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Duchenne muscular dystrophy (DMD), although rare, is the most common muscular dystrophy, 
with a prevalence of 1 in 5000.1 – 3 It is an X-linked disorder caused by a mutation in the DMD gene 
located on Xp21. The DMD gene is large (79 exons; 427 Kilodalton) and encodes a 427-Kilodalton 
muscle isoform protein dystrophin. The gene is located in the dystrophin-associated glycoprotein 
complex at the sarcolemma and in the cytoskeleton. The protein is located primarily in skeletal 
muscle to stabilize the plasma membrane and maintain the strength of muscle fibers.4, 5 The 
absence of dystrophin causes muscle membrane damage, elevated serum creatinine kinase (CK), 

The guidelines or recommendations in this article are not American Academy of Pediatrics policy, and publication that was partially supported herein does not 
imply endorsement.

Duchenne muscular dystrophy is the most common form of childhood muscular dystrophy. 
A mutation in the DMD gene disrupts dystrophin (protein) production, causing damage 
to muscle integrity, weakness, loss of ambulation, and cardiopulmonary compromise by 
the second decade of life. Life expectancy has improved from mid-teenage years to mid-
20s with the use of glucocorticoids and beyond the third decade with ventilator support 
and multidisciplinary care. However, Duchenne muscular dystrophy is associated with 
comorbidities and is a fatal disease. Glucocorticoids prolong ambulation, but their side 
effects are significant. Emerging investigational therapies have surfaced over the past 
decade and have rapidly been tested in clinical trials. Gene-specific strategies include 
nonsense readthrough, exon skipping, gene editing, utrophin modulation, and gene 
replacement. Other mechanisms include muscle regeneration, antioxidants, and antifibrosis 
and anti-inflammatory pathways. With potential therapies emerging, early diagnosis is 
needed to initiate treatment early enough to minimize morbidity and mortality. Newborn 
screening can be used to significantly improve early diagnosis, especially for gene-specific 
therapeutics.
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fiber necrosis, muscle degeneration, 
and regeneration.6 Constant 
muscle breakdown and necrosis is 
followed by inflammatory processes 
that lead to the replacement of 
muscle with fibrotic tissue and fat 
accumulation.7 – 9

Common presenting symptoms 
include delayed motor milestones, 
inability to run or hop, toe walking, 
difficulty climbing stairs, and 
hypertrophy of calf muscles. 
Nonmotor presentations include 
failure to thrive, speech delay, 
fatigue, abnormal transaminases, 
myoglobinuria, and complications 
because of anesthesia (ie, malignant 
hyperthermia or rhabdomyolysis). 
Global developmental delay is a 
common presentation. Early signs 
and symptoms present at ages 2 to 
3 years, whereas the average age 
of diagnosis is 3 to 5 years. It has 
been reported that it takes >1 year 
to confirm DMD from the time of 
presentation, 10 which is far too long 
in a disease for which time means 
loss of muscle function and the 
familial risk of recurrence is up to 
50% in male siblings.

With recent advancements in 
clinical trials, there is an unmet 
need to diagnose affected infants 
and children early. Mendell et al1 
presented data on newborn screening 
in Ohio initiated with a CK level from 
dried blood spot followed by genetic 
confirmation of those with elevated 
CK. Eagle et al11 reported that life 
expectancy in the 1960s was 14 
years; in the 1990s, life expectancy 
was 25 years for those receiving 

ventilatory support. The mean age 
at which patients lose ambulation 
is ∼9 to 10 years.11 Glucocorticoids 
are used to improve muscle strength 
and function in patients with DMD12 
and prolong ambulation13 by an 
additional 2 to 3 years14; patients 
with DMD who are treated with 
glucocorticoids become wheelchair 
dependent by 12 to 13 years of age. 
Loss of ambulation is associated 
with greater morbidity and mortality 
as the disease progresses; not 
surprisingly, the primary objective 
of researchers in most clinical 
trials is prolonging ambulation. 
Cardiomyopathy and respiratory 
insufficiency can shorten the life 
span, but with ventilator support, 
survival in DMD has been extended 
to >30 years, and cardiac function 
is the remaining determinant 
of survival.15 Investigational 
drugs that are used to improve 
cardiopulmonary function also 
have emerged in clinical trials (for 
additional details, see the specialty 
article on cardiac management that 
is part of this supplement16). Our 
purpose in this article is to guide 
clinicians in the diagnosis and 
treatment of DMD itself, expanding 
on principles outlined in the 2018 
Duchenne Muscular Dystrophy Care 
Considerations sponsored by the 
Centers for Disease Control and 
Prevention.17 In Fig 1, we provide an 
overall guide for the neuromuscular 
management of patients with DMD 
according to each patient’s clinical 
stage.

NEUROLOGY

DMD is a proximal myopathy 
affecting muscles, such as the 
quadriceps and gluteals. Fast-
twitch (type IIb) myofibers are 
preferentially affected, leaving 
the slow-twitch (type I) type to 
predominate.18,  19 The disease 
is characterized by muscle 
wasting, weakness, myofiber size 
variation with muscle necrosis, fat 
accumulation, connective tissue 
replacement, and paradoxical 
hypertrophy of calf muscles. Gait 
abnormality and difficulty getting 
up from a chair or from a supine 
position are common clinical 
features. However, the onset of 
symptoms can vary in age, severity, 
and presentation. Individuals 
affected by DMD typically present 
with delayed motor development 
or a gait abnormality, especially 
toe walking or delayed age of 
ambulation, and are often referred 
to physical therapy. Although the 
average age of presentation ranges 
from 2 to 5 years, the recognition 
of loss of milestone and the use of 
Bayley Scales of Infant Development, 
Third Edition can improve the 
identification of affected infants 
before motor impairment occurs.20 –22

GLUCOCORTICOIDS

Prednisone prolongs ambulation 
and has been shown to have long-
term benefits for respiratory and 
cardiac function in nonambulatory 
patients.12,  13,  23 –25 Some researchers 
suggest there may be fewer side 
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FIGURE 1
Summary of neuromuscular management depending on the clinical stage of patients with DMD. (Adapted with permission from Birnkrant DJ, Bushby 
K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and 
gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):252.)
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effects with deflazacort than 
prednisone.26,  27 However, the 
relative efficacy and side effects of 
different glucocorticoid regimens 
remains untested in well-designed, 
head-to-head trials. The standard 
dose for prednisone is 0.75 mg/kg  
per day and for deflazacort is 0.9 mg/kg  
per day (Fig 2). For a more detailed 
discussion on glucocorticoid 
management, see the Supplemental 
Information.

DIAGNOSIS

Clinical variability, genetic 
heterogeneity, and the large size 
of the DMD gene contribute to the 
complexity of diagnosis (Fig 3). 
Mutational analysis has made the 
confirmation of a molecular diagnosis 
possible in the majority of cases. 
However, diagnosis and prognosis 
are also dependent on clinical 
presentation and genetic profile. 
Genotype-phenotype correlation 
can help prognosticate, but age of 
presentation and family history are 
also important. For example, most 
exon deletions are correlated with 
disease severity on the basis of the 
“reading-frame rule” and apply to 
∼92% of cases.28 The vast majority of 
whole-exon deletions or duplications 
are correlated with a pathogenic 
mutation. The reading-frame stop 
codon caused by an out-of-frame 
mutation disrupts the open reading 
frame and ablates the translation 
of dystrophin, causing a more 
severe DMD phenotype. An in-frame 
mutation can still translate the open 
reading frame to a partial-length 
dystrophin, resulting in Becker 
muscular dystrophy and a milder 
phenotype.29 In some cases, in-frame 
mutations with worsening myopathy 
are more clinically consistent with 
DMD.

The methods used to diagnose DMD 
include clinical history, physical 
examination, serum CK, liver 
enzymes, genetic testing, and perhaps 
muscle biopsy. In the past, muscle 

biopsies were routinely performed to 
diagnose DMD. With advancements 
in genetic testing strategies, including 
multiplex ligation–dependent probe 
amplification, comparative genomic 
hybridization, Sanger sequencing, 
and next-generation sequencing, 
a molecular diagnosis can be 
obtained from genomic DNA so that 
muscle biopsies are rarely needed 
to diagnose DMD. If a DMD gene 
mutation cannot be identified by 
using genetic testing, clinicians may 
choose to perform a muscle biopsy 
to determine the percentage of 
dystrophin by using histopathological 
staining and immunoblot analysis. 
If dystrophin staining is equivocal, 
the muscle can be sent for RNA 

transcription testing to identify 
intronic changes.

In a child with a family history 
of DMD, a serum CK level is 
recommended. In a child without 
a family history, the presence 
of global development delay, 
psychomotor delay, and/or  
motor delay prompts a serum CK 
level (CK is elevated 50–100 times 
normal in DMD). The liver enzymes, 
aspartate aminotransferase,  
and alanine aminotransferase  
are also elevated but from the 
muscle instead of the liver. 
γ-glutamyl transferase is the 
preferred laboratory test to  
check for liver disease in DMD.  
If CK is elevated, then DNA should 
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FIGURE 2
Care considerations for glucocorticoid (steroid) initiation and use for patients with DMD. ACTH, 
adrenocorticotropic hormone; CRH, corticotropin-releasing hormone; HPA, hypothalamic-pituitary-
adrenal. (Reproduced with permission from Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and 
management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, 
endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):255.)
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be sent to test for exonic deletions 
and duplications, which are seen  
in ∼65% of cases.30,  31 Table 
1 includes the types of gene 
mutations in DMD. Multiplex 
ligation–dependent probe 
amplification is the most widely 

used technique and can be used 
to test all 79 exons. Comparative 
genomic hybridization is an 
oligoclonal-based method that 
can be used to detect complex 
rearrangements, intronic alteration, 
or mutation break points.30 The 

evolution of next-generation 
sequencing has enabled the 
sequencing of millions of copies of 
DNA fragments simultaneously and 
has reduced time and cost.32

If the deletion and/or duplication test 
result is negative, then sequencing 
is conducted to identify smaller 
mutations. Sequencing the entire 
coding region can reveal small 
mutations, splicing mutations, or 
single base changes. If no mutation 
is identified after sequencing, a 
muscle biopsy can be obtained 
to determine the presence or 
absence of dystrophin by using 
histologic staining. The absence of 
dystrophin confirms a diagnosis of 
DMD. Reduced dystrophin could be 
associated with Becker muscular 
dystrophy or DMD depending 
on the presence and severity of 
muscle weakness on examination. 
Dystrophin <3% is consistent with 
DMD, whereas ≥20% on muscle 
biopsy suggests that DMD is unlikely. 
Some variation in muscle biopsy 
results occurs depending on the 
age of the child and what part of 
the affected muscle was biopsied. 
Alternatively, tissue from the 
muscle can be tested through RNA 
transcription analysis to assess for 
intronic mutations that may have 
been identified in the other genetic 
strategies. Immunoblotting of the 
muscle biopsy also can be used. If 
no DMD mutation is identified, the 
clinician can consider an alternative 
diagnosis, such as limb-girdle or 
congenital muscular dystrophy. 
Imaging with quantitative magnetic 
resonance and magnetic resonance 
spectroscopy reveal an increase in fat 
fraction with disease progression.33,  34  
Given the heterogeneity of affected 
skeletal muscle in DMD, an 
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FIGURE 3
Diagnosis of Duchene muscular dystrophy. Described early signs and symptoms of DMD are based 
on Ciafaloni et al.10 (Reproduced with permission from Birnkrant DJ, Bushby K, Bann CM, et al. 
Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, 
rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 
2018;17(3):253.)

TABLE 1  Types of DMD Mutation

Mutation %

Deletions 65
Duplications 6–10
Point mutations 25
Complex mutations <2
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MRI-guided muscle biopsy can be 
applied in the diagnosis and/or 
confirmation of DMD when genetic 
testing is unrevealing.

EMERGING THERAPIES

Numerous treatment strategies have 
been investigated for DMD. After 
decades of searching for targets, 
identifying molecular pathways, and 
preclinical investigations in animal 
models, potential therapeutic targets 
have been translated to clinical 
trials in DMD. In this section, we 
review some of the main strategies 
and active clinical trials. Figure 4 is 
a chart of the potential drugs in the 
DMD drug discovery pipeline.

Restore Protein (Dystrophin)

Exon skipping and nonsense 
readthrough can restore the 
expression of the gene product 
dystrophin. These agents generate 
a functional or partially functional 
protein in DMD.

Exon Skipping

The concept behind exon skipping 
is targeted at the messenger RNA 
level and is based on the reading-
frame rule. The intent is to skip (or 
delete) an out-of-frame mutation 
and restore the reading frame by 
making an in-frame mutation that 
encodes a more functional protein 
that is consistent with the milder, 
Becker muscular dystrophy–like 
phenotype. This technology 

uses antisense oligonucleotides. 
Two chemical constructs, 
2’-O-methyl phosphorothioate and 
phosphorodiamidate morpholino 
oligomers, have been used in 
clinical studies to bind to exon-
splice junctions and generate exon 
skipping.35,  36 The 2’-O-methyl 
phosphorothioate drug, drisapersen, 
for exon 51 skipping, which initially 
showed improvement on the 
6-minute walk test in early clinical 
trials, progressed to a larger phase 
III study in which it did not reach 
its primary end point.37,  38 The 
phosphorodiamidate morpholino 
oligomers drug, eteplirsen, is also 
designed for exon 51 skipping. 
Researchers in an initial study 
enrolled 12 patients for >3 years, and 
these treated patients demonstrated 

PEDIATRICS Volume 142, number s2, October 2018 S9

FIGURE 4
Drug discovery chart for DMD clinical trials. Illustrated is the active pace of drug discovery in DMD.
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a slower rate of decline in ambulation 
compared with untreated historical 
controls.39,  40 Exon skipping–
amenable mutations constitute 
∼80% of all DMD, of which ∼13% 
of cases are amenable to exon 51 
skipping41 (Table 2). Drisapersen 
is administered subcutaneously, 
and eteplirsen is delivered by 
intravenous infusion. A drisapersen 
application to the US Food and 
Drug Administration (FDA) was not 
approved, but eteplirsen was granted 
accelerated approval by the FDA 
while an ongoing confirmatory study 
is underway.42

Nonsense Suppression

Nonsense mutations generate a 
stop codon, resulting in a truncated, 
nonfunctional protein. Nonsense 
(stop-codon) mutations comprise 
∼10% to 15% of DMD cases.43,  44 The 
readthrough strategy, which involves 
the suppression of the stop-codon 
mutation, encourages the ribosome 
to read through the stop codon, 
which promotes the production of 
dystrophin.45 Proof of concept for 
nonsense suppression was initially 
established with an aminoglycoside: 
gentamicin.46 Translarna (ataluren), 
an oral medication with a better 
safety profile compared with 
gentamicin (formerly referred to as 
PTC124), promotes the readthrough 
of premature translation termination 
codons. Safety and tolerability was 
established, and a phase IIa proof-
of-concept trial revealed increased 
dystrophin posttreatment on muscle 
biopsy.47 Due to the unmet need for 
treatments in DMD and promising 
early phase findings, this drug has 
been approved by the European 
Medicines Agency.48 A phase III  
trial revealed enrichment of effect 
in a subgroup of patients with a 
baseline 6-minute walk test between 
300 and 400 m at enrollment.49 
However, the FDA voted that the  
data used to support Translarna  
were inconclusive.

Replace Lost Dystrophin

Utrophin is an analog of dystrophin 
that shares ∼80% sequence 
homology with dystrophin.50 – 52  
SMT C1100 is a molecule that  
works as a utrophin modulator and 
is an investigational drug with the 
potential to replace lost dystrophin 
with utrophin.53 Safety and 
tolerability has been shown in  
a study of 12 patients with DMD.54  
A phase II study is ongoing to 
evaluate the activity and safety  
of this orally administered drug  
in a larger cohort of patients.

Target Signaling Pathways

Anti-inflammatory Approaches

Muscle fibers in DMD undergo 
inflammatory and fibrotic changes 
that have been responsive to 
glucocorticoids. As a result, anti-
inflammatory approaches to 
treat DMD remain a focus in drug 
discovery. Myofiber necrosis is 
reported to result from chronic 
NF-κB activation and tumor necrosis 
factor α.9,  55,  56 Prednisone and 
deflazacort, used to treat DMD, 
have anti-inflammatory effects 
and are presumed to inhibit the 
NF-κB pathways. However, these 
drugs are generally nonspecific 
anti-inflammatory agents with 
multisystem side effects. New drugs 
aimed at specifically targeting NF-κB 
or tumor necrosis factor α are being 
moved forward in drug discovery and 
are currently in the preclinical stages, 
poised to move to clinical trials. 
Vamorolone (also known as VBP15), 

an oral anti-inflammatory steroid 
with fewer side effects in preclinical 
and phase I trials compared with 
traditional glucocorticoids, has 
advanced to phase II in an ongoing, 
larger clinical trial to assess safety 
and efficacy.

Antioxidants

Oxidative stress can damage cellular 
function, specifically mitochondria. 
The overproduction and/or 
accumulation of reactive oxygen 
species can lead to mitochondrial 
dysfunction in neuromuscular 
disease. Studies have revealed that 
increased reactive oxygen species 
in DMD contribute to membrane 
permeability and protein degradation 
and activates inflammatory 
pathways, thereby exacerbating 
necrosis and fibrosis. Idebenone, 
an antioxidant that inhibits lipid 
peroxidation, has shown efficacy in 
a phase III trial, with improvement 
seen in respiratory function (ie, 
forced vital capacity).57 Idebenone 
is orally administered and currently 
undergoing regulatory review.

Antifibrosis

In DMD, endomysial fibrosis is a 
hallmark clinical feature associated 
with muscle weakness and poor 
long-term outcome; transforming 
growth factor β (TGF-β) is a target 
in antifibrosis therapy. Therapeutic 
agents aimed at blocking cytokine 
signaling by inhibiting the TGF-β 
pathway in preclinical models 
have been shown to decrease 
fibrosis in some studies, although 
not in others.58 – 61 Losartan, an 
antihypertensive drug with a known 
safety profile, was an attractive 
therapeutic target, but the preclinical 
studies that initially revealed reduced 
fibrosis later revealed minimal 
functional benefit.62,  63 Another agent, 
oral halofuginone hydrobromide 
(also known as HT-100), is currently 
in a phase II trial to assess safety, 
tolerability, and dose selection for 
future trials. Givinostat, an oral 
inhibitor of histone deacetylases 
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TABLE 2  Exon Skipping–Amenable Mutations

Exon Amenable to Skip %

51 13.0
45 8.1
53 7.7
44 6.2
46 4.3
52 4.1
50 4.0
43 3.8
6 and 7 3.0
8 2.3
55 2.0
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aimed at reducing fibrosis of muscle 
fibers and promoting muscle 
regeneration in DMD, is in a phase III 
global clinical trial.64

Phosphodiesterase 5A Inhibition

Diminished blood flow can cause 
muscle damage. Mendell et al65,  66  
showed in the mouse model that 
functional ischemia produces 
similar changes seen in muscle fiber 
degeneration and regeneration in 
DMD. Researchers in more studies 
have since implicated the nitric oxide 
synthase pathway in ischemia and 
thus inhibition of phosphodiesterase 
(PDE) as a potential therapeutic 
target.67 Sildenafil, an oral 
PDE 5 inhibitor, was studied in 
adult patients with DMD and 
cardiomyopathy. The trial was 
terminated early due to worsening 
left-ventricular end-systolic volume 
in subjects on sildenafil.68 Tadalafil, 
another oral PDE inhibitor, was 
shown to restore blood supply to 
muscle in the mdx mouse. However, 
tadalafil had no effect on the primary 
outcome and did not lessen the 
decline in ambulatory ability in 
patients with DMD.69

Myostatin Inhibition

The inhibition of the myostatin 
pathway is a muscle-building 
therapeutic approach for muscular 
dystrophy. Myostatin regulates 
muscle growth by breaking down 
muscle protein, and blocking 
myostatin has been shown to 
increase muscle mass and reduce 
fibrosis.70,  71 Wagner et al72 conducted 
an early phase clinical trial in adult 
patients with muscular dystrophy 
using a recombinant human antibody 
and showed safety, although not 
efficacy. New strategies and the 
formulation of an antimyostatin 
antibody, PF-06252616, have since 
occurred, and the agent is being 
used in an ongoing phase II clinical 
trial in patients with DMD. This 
agent is delivered intravenously. 
Similarly, an antimyostatin adnectin, 
BMS-0986089, is currently in phase 

I or II trials in ambulatory DMD 
patients. This agent is delivered 
subcutaneously.

Improve Cardiac Function

CAP-1002 is a novel therapeutic 
approach in which cell therapy is 
used to treat cardiomyopathy in 
DMD. This investigational treatment 
is already being investigated as 
a treatment of postmyocardial 
infarction. The agent is an allogenic 
cell therapy derived from human 
heart tissue that is administered 
directly to the heart through 
the coronary arteries by cardiac 
catheterization. This drug is currently 
in the phase I or II study stage to 
investigate safety and tolerability.

Eplerenone, a drug that is already 
used in heart failure and has a known 
safety profile, has been investigated 
in a randomized, placebo-controlled 
clinical trial in patients with DMD 
and early cardiomyopathy who 
are already taking an angiotensin-
converting enzyme inhibitor. After 
12 months, it was reported that a 
statistically significant reduction in 
left-ventricular strain occurred in 
the treatment arm compared with 
a placebo.73 Although long-term 
benefits cannot be concluded from 
these findings, longitudinal data 
from this cohort will provide greater 
insight on the potential benefit of this 
cardiac intervention in DMD. Results 
after a 2-year study revealed that 
eplerenone can be cardioprotective 
in patients with DMD.74

Restore Gene Function

In a monogenetic disorder, such as 
DMD, the idea of replacing a defective 
gene with a “corrected” gene seems 
simple, but many challenges have 
been encountered to date. Strategies 
on how to target the desired muscle, 
circumvent the immune response, 
and achieve efficient systemic 
delivery are some of the major 
hurdles.75 The discovery of an adeno-
associated virus (AAV) to be a safe 
and effective therapeutic tool in gene 

transfer has addressed some of the 
technical barriers.76,  77 However, AAV 
has a limited capacity to package the 
entire DMD gene.

Gene Replacement

In DMD, the large size of the DMD 
gene poses the challenge of packaging 
into an AAV. Mini-dystrophins (ie, 
miniaturized versions of the DMD 
gene) have been developed.78,  79 
Investigators also have packaged the 
gene into 2 vectors in a dual-AAV 
approach and showed that it restored 
sarcolemmal neuronal nitric oxide 
synthase expression in dystrophin-
deficient mice.80 Transgene delivery 
by an AAV through intramuscular 
injection in a phase I clinical trial 
in humans revealed an immune 
response to the transgene product, 
bringing attention to the role of 
T-cell immunity to self- and nonself-
dystrophin in the study design of 
future gene therapy trials.81 Limb 
vascular delivery is another method 
to regionally deliver the gene.82 
Systemic delivery can be achieved 
intravenously, but targeting the gene 
to muscle and limiting its off-target 
delivery are important aspects of the 
gene delivery. Although gene therapy 
is still in early stages, the knowledge 
gained from the pioneering work 
of many dedicated investigators 
over several decades has taken the 
field closer to becoming a potential 
therapy. Phase I and II studies to 
deliver microdystrophin C with AAV 
vectors are anticipated to begin this 
year.

Gene Editing

A novel genetic engineering 
technology, clustered regularly 
interspaced short palindromic 
repeats (CRISPR) coupled with an 
endonuclease (CRISPR-associated 
protein 9), has been applied to 
edit mutations in the DMD gene. 
Researchers in several laboratories 
have reported that gene editing can 
be used to improve muscle function 
in the mouse model and muscle 
stem cells. Investigators have shown 
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that the editing tool was used to 
resect the faulty exons and partially 
restore protein in mice.83 –87 The 
mice treated with CRISPR did better 
on functional tests compared with 
the untreated group but not as well 
as the normal mice. Although gene 
editing with CRISPR is closer to 
clinical translation now than ever 
before, it may be years before these 
technologies achieve efficiency 
toward clinical trials.

Target Genetic Modifiers

The vast clinical variability in DMD 
is well known, and environmental 
factors can contribute to the genetic 
modifier effect and heterogeneity 
of phenotypic features. Latent 
TGF-β binding protein 4 can be 
used to predict the age of loss 
of ambulation.88,  89 SPP1, a gene 
encoding osteopontin, acts as a 
pharmacodynamic biomarker of 
steroid response.89 These 2 pathways 
converge in the regulation of  
TGF-β. ANXA6 encodes annexin A6, 
a calcium-binding protein, and is 
correlated with sarcolemmal repair 
in the mouse model.90, 91 These 
modifier genes are correlated with 
phenotypic variation and serve as 
novel therapeutic targets for future 
drug discovery.

FUTURE DIRECTIONS

As disease-modifying treatments 
emerge, patients with DMD will 
live longer, and they will need to be 
prepared to live as independently 

as possible. Care centers will need 
to incorporate health service 
considerations into their care plans. 
The molecular diagnoses stored 
in “unified” databases, which 
include molecular profiles and well-
characterized phenotypes, can be 
used to augment the identification 
and selection of more homogeneous 
candidates for specific therapies 
as gene-derived strategies are 
translated to the clinics. As genetic 
modifiers are validated, biomarkers 
and novel therapeutic targets can 
be developed. Putative disease-
modifying strategies related to 
cardiac function and neuronal 
involvement in DMD warrant further 
exploration for novel targets.

CONCLUSIONS

The DMD gene was identified ∼3 
decades ago, and the presteroid 
era changed after prednisone was 
shown to prolong ambulation.12 
Glucocorticoids remain the standard 
of care, but significant side effects 
limit their therapeutic window.

As survival has improved with the 
launch of specialized care centers 
and better respiratory support, 
cardiac disease has become a more 
important cause of death. The 
majority of the investigational drugs 
improve skeletal and pulmonary 
function, and cardiomyopathy 
remains a critical area in need of 
effective treatment. Furthermore, 
addressing neurodevelopmental 
needs and providing early 

intervention are necessary. As the 
translational community shepherds 
novel therapeutics into the clinic, 
other initiatives are equally important, 
including newborn screening, 
management strategies for infants and  
toddlers, neurobehavioral management 
for school-aged children, transition 
management, and adult considerations 
for affected men. Newborn screening 
and effective treatments may 
ultimately extend survival in DMD 
beyond the third decade.
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