ ϕ(θ; z − β, σ2)

(1− ǫ)ϕ(θ; z, σ2) + ǫ ϕ(θ; z − β, σ2)
(50a)

χ1 =
β (1− ǫ)ϕ(θ; z − β, σ2)

ǫ ϕ(θ; z, σ2) + (1− ǫ)ϕ(θ; z − β, σ2)
. (50b)

Proof: Equation (48) is obtained from Proposition 1 and

the fact that

∂ lnL
y
(n)
i,j

(θ)

∂θ
=

{
1
σ2 (z − θ − χ0) for δ = 0
1
σ2 (z − θ − χ1) for δ = 1 .

Remark 3: For ǫ = 0 and P {δ = 0} = 1 (LOS scenarios

with totally reliable NLOS detector), the term χ0 = 0 and

(48) results in the known expression for LOS scenarios (i.e.,

λ = 1/σ2) [38]. Moreover, the two Gaussian PDFs ϕ(·) in

(50a) and (50b) have negligible overlap for β ≫ σ, as well

as χ0 ≈ χ1 ≈ 0 (resp. χ0 ≈ χ1 ≈ β) when z has mean θ
(resp. θ + β) and standard deviation σ. Therefore, for β ≫ σ

(48) approximates the K
(n,n)
i,j for LOS scenarios with totally

reliable NLOS detector (i.e., λ ≈ 1/σ2), independently of the

detector reliability ǫ.

VI. LEARNING SOFT INFORMATION

Using a Bayesian formulation, the SFI can be determined

based on a joint distribution function, referred to as generative

model, of the positional feature together with measurements

and contextual data. For instance, the SFI inherent in a

measurement vector y related to feature θ can be determined

as Ly(θ) ∝ fy,θ(y, θ), in the absence of prior information

on θ, or as Ly(θ) = fy,θ(y, θ)/fθ(θ), in the presence of

prior information on θ [55]. Analogously, SCI inherent in

contextual data µ related to acceleration a, angular velocity ω,

and velocity v can be obtained as Φµ(a,ω,v) ∝ f(a,ω,v;µ)
[153].

In simple scenarios, the generative model can be accurately

determined based on the relation between measurements,

positional features, and contextual data. In more complex

scenarios, finding an accurate generative model is challenging

and it is preferable to learn it using measurements, positional

features, and contextual data by a process commonly known

as density estimation [222]–[224]. In particular, the SI can be

determined by a two-phase algorithm:

(i) off-line phase where the approximate of the generative

model is determined from measurements, positional fea-

tures, and context data; and

(ii) on-line phase where the SFI and SCI for each new

measurement are determined based on the generative

model learned in the previous phase.
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Algorithm 1 – SFI estimation with dimensionality reduction

Off-line Phase

1: Acquire training data {y(k), θ(k)}k∈Ntrain through a mea-

surement campaign realized in time steps indexed by

Ntrain.

2: Perform dimensionality reduction of training data:

{y(k), θ(k)}k∈Ntrain → {ψ(y(k)), θ(k)}k∈Ntrain .

3: Determine an approximate generative model f̃(ψ(y), θ).
4: Store the approximate generative model.

On-line Phase

1: for k ≥ 0 do

2: Acquire a new measurement vector y(k) at time tk .

3: Perform dimensionality reduction of the new measurement

vector:

y(k) → ψ(y(k)) .

4: Determine the SFI of the reduced measurement vector

ψ(y(k)) using the stored generative model as

Lψ(y(k))(θ) = f̃(ψ(y(k)), θ) .

5: end for

The off-line phase determines generative models for envi-

ronments similar to (but not necessarily the same as) those

where the localization network will operate (i.e., where the

on-line phase is performed). The exploitation of SFI and

SCI has a complexity that depends on the generative model

learned during the off-line phase; therefore, constraints on

the computation and communication capabilities of nodes call

for tractable and parsimonious generative models. Techniques

such as belief condensation [53], which approximate com-

plicated distributions by combination of simple ones, can

enable the use of tractable generative models for efficient

implementation of SI-based localization.

A. SI from Reduced Data Set

Determining the generative model from training data can

be difficult, especially for measurement vectors with high

dimensionality (e.g., waveform samples with fine time-delay

resolution) [55]. Therefore, dimensionality reduction is crucial

for efficient learning of SFI. Such a dimensionality reduction

step can be described as a function ψ(·) that transforms a

measurement vector y ∈ R
M into ψ(y) ∈ R

M ′

with M ′

significantly smaller than M . The dimensionality reduction

may not necessarily involve SVEs, while SVEs can be thought

of as a specific type of dimensionality reduction. While the

proposed SI-based approach can be used for any type of

measurement, the dimensionality reduction and generative

model learning techniques are technology-dependent.

An algorithm for estimating the SFI with dimensionality

reduction is composed of two phases (see Algorithm 1):

an off-line phase in which dimensionality reduction ψ(·) is

performed10 and generative models are determined based on

training measurements; and an on-line phase in which the SFI

10Clearly, ψ(y(k)) = y(k) in the absence of dimensionality reduction.

Energy Detection

ESD

Search g(·)

TSD

Lb(·)

τ̂

L ı̂(·)

r(t) b ı̂

A/D

Ts

QID

Td

AVG

Np

r(t) b

fi(i|·)

fbi(b|·)

ri,p,s

(a) Energy detection-based range information: use of b for obtaining the DE
and the SRI based on energy-based soft-decision (ESD) and threshold-based
soft-decision (TSD).

0 5 10 15 20 25

1× 103

2× 103

3× 103

4× 103

i

b i
τ ∈ T3 τ ∈ T6 τ ∈ T13

(b) Examples of bin outcomes for different wireless conditions: τ ∈ Tn
indicates TOA τ within the n-th dwell time.

Fig. 8. Range information from energy detection.

is learned from the generative model and each measurement

collected during operation.

Various techniques can be used for performing dimensional-

ity reduction and determining the generative model. Unsuper-

vised machine learning techniques provide ways to learn SFI.

In particular, SRI learning is addressed in [55], where tech-

niques for dimensionality reduction based on physical features,

principal component analysis (PCA), and Laplacian eigen-

map are introduced, as well as techniques for determining

generative models based on Fisher-Wald setting and kernel

density estimation are presented.

Energy detection-based techniques are often used to deter-

mine information on the TOA τ of the received signal, which

is related to the distance between transmitter and receiver

[115]. In such a case, the SRI can be obtained based on

the distribution function of the Nbin energy samples (bins)

at the energy detector output (see Fig. 8). In [51], a model

for wideband ranging was proposed together with the PDF

of each energy bin bi, fbi(bi|τ,ηh,ηd), and the probability

mass function (PMF) of the selected bin i, fi(̂ı|τ,ηh,ηd)
for a variety of ranging algorithms, where ηh and ηd are

parameter vectors representing the wireless channel and the

energy detector, respectively. Such a model is essential for
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TABLE I
TIME- AND AMPLITUDE-BASED MEASUREMENT SELECTION FEATURES.

Sample distributions/statistics Time-based selection features Amplitude-based selection features

f̃ij(q) = ν
(q)
ij

(

Nd−1
∑

q=0

ν
(q)
ij

)−1
IQRij = F̃−1

ij (0.75) − F̃−1
ij (0.25) Mij = maxq ν

(q)
ij

F̃ij(x) =
∑

q≤x

f̃ij(q) σ̃2ij = µ̃
(2)
ij s2ij =

1

Nd − 1

Nd−1
∑

q=0

[

ν
(q)
ij −

( 1

Nd

Nd−1
∑

q=0

ν
(q)
ij

)]2

mij =

Nd−1
∑

q=0

q f̃ij(q) κ̃ij =
µ̃
(4)
ij

(

µ̃
(2)
ij

)2
rij = |max

q
ν
(q)
ij −min

q
ν
(q)
ij |

µ̃
(n)
ij =

Nd−1
∑

q=0

(q −mij)
n f̃ij(q) χ̃ij =

µ̃
(3)
ij

(

µ̃
(2)
ij

)3/2
cij = 1

Nd

(

s2ij

)3/2

Nd−1
∑

q=0

[

ν
(q)
ij −

1

Nd

(

Nd−1
∑

q=0

ν
(q)
ij

)]3

obtaining the SRI from the energy detector output samples.

The size of the observation set is important for computation

and communication of the SRI; therefore, alternative methods

based on reduced data sets of the observations were proposed

in [225]. In particular, the SRI for a given observation of the

energy bins b can be written as11

Lb(τ) =

Nbin−1∏

i=0

fbi(bi|τ,ηh,ηd) . (51)

This is referred to as energy-based soft-decision (ESD)

(Fig. 8(a)) and is obtained from a data set of size Nbin (reduced

by a factor Nsb, the number of samples per bin, compared

to SRI obtained from the complete set of received waveform

samples). SRI can also be obtained from the PMF of the

selected bin index as

L ı̂(τ) = fi(̂ı|τ,ηh,ηd) . (52)

This is referred to as threshold-based soft-decision (TSD)

(Fig. 8(a)) and is obtained from a data set of size one

(reduced by a factor NsbNbin compared to SRI obtained from

the complete set of received waveform samples). The SRI

provided by the likelihood functions (51) or (52) can be used

for SI-based localization.12

B. Selection of Representative Measurements

Accurate LoT is challenging in harsh propagation condi-

tions, where multipath, clutter, and signal obstructions can

give erroneous measurements that are not representative of

the positional states. These measurements, also called non-

representative outliers [226], can adversely impact the local-

ization performance [131]–[133]. In the context of LoT, it is

particularly important to develop low-complexity techniques

that select a measurement subset Ysel ⊆ Y containing the

measurements that are more representative of positional states.

We now describe measurement selection techniques that do

not require the knowledge of the wireless environment and rely

11The likelihood of the TOA is strictly related to that of the distance.
12The SRI can also be used for SVE-based localization, in fact the

maximum of the SRI enables the determination of DEs for position inference
in classical two-stage localization.

only on features extracted from received waveform samples

[130]. Consider a vector

νij = [ν
(0)
ij , ν

(1)
ij , . . . , ν

(Nd−1)
ij ]T

of Nd indicator samples for the pair (i, j). In the case of

energy detection, the ν
(q)
ij is related to the energy of the sam-

ples within the q-th time interval (dwell time). Table I presents

temporal and amplitude features based on the vector νij for se-

lecting the observations that are representative of the nodes po-

sitions (i.e., less affected by multipath, noise, and obstruction-

loss). In particular, time-based selection features are: inter-

quartile range IQRij , variance σ̃2
ij , kurtosis κ̃ij , and skewness

χ̃ij . Amplitude-based selection features are: maximum value

Mij , sample variance s2ij , sample range rij , and sample skew-

ness cij . For each scenario, it is essential to choose the selec-

tion feature h(νij) ∈
{
IQRij , σ̃

2
ij , κ̃ij , χ̃ij ,Mij , s

2
ij , rij , cij

}

or a combination of them based on its relationship with the

localization performance [130].

VII. CASE STUDIES

This section compares the performance of SVE-based, DP,

and SI-based techniques in two case studies corresponding to

the following scenarios:

• noisy features and NLOS detection; and

• IEEE 802.15.4 a standard.

In each scenario, measurements are obtained in different

wireless environments.

Before delving into the performance comparison in each

case study (CS), a discussion on the complexity of the SVE-

based, DP, and SI-based techniques is given. The SVE-based

technique does not require an off-line phase (training) and re-

lies only on a single value per measurement. The DP technique

requires prior knowledge of the channel model. If such a model

is unknown, then DP uses an off-line phase to estimate the

channel response (from multiple received waveforms for each

anchor-agent distance).13 The SI-based technique requires an

off-line phase to determine a generative model for the SFI

(however, it does not require multiple received waveforms

for each anchor-agent distance) [55]. In the on-line phase,

13In the IEEE 802.15.4 a scenario, waveforms are processed in time domain
and a covariance matrix is obtained for each anchor-agent distance [141].
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Fig. 9. Localization performance based on range measurements as a function
of obstructed propagation bias for ǫ = 0.1 (solid) and 0.2 (dashed). The per-
formance of SVE-based localization (green circle) and SI-based localization
(red triangle) as well as the PEB (blue square) are shown.

DP technique computes a likelihood function that depends on

the entire received waveform, resulting in high computational

complexity, whereas the SI-based technique benefits from a

dimensionality reduction step resulting in significantly lower

complexity despite the moderate information loss.

A. CS-I: Measurements Based on Noisy Features and NLOS

Detection

Consider a network in a 100meters by 100meters area with

four anchors and a varying number of agents all randomly

deployed therein. This case study compares the performance

of SI-based and SVE-based localization, in terms of root-

mean-square error (RMSE), together with the position error

bound (PEB) as a benchmark.14 The measurement set is

composed of noisy features and NLOS detector output. The

noisy features are related to ranges and/or angles according

to (14) and (15), and the NLOS detector error follows (1).

Specifically, we consider ǫNLOS = ǫLOS = ǫ, pNLOS = 0.4,

and σNLOS = σLOS = σ with σ = 2 meters for range

measurements and σ = 2 degrees for angle measurements.

We compare SVE-based and SI-based techniques using the

same measurements for inferring agent positions. In particular,

SVE-based localization employs Gaussian measurement model

with mean and variance given respectively by (2) and (3). On

the other hand, SI-based localization exploits SFI according

to (13) and (16) for inferring agent positions based on the

posterior distribution given by (19), (21), (23), or (25) for

different levels of spatial and temporal cooperation.

Fig. 9 shows the localization performance based on range

measurements as a function of the obstructed propagation bias

β for different values of ǫ. Notice that SRI-based localization

provides significant performance improvement and robustness

14PEB is the square root of the right side of (29), which is independent
of the specific localization technique used and serves as a benchmark for the
MSE of unbiased position estimators.

Fig. 10. Localization performance based on angle measurements as a function
of obstructed propagation bias for ǫ = 0.1 (solid) and 0.2 (dashed). The per-
formance of SVE-based localization (green circle) and SI-based localization
(red triangle) as well as the PEB (blue square) are shown.

Fig. 11. Localization performance based on range and angle measurements
as a function of obstructed propagation bias for ǫ = 0.1 (solid) and 0.2
(dashed). The performance of SVE-based localization (green circle) and SI-
based localization (red triangle) as well as the PEB (blue square) are shown.

to NLOS detection errors compared to DE-based localization.

Also observe that exploiting SRI enables the filling of most of

the performance gap between DE-based localization and PEB.

Similar observations can be made from Fig. 10, which shows

the localization performance based on angle measurements for

SAI-based and AE-based localization.

Now, consider the fusion of range and angle measurements.

Fig. 11 shows the localization performance as a function of

the obstructed propagation bias β for different values of ǫ.15

Notice that SI-based localization exploiting both SRI and SAI

provides significant performance improvement and robustness

to NLOS detection errors compared to SVE-based localization

15For example, β = 20 indicates that the bias on range measurements is
of 20 meters and the bias on angle measurements is of 20 degrees.
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Fig. 12. Cooperative localization: localization accuracy and performance benchmark for different numbers of cooperating agents.

Fig. 13. Non-cooperative navigation: navigation accuracy and performance benchmark for different time steps.

Fig. 14. Cooperative navigation: navigation accuracy and performance benchmark for different time steps and numbers of cooperating agents.

using both DE and AE. Also observe that the performance of

SI-based localization approaches the PEB.

Consider spatial cooperation among agents. Fig. 12 shows

the localization performance based on range measurements as

a function of the number of cooperating agents for obstructed

propagation bias β = 20meters and different values of ǫ.
Notice that SRI-based localization provides significant perfor-

mance improvement and robustness to NLOS detection errors

compared to DE-based localization. Also observe that exploit-

ing SRI enables the filling of most of the performance gap

between the DE-based localization and PEB. Note also that

SRI-based localization exploits spatial cooperation better and

approaches to the PEB faster with the number of cooperating

agents, compared to DE-based localization.

Now, consider navigation with temporal and spatiotemporal

cooperation among agents. In such a scenario, each agent

follows a circular trajectory (radius of 20 meters centered at

a random position) at a speed of 0.625 meters/second. The

dynamic model for position inference is

Φµ(p
(n),p(n−1)) = ϕ(p(n) − p(n−1);0, σ2

dI)

where σd = 0.6 meters and the localization update rate is

1/(tn − tn−1) = 1Hz for all n. First, consider temporal

cooperation only. Fig. 13 shows the localization performance

based on range measurements as a function of the time step

for obstructed propagation bias β = 20meters and different

values of ǫ. Notice that SRI-based navigation with temporal

cooperation provides significant performance improvement

and robustness to NLOS detection errors compared to DE-

based navigation. Also observe that exploiting SRI enables

the filling of most of the performance gap between DE-based

navigation and PEB. We now quantify the benefits due to

spatial, in addition to temporal, cooperation. Fig. 14 shows

the localization performance as a function of the time step and

the number of cooperating agents in the same scenario con-

sidered in Fig. 13. Notice that SRI-based navigation exploits
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(a) IEEE 802.15.4 a indoor residential (b) IEEE 802.15.4 a outdoor

Fig. 15. LEO in two IEEE 802.15.4 a channels with different values of NLOS probability pNLOS = 0.2 (dashed), 0.5 (dashdotted), and 0.8 (solid). The
performance of SVE-based localization (green circle), DP (blue square), and SI-based localization (red triangle) is shown.

spatiotemporal cooperation better than DE-based localization

by accentuating the performance improvement and robustness

to NLOS conditions. Moreover, SRI-based localization with

spatiotemporal cooperation approaches to the PEB faster with

the number of cooperating agents, compared to DE-based

localization.

B. CS-II: Measurements Based on IEEE 802.15.4 a Standard

Consider a network in a 20meters by 20meters area with

four anchors located at the corners of the square and agents

randomly deployed therein. This case study compares the

performance of SVE-based localization, DP, and SI-based

localization in terms of localization error outage (LEO) defined

as the empirical probability that the localization error is above

a target value. The anchors emit UWB root raised cosine

pulses (roll-off factor 0.6 and pulse width parameter 0.95 ns)

in the European lower band [3.1, 4.8]GHz with maximum

power spectral density −42 dBm/MHz. The emitted pulses

propagate through a multipath channel modeled according to

the IEEE 802.15.4 a standard for indoor residential environ-

ments with probability pNLOS of being in NLOS conditions.

The signal-to-noise ratio at 1m from the transmitter is 30 dB.

SVE-based technique uses DE from each anchor, which is

obtained from the delay τmax corresponding to the maxi-

mum correlation value between the received waveform and

the transmitted pulse. DP technique processes the received

waveform according to the algorithm proposed in [141] with

covariance matrices estimated from received waveform sam-

ples during the off-line phase. SI-based technique employs a 3-

modal Gaussian generative model and exploits dimensionality

reduction by considering ψ(y) as a vector of four elements

including τmax, the maximum value of the correlation, and

two principal components obtained from PCA as in [55].

We compare SVE-based, DP, and SI-based techniques for

inferring agent positions based on the MMSE criterion using

the same measurements.

Fig. 15 shows the LEO based on received waveform mea-

surements generated according to IEEE 802.15.4 a standard for

the indoor residential and the outdoor channel models with

pNLOS = 0.2, 0.5, and 0.8. Notice that SI-based localization

exploiting SRI provides significant LEO improvement as well

as robustness to NLOS propagation conditions compared to

DP and SVE-based localization. For example, in indoor res-

idential channel with pNLOS = 0.2 the localization error is

above 4m in about 40% of cases for DE-based localization,

in about 4% of cases for DP, and in about 2% of the cases

for SI-based localization. In more severe NLOS propagation

conditions with pNLOS = 0.8, the localization error is above

4m in about 50% of cases for DE-based localization, in about

13% of cases for DP, and only in about 6% of the cases

for the SI-based localization. In the outdoor channel with

pNLOS = 0.2, the localization error is above 3m in about

27% of cases for DE-based localization, in about 4% of cases

for DP, and in about 2% of the cases for SI-based localization.

With pNLOS = 0.8, the localization error is above 3m in about

41% of cases for DE-based localization, in about 26% of cases

for DP, and only in about 2% of the cases for the SI-based

localization. This shows that, also in IEEE 802.15.4 a standard

scenario, SI-based localization is superior to DP and SVE-

based localization, especially in harsh propagation conditions.

VIII. FINAL REMARK

This paper introduced the concept of LoT and proposed

a new approach for accurate inference of positional states.

The proposed approach exploits SI that combines SFI and SCI

extracted from measurements and contextual data, respectively.

We described efficient techniques for learning and exploiting

the SI based on reduced data sets. Various case studies are

presented for different wireless environments. In particular,



CONTI, MAZUELAS, BARTOLETTI, LINDSEY, & WIN: SOFT INFORMATION FOR LOCALIZATION-OF-THINGS 19

the localization performance is quantified for sensing mea-

surements based on noisy features and NLOS detection, and

IEEE 802.15.4a standard. Results show that SI-based localiza-

tion significantly outperforms DP and SVE-based localization,

especially in harsh propagation conditions. Indeed, SI-based

techniques are vital for LoT, especially when devices are

designed for communication rather than for localization. Fur-

thermore, the exploitation of SI offers robustness to wireless

propagation conditions, thereby opening the way to a new level

of accuracy for the LoT.
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technology,” IEEE Commun. Mag., vol. 40, no. 2, pp. 112–118, Feb.
2002.

[3] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69,
Jul. 2005.

[4] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wire-
less location: Challenges faced in developing techniques for accurate
wireless location information,” IEEE Signal Process. Mag., vol. 22,
no. 4, pp. 24–40, Jul. 2005.

[5] M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti,
“Efficient multi-sensor localization for the Internet-of-Things,” IEEE

Signal Process. Mag., vol. 35, no. 5, pp. 153–167, Sep. 2018.
[6] J. Thomas, J. Welde, G. Loianno, K. Daniilidis, and V. Kumar,

“Autonomous flight for detection, localization, and tracking of moving
targets with a small quadrotor,” IEEE Robot. Autom. Lett., vol. 2, no. 3,
pp. 1762–1769, Jul. 2017.

[7] D. Wu, D. Chatzigeorgiou, K. Youcef-Toumi, and R. Ben-Mansour,
“Node localization in robotic sensor networks for pipeline inspection,”
IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 809–819, Apr. 2016.

[8] R. Karlsson and F. Gustafsson, “The future of automotive localization
algorithms: Available, reliable, and scalable localization: Anywhere and
anytime,” IEEE Signal Process. Mag., vol. 34, no. 2, pp. 60–69, Mar.
2017.

[9] H. Liu, F. Sun, B. Fang, and X. Zhang, “Robotic room-level localization
using multiple sets of sonar measurements,” IEEE Trans. Instrum.

Meas., vol. 66, no. 1, pp. 2–13, Jan. 2017.
[10] G. Zhan and W. Shi, “LOBOT: Low-cost, self-contained localization

of small-sized ground robotic vehicles,” IEEE Trans. Parallel Distrib.

Syst., vol. 24, no. 4, pp. 744–753, Apr. 2013.
[11] S. Bartoletti, A. Conti, and M. Z. Win, “Device-free counting via

wideband signals,” IEEE J. Sel. Areas Commun., vol. 35, no. 5, pp.
1163–1174, May 2017.

[12] X. Ying, S. Roy, and R. Poovendran, “Pricing mechanisms for crowd-
sensed spatial-statistics-based radio mapping,” IEEE Trans. on Cogn.

Commun. Netw., vol. 3, no. 2, pp. 242–254, Jun. 2017.
[13] R. Estrada, R. Mizouni, H. Otrok, A. Ouali, and J. Bentahar, “A crowd-

sensing framework for allocation of time-constrained and location-
based tasks,” IEEE Trans. Services Comput., vol. PP, no. 99, pp. 1–1,
Jul. 2017.

[14] F. Zabini and A. Conti, “Inhomogeneous Poisson sampling of finite-
energy signals with uncertainties in Rd ,” IEEE Trans. Signal Process.,
vol. 64, no. 18, pp. 4679–4694, Sep. 2016.

[15] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting
the world with wireless sensor networks,” in Proc. IEEE Int. Conf.

Acoustics, Speech, and Signal Process., vol. 4, Salt Lake City, UT,
May 2001, pp. 2033–2036.

[16] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp.
102–114, Aug. 2002.

[17] D. Dardari, A. Conti, C. Buratti, and R. Verdone, “Mathematical eval-
uation of environmental monitoring estimation error through energy-
efficient wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 6, no. 7, pp. 790–802, Jul. 2007.

[18] N. M. Freris, H. Kowshik, and P. R. Kumar, “Fundamentals of large
sensor networks: Connectivity, capacity, clocks and computation,”
Proc. IEEE, vol. 98, no. 1, pp. 1828–1846, Nov. 2010.

[19] L.-L. Xie and P. Kumar, “A network information theory for wireless
communication: Scaling laws and optimal operation,” IEEE Trans. Inf.

Theory, vol. 50, no. 5, pp. 748–767, May 2004.

[20] H. Ahmadi, A. Polo, T. Moriyama, M. Salucci, and F. Viani, “Semantic
wireless localization of WiFi terminals in smart buildings,” AGU Radio
Science, vol. 51, no. 6, pp. 876–892, Jun. 2016.

[21] K. Lin, M. Chen, J. Deng, M. M. Hassan, and G. Fortino, “Enhanced
fingerprinting and trajectory prediction for IoT localization in smart
buildings,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 3, pp. 1294–
1307, Jul. 2016.

[22] V. Moreno, M. A. Zamora, and A. F. Skarmeta, “A low-cost indoor
localization system for energy sustainability in smart buildings,” IEEE
Sensors J., vol. 16, no. 9, pp. 3246–3262, May 2016.

[23] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Ta-
lasila, and R. Curtmola, “Fostering participaction in smart cities: a geo-
social crowdsensing platform,” IEEE Commun. Mag., vol. 51, no. 6,
pp. 112–119, Jun. 2013.

[24] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp.
22–32, Feb. 2014.

[25] G. Pasolini, C. Buratti, L. Feltrin, F. Zabini, C. De Castro, R. Verdone,
and O. Andrisano, “Smart city pilot projects using LoRa and IEEE
802.15.4 technologies,” Sensors, vol. 18, no. 4, 2018.

[26] D. Balakrishnan and A. Nayak, “An efficient approach for mobile asset
tracking using contexts,” IEEE Trans. Parallel Distrib. Syst., vol. 23,
no. 2, pp. 211–218, Feb. 2012.

[27] E. Paolini, A. Giorgetti, M. Chiani, R. Minutolo, and M. Montanari,
“Localization capability of cooperative anti-intruder radar systems,”
EURASIP J. Adv. Signal Process., vol. 2008, Apr. 2008.

[28] K. Witrisal, P. Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufves-
son, K. Haneda, D. Dardari, A. F. Molisch, A. Conti, and M. Z. Win,
“High-accuracy localization for assisted living,” IEEE Signal Process.

Mag., vol. 33, no. 2, pp. 59–70, Mar. 2016.

[29] M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis, and
F. Babich, “Vehicular position tracking using LTE signals,” IEEE Trans.

Veh. Technol., vol. 66, no. 4, pp. 3376–3391, Apr. 2017.

[30] K. Daniilidis, C. Krauss, M. Hansen, and G. Sommer, “Real-time
tracking of moving objects with an active camera,” Real-Time Imaging,
vol. 4, no. 1, pp. 3–20, Feb. 1998.

[31] S. D’Oro, L. Galluccio, G. Morabito, and S. Palazzo, “Exploiting object
group localization in the Internet of things: Performance analysis,”
IEEE Trans. Veh. Technol., vol. 64, no. 8, pp. 3645–3656, Aug 2015.

[32] L. Chen, S. Thombre, K. Järvinen, E. S. Lohan, A. Alén-Savikko,
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