
Journal of Algebra 448 (2016) 488–563
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Milnor–Moore categories and monadic 

decomposition ✩

Alessandro Ardizzoni a,∗, Claudia Menini b

a University of Turin, Department of Mathematics “G. Peano”, via Carlo Alberto 
10, I-10123 Torino, Italy
b University of Ferrara, Department of Mathematics, Via Machiavelli 35, Ferrara, 
I-44121, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 January 2015
Available online 3 December 2015
Communicated by Nicolás 
Andruskiewitsch

MSC:
primary 18C15
secondary 17B75

Keywords:
Monads
Milnor–Moore category
Generalized Lie algebras

In this paper monoidal Hom-Lie algebras, Lie color algebras, 
Lie superalgebras and other type of generalized Lie algebras 
are recovered by means of an iterated construction, known 
as monadic decomposition of functors, which is based on 
Eilenberg–Moore categories. To this aim we introduce the 
notion of Milnor–Moore category as a monoidal category for 
which a Milnor–Moore type Theorem holds. We also show 
how to lift the property of being a Milnor–Moore category 
whenever a suitable monoidal functor is given and we apply 
this technique to provide examples.

© 2015 Elsevier Inc. All rights reserved.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

✩ This paper was written while both authors were members of GNSAGA. The first author was partially 
supported by the research grant “Progetti di Eccellenza 2011/2012” from the “Fondazione Cassa di 
Risparmio di Padova e Rovigo”.
* Corresponding author.

E-mail addresses: alessandro.ardizzoni@unito.it (A. Ardizzoni), men@unife.it (C. Menini).
URLs: http://sites.google.com/site/aleardizzonihome (A. Ardizzoni), 

http://sites.google.com/a/unife.it/claudia-menini (C. Menini).
http://dx.doi.org/10.1016/j.jalgebra.2015.09.031
0021-8693/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2015.09.031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:alessandro.ardizzoni@unito.it
mailto:men@unife.it
http://sites.google.com/site/aleardizzonihome
http://sites.google.com/a/unife.it/claudia-menini
http://dx.doi.org/10.1016/j.jalgebra.2015.09.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2015.09.031&domain=pdf


A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488–563 489
1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
2. Commutation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
3. Braided objects and adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
4. Braided categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
5. Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
6. Adjunctions for enveloping functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
7. Stationary monadic decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
8. Lifting the structure of MM-category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
9. Examples of MM-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

9.1. Quasi-bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
9.2. Dual quasi-bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Appendix A. (Co)equalizers and (co)monadicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Appendix B. Braided (co)equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Introduction

The celebrated Milnor–Moore Theorem [32, Theorem 5.18] establishes, in characteris-
tic zero, an equivalence between the category of primitively generated braided bialgebras 
and the category of Lie algebras. The functors giving the equivalence are the universal 
enveloping algebra functor U , associating the universal enveloping algebra U (L) to a 
Lie algebra L, and the primitive functor P which gives the primitive part P (B) of a 
given bialgebra B. The fact that the counit UP → Id of the adjunction involved is an 
isomorphism just encodes the fact that the bialgebras considered are primitively gener-
ated. On the other hand the crucial point in the proof of the theorem is that the maps 
ηL : L → P (U (L)) giving the unit of the adjunction (U ,P) are isomorphisms. Now 
observe that the tensor algebra T (V ), defined for any vector space V , yields a functor T
from the category of vector spaces to the category of bialgebras which is a left adjoint of 
the functor P obtained from P forgetting the Lie algebra structure. In this case the unit 
V → P (T (V )) fails to be an isomorphism in general. Note also that U (L) is a quotient 
of T (L). Thus we could say that (U ,P) is a refinement of the adjunction (T, P ) obtained 
by restricting the codomain of P and changing the left adjoint in order to obtain a new 
adjunction with invertible unit.

Considering the wider context of a monoidal category M, bialgebras and Lie algebras 
are substituted by their symmetric braided analogue (for instance a braided symmetric 
bialgebra in M is an object equipped with an algebra structure, a coalgebra structure 
and a symmetric Yang–Baxter operator satisfying the expected compatibility axioms); 
the same happens for the primitive functor and the enveloping functor. Such a category 
M is called Milnor–Moore (MM) exactly when the unit of this adjunction is an isomor-
phism. In this case, the category of symmetric braided Lie algebras can be described 
by the so-called monadic decomposition of the primitive functor (see below). When the 
category M is also symmetric, then we can consider bialgebras and Lie algebras in M
as in the case of vector spaces. In this case we prove that if M is a MM-category then 
the unit η : Id → PU of the corresponding adjunction (U ,P) is an isomorphism too 
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and that the category of Lie algebras can be recovered from the starting category M
by means of the same iterated procedure. For this reason, the remaining part of our 
investigation focuses on giving examples of MM-categories. The first example is the cat-
egory M of vector spaces in characteristic zero. Then, under mild conditions, we find 
that a monoidal category M endowed with a conservative and exact monoidal functor 
M → M preserving denumerable coproducts is still MM. As a consequence we can prove 
that monoidal Hom-Lie algebras, Lie color algebras, Lie superalgebras and other type of 
generalized Lie algebras are recovered by means of the same iterated construction based 
on Eilenberg–Moore categories.

In order to explain our results more precisely, we need now to enter into the technical 
details of our setting. Let (L : B → A, R : A → B) be an adjunction with unit η and 
counit ε. Then RL is a monad on B (with multiplication RεL and unit η) and one can 
consider the Eilenberg–Moore category RLB associated to this monad and the so-called 
comparison functor K : A → RLB which is defined by KX := (RX,RεX) and Kf :=
Rf . This gives the diagram

A
R

A
K

IdA

B
L

RLB
RLU

where the undashed part commutes. In the case when K itself has a left adjoint Λ, one 
can repeat this construction starting from the new adjunction (Λ, K). Going on this way 
one possibly obtains a diagram of the form

A
R0

A
R1

IdA A
R2

IdA
. . .

IdA

B0

L0

B1

L1
U0,1

B2

L2
U1,2

. . .
U2,3

where it is more convenient to relabel (L, R) and (Λ, K) as (L0, R0) and (L1, R1) respec-
tively. If there is a minimal N ∈ N such that LN is full and faithful, then R is said to 
have monadic decomposition of monadic length N . This is equivalent to requiring that 
the forgetful functor UN,N+1 is a category isomorphism and no Un,n+1 has this property 
for 0 ≤ n ≤ N − 1 (see e.g. [4, Remark 2.4]). In [4, Theorem 3.4], we investigated the 
particular case

BialgM
P

BialgM
P1

IdBialgM BialgM
P2

IdBialgM

M

T

M1
U0,1

T 1

M2
U1,2

T 2

where M denotes the category of vector spaces over a fixed base field k, BialgM is the 
category of k-bialgebras, T is the tensor bialgebra functor (the barred notation serves to 
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distinguish this functor from the tensor algebra functor T : M → AlgM which goes into 
k-algebras) and P is the primitive functor which assigns to each k-bialgebra its space 
of primitive elements. We proved that this P has a monadic decomposition of monadic 
length at most 2. Moreover, when char (k) = 0, for every V2 = ((V, μ) , μ1) ∈ M2 one can 
define [x, y] := μ (xy − yx) for every x, y ∈ V . Then (V, [−,−]) is an ordinary Lie algebra 
and T 2V2 = TV/ (xy − yx− [x, y] | x, y ∈ V ) is the corresponding universal enveloping 
algebra. This suggests a connection between the category M2 and the category LieM
of Lie k-algebras. It is then natural to expect the existence of a category equivalence Λ
such that the following diagram

BialgM

P

BialgM

P1

IdBialgM BialgM

P2

IdBialgM

IdBialgM

BialgM
P

IdBialgM

M

T

M1

T 1

U0,1
M2

T 2

U1,2

Λ
LieM

U

HLie

commutes in its undashed part, where HLie denotes the forgetful functor, U the universal 
enveloping bialgebra functor and P the corresponding primitive functor.

A first investigation showed that, in order to solve the problem above, it is more 
natural to work with braided k-vector spaces instead of ordinary k-vector spaces and to 
replace the categories M, BialgM and LieM with their braided analogues BrM, BrBialgM
and BrLieM consisting of braided vector spaces, braided bialgebras and braided Lie 
algebras respectively. We were further led to substitute M with an arbitrary monoidal 
category M. We point out that, in order to produce a braided analogue of the universal 
enveloping algebra which further carries a braided bialgebra structure, the assumption 
that the underlying Yang–Baxter operator is symmetric is also needed. Thus let BrsM, 
BrBialgsM and BrLiesM be the analogue of BrM, BrBialgM and BrLieM consisting of 
objects with symmetric Yang–Baxter operator. Let T s

Br : BrsM → BrBialgsM be the 
symmetric braided tensor bialgebra functor and let P s

Br be its right adjoint, the primitive 
functor. We look for a condition for P s

Br to have monadic decomposition of monadic length 
at most two. On the other hand the functor P s

Br induces a functor Ps
Br : BrBialgsM →

BrLiesM which turns out to have a left adjoint Us
Br, the universal enveloping bialgebra 

functor.
In view of the celebrated Milnor–Moore Theorem, see Remark 7.5, we say that a 

category M is a Milnor–Moore category (MM-category for short) whenever the unit of 
the adjunction (Us

Br, Ps
Br) is a functorial isomorphism (plus other conditions required 

for the existence of the functors involved). One of the main results in the paper is 
Theorem 7.1, which ensures that, for a MM-category M, the functor P s

Br has a monadic 
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decomposition of monadic length at most two. Moreover, in this case, we can identify 
the category (BrsM)2 with BrLiesM through an equivalence ΛBr : (BrsM)2 → BrLiesM.

BrBialgsM

P s
Br

BrBialgsM

(P s
Br)1

IdBrBialgsM BrBialgsM

(P s
Br)2

IdBrBialgsM

IdBrBialgsM

BrBialgsM
Ps

Br

IdBrBialgsM

BrsM

T s
Br

(BrsM)1

(T s
Br)1

U0,1
(BrsM)2

(T s
Br)2

U1,2

ΛBr
BrLiesM

Us
Br

Hs
BrLie

Hence MM-categories, besides having an interest in their own, give us an environment 
where the functor P s

Br has a behavior completely analogous to the classical vector space 
situation we investigated in [4, Theorem 3.4]. In the case of a symmetric MM-category 
M the connection with Milnor–Moore Theorem becomes more evident. In fact, in this 
case, we can apply Theorem 7.2 to obtain that the unit of the adjunction 

(
U ,P

)
is a 

functorial isomorphism.

BialgM

P

BialgM

P1

IdBialgM BialgM

P2

IdBialgM

IdBialgM

BialgM
P

IdBialgM

M

T

M1

T 1

U0,1
M2

T 2

U1,2

Λ
LieM

U

HLie

The next step is to provide meaningful examples of MM-categories. A first result 
in this direction is Theorem 8.1, based on a result by Kharchenko, which states that 
the category M of vector spaces over a field of characteristic 0 is a MM-category. Note 
that the Lie algebras involved are not ordinary ones but they depend on a symmetric 
Yang–Baxter operator.

Much of the material developed in the paper (see e.g. Proposition 3.7, Theorem 8.3 and 
the construction of the adjunctions used therein) is devoted to the proof of our central 
result namely Theorem 8.4 which allows us to lift the property of being a MM-category 
whenever a suitable monoidal functor is given. A main tool in this proof is the concept 
of commutation datum which we introduce and investigate in Section 2. We use this 
Theorem 8.4 in the case of the forgetful functor F : M → M where M is a subcategory 
of M. The goal is to provide, in this way, meaningful examples of MM-categories M and, 
in the case when M is symmetric, to recognize the corresponding type of Lie algebras. 
A first example of MM-category obtained in this way is the category of Yetter–Drinfeld 
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modules, over a Hopf algebra over a field of characteristic zero, which is considered in 
Example 9.1. Subsection 9.1 (resp. 9.2) deals with the case when M is the category of 
modules (resp. comodules) over a quasi-bialgebra (resp. over a dual quasi-bialgebra). We 
prove that the forgetful functor satisfies the assumptions of Theorem 8.4 if and only if 
the quasi-bialgebra (resp. the dual quasi-bialgebra) is a deformation of a usual bialgebra, 
see Lemma 9.4 (resp. Lemma 9.13). As particular cases of this situation we prove that 
the category H̃ (M) of [16, Proposition 1.1] is an MM-category, see Remark 9.10. Note 
that an object in LieM, for M = H̃ (M), is nothing but a monoidal Hom-Lie algebra. 
In Remark 9.17, we recover (H,R)-Lie algebras in the sense of [13, Definition 4.1] by 
considering the category of comodules over a co-triangular bialgebra (H,R) regarded as 
a co-triangular dual quasi-bialgebra with trivial reassociator. In particular, let G be an 
abelian group endowed with an anti-symmetric bicharacter χ : G × G → k \ {0} and 
extend χ by linearity to a k-linear map R : k [G] ⊗ k [G] → k, where k [G] denotes the 
group algebra. Then (k [G] , R) is a co-triangular bialgebra and, as a consequence, we 
recover (G,χ)-Lie color algebras in the sense of [33, Example 10.5.14], in Example 9.18, 
and in particular Lie superalgebras in Example 9.19.

The appendices contain general results regarding the existence of (co)equalizers in 
the category of (co)algebras, bialgebras and their braided analogue over a monoidal 
category. These results are applied to obtain Proposition B.11, which is used in the 
proof of Theorem 7.1.

1. Preliminaries

In this section, we shall fix some basic notation and terminology.

Notation 1.1. Throughout this paper k will denote a field. All vector spaces will be defined 
over k. The unadorned tensor product ⊗ will denote the tensor product over k if not stated 
otherwise.

1.2. Monoidal Categories. Recall that (see [26, Chap. XI]) a monoidal category is a 
category M endowed with an object 1 ∈ M (called unit), a functor ⊗ : M ×M → M
(called tensor product), and functorial isomorphisms aX,Y,Z : (X⊗Y ) ⊗Z → X⊗(Y ⊗Z), 
lX : 1 ⊗X → X, rX : X⊗1 → X, for every X, Y , Z in M. The functorial morphism a is 
called the associativity constraint and satisfies the Pentagon Axiom, that is the equality

(U ⊗ aV,W,X) ◦ aU,V⊗W,X ◦ (aU,V,W ⊗X) = aU,V,W⊗X ◦ aU⊗V,W,X

holds true, for every U , V , W , X in M. The morphisms l and r are called the unit 
constraints and they obey the Triangle Axiom, that is (V ⊗ lW ) ◦ aV,1,W = rV ⊗W , for 
every V , W in M.

A monoidal functor (also called strong monoidal in the literature)

(F, φ0, φ2) : (M,⊗,1, a, l, r) → (M′,⊗′,1′, a′, l′, r′)
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between two monoidal categories consists of a functor F : M → M′, an isomorphism 
φ2(U, V ) : F (U) ⊗′ F (V ) → F (U ⊗ V ), natural in U, V ∈ M, and an isomorphism 
φ0 : 1′ → F (1) such that the diagram

(F (U) ⊗′ F (V )) ⊗′ F (W )

a′
F (U),F (V ),F (W )

φ2(U,V )⊗′F (W )
F (U ⊗ V ) ⊗′ F (W )

φ2(U⊗V,W )
F ((U ⊗ V ) ⊗W )

F (aU,V,W )

F (U) ⊗′ (F (V ) ⊗′ F (W ))
F (U)⊗′φ2(V,W )

F (U) ⊗′ F (V ⊗W )
φ2(U,V⊗W )

F (U ⊗ (V ⊗W ))

is commutative, and the following conditions are satisfied:

F (lU ) ◦ φ2(1, U) ◦ (φ0⊗′F (U)) = l′F (U), F (rU ) ◦ φ2(U,1) ◦ (F (U)⊗′
φ0) = r′F (U).

The monoidal functor is called strict if the isomorphisms φ0, φ2 are identities of M′.

The notions of algebra, module over an algebra, coalgebra and comodule over a coal-
gebra can be introduced in the general setting of monoidal categories.

As it is noticed in [28, p. 420], the Pentagon Axiom solves the consistency problem 
that appears because there are two ways to go from ((U ⊗ V ) ⊗W ) ⊗X to U ⊗ (V ⊗
(W ⊗ X)). The coherence theorem, due to S. Mac Lane [31, Chapter VII, Section 2], 
solves the similar problem for the tensor product of an arbitrary number of objects 
in M. Accordingly with this theorem, we can always omit all brackets and simply write 
X1⊗· · ·⊗Xn for any object obtained from X1, . . . , Xn by using ⊗ and brackets. Also as 
a consequence of the coherence theorem, the morphisms a, l, r take care of themselves, 
so they can be omitted in any computation involving morphisms in M. Thus, for sake of 
simplicity, from now on we will omit the associativity and unit constraints unless needed 
to clarify the context.

Let V be an object in a monoidal category (M,⊗,1). Define iteratively V ⊗n for all 
n ∈ N by setting V ⊗0 := 1 for n = 0 and V ⊗n := V ⊗(n−1) ⊗ V for n > 0.

Remark 1.3. Let M be a monoidal category. Denote by AlgM the category of algebras 
in M and their morphisms. Assume that M has denumerable coproducts and that the 
tensor products (i.e. M ⊗ (−) : M → M and (−) ⊗M : M → M, for every object M
in M) preserve such coproducts. By [31, Theorem 2, page 172], the forgetful functor

Ω : AlgM → M

has a left adjoint T : M → AlgM. By construction ΩTV = ⊕n∈NV
⊗n for every V ∈ M. 

For every n ∈ N, we will denote by

αnV : V ⊗n → ΩTV
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the canonical injection. Given a morphism f : V → W in M, we have that Tf is uniquely 
determined by the following equality

ΩTf ◦ αnV = αnW ◦ f⊗n, for every n ∈ N. (1)

The multiplication mΩTV and the unit uΩTV are uniquely determined by

mΩTV ◦ (αmV ⊗ αnV ) = αm+nV, for every m,n ∈ N, (2)

uΩTV = α0V. (3)

Note that (2) should be integrated with the proper unit constrains when m or n is zero.
The unit η and the counit ε of the adjunction (T,Ω) are uniquely determined, for all 

V ∈ M and (A,mA, uA) ∈ AlgM by the following equalities

ηV := α1V and Ωε (A,mA, uA) ◦ αnA := mn−1
A for every n ∈ N (4)

where mn−1
A : A⊗n → A is the iterated multiplication of A defined by m−1

A := uA, m0
A :=

IdA and, for n ≥ 2, mn−1
A = mA(mn−2

A ⊗A).

Definition 1.4. Recall that a monad on a category A is a triple Q := (Q,m, u), where Q :
A → A is a functor, m : QQ → Q and u : A → Q are functorial morphisms satisfying the 
associativity and the unitality conditions m ◦mQ = m ◦Qm and m ◦Qu = IdQ = m ◦uQ. 
An algebra over a monad Q on A (or simply a Q-algebra) is a pair (X,μ) where X ∈ A
and μ : QX → X is a morphism in A such that μ ◦Qμ = μ ◦mX and μ ◦ uX = IdX . A 
morphism between two Q-algebras (X,μ) and (X ′, μ′) is a morphism f : X → X ′ in A
such that μ′ ◦ Qf = f ◦ μ. We will denote by QA the category of Q-algebras and their 
morphisms. This is the so-called Eilenberg–Moore category of the monad Q (which is 
sometimes also denoted by AQ in the literature). When the multiplication and unit of 
the monad are clear from the context, we will just write Q instead of Q.

A monad Q on A gives rise to an adjunction (F,U) := (QF, QU) where U : QA → A

is the forgetful functor and F : A → QA is the free functor. Explicitly:

U (X,μ) := X, Uf := f and FX := (QX,mX) , Ff := Qf.

Note that UF = Q. The unit of the adjunction (F,U) is given by the unit u : A →
UF = Q of the monad Q. The counit λ : FU → QA of this adjunction is uniquely 
determined by the equality U (λ (X,μ)) = μ for every (X,μ) ∈ QA. It is well-known 
that the forgetful functor U : QA → A is faithful and reflects isomorphisms (see e.g. [12, 
Proposition 4.1.4]).

Let (L : B → A, R : A → B) be an adjunction with unit η and counit ε. Then 
(RL,RεL, η) is a monad on B and we can consider the so-called comparison functor
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K : A → RLB of the adjunction (L,R) which is defined by KX := (RX,RεX) and 
Kf := Rf . Note that RLU ◦K = R.

Definition 1.5. An adjunction (L : B → A, R : A → B) is called monadic (tripleable 
in Beck’s terminology [10, Definition 3, page 8]) whenever the comparison functor K :
A → RLB is an equivalence of categories. A functor R is called monadic if it has a left 
adjoint L such that the adjunction (L, R) is monadic, see [10, Definition 3’, page 8]. In a 
similar way one defines comonadic adjunctions and functors using the Eilenberg–Moore 
category LRA of coalgebras over the comonad induced by (L,R).

The notion of an idempotent monad is tightly connected with the monadic length of 
a functor.

Definition 1.6. (See [8, page 231].) A monad (Q,m, u) is called idempotent whenever m
is an isomorphism. An adjunction (L,R) is called idempotent whenever the associated 
monad is idempotent.

The interested reader can find results on idempotent monads in [8,34]. Here we just 
note that (L,R) is idempotent if and only if ηR is a functorial isomorphism.

Definition 1.7. (See [4, Definition 2.7], [5, Definition 2.1] and [34, Definitions 2.10 and 
2.14].) Fix a N ∈ N. We say that a functor R has a monadic decomposition of monadic 
length N whenever there exists a sequence (Rn)n≤N of functors Rn such that

1) R0 = R;
2) for 0 ≤ n ≤ N , the functor Rn has a left adjoint functor Ln;
3) for 0 ≤ n ≤ N − 1, the functor Rn+1 is the comparison functor induced by the 

adjunction (Ln, Rn) with respect to its associated monad;
4) LN is full and faithful while Ln is not full and faithful for 0 ≤ n ≤ N − 1.
Compare with the construction performed in [29, 1.5.5, page 49].
Note that for functor R : A → B having a monadic decomposition of monadic 

length N , we have a diagram

A

R0

A

R1

IdA A

R2

IdA · · · · · ·
IdA A

RN

IdA

B0

L0

B1

L1

U0,1
B2

L2

U1,2
· · · · · ·

U2,3
BN

LN

UN−1,N

(5)

where B0 = B and, for 1 ≤ n ≤ N ,

• Bn is the category of (Rn−1Ln−1)-algebras Rn−1Ln−1Bn−1;
• Un−1,n : Bn → Bn−1 is the forgetful functor Rn−1Ln−1U .
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We will denote by ηn : IdBn
→ RnLn and εn : LnRn → IdA the unit and counit of 

the adjunction (Ln, Rn) respectively for 0 ≤ n ≤ N . Note that one can introduce the 
forgetful functor Um,n : Bn → Bm for all m ≤ n with 0 ≤ m, n ≤ N .

Proposition 1.8. (See [4, Proposition 2.9].) Let (L : B → A, R : A → B) be an idempotent 
adjunction. Then R : A → B has a monadic decomposition of monadic length at most 1.

We refer to [4, Remarks 2.8 and 2.10] for further comments on monadic decomposi-
tions.

Definition 1.9. We say that a functor R is comparable whenever there exists a sequence 
(Rn)n∈N of functors Rn such that R0 = R and, for n ∈ N,

1) the functor Rn has a left adjoint functor Ln;
2) the functor Rn+1 is the comparison functor induced by the adjunction (Ln, Rn)

with respect to its associated monad.
In this case we have a diagram as (5) but not necessarily stationary. Hence we can 

consider the forgetful functors Um,n : Bn → Bm for all m ≤ n with m, n ∈ N.

Remark 1.10. Fix a N ∈ N. A functor R having a monadic decomposition of monadic 
length N is comparable, see [4, Remark 2.10].

By the proof of Beck’s Theorem [10, Proof of Theorem 1] one gets the following result.

Lemma 1.11. Let A be a category such that, for any (reflexive) pair (f, g) [15, 3.6, 
page 98] where f , g : X → Y are morphisms in A, one can choose a specific coequalizer. 
Then the comparison functor K : A → RLB of an adjunction (L,R) is a right adjoint. 
Thus any right adjoint R : A → B is comparable.

Let F : A → B be a functor. We denote by Im(F ), the image of F , the full subcategory 
of B whose objects are those of the form FA for some A ∈ A.

Lemma 1.12. Let F : C → B be a full and faithful functor which is also injective on 
objects.

1) Let G : A → B be a functor such that Im(G) ⊆ Im(F ). Then there is a unique 
functor Ĝ : A → C such that FĜ = G.

2) Let G, G′ : A → B be functors as in 1). For any natural transformation γ : G → G′

there is a unique natural transformation γ̂ : Ĝ → Ĝ′ such that F γ̂ = γ.

2. Commutation data

Definition 2.1. A functor is called conservative if it reflects isomorphisms.
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Lemma 2.2. Let (L,R) and (L′, R′) be adjunctions that fit into the following commutative 
diagram of functors

A F

R

A′

R′

B G B′

(6)

Then there is a unique natural transformation ζ : L′G −→ FL such that

R′ζ ◦ η′G = Gη (7)

holds, namely

ζ :=
(
L′G

L′Gη−→ L′GRL = L′R′FL
ε′FL−→ FL

)
. (8)

Moreover we have that

ε′F = Fε ◦ ζR. (9)

Definition 2.3. We will say that (F,G) : (L,R) → (L′, R′) is a commutation datum if
1) (L,R) and (L′, R′) are adjunctions that fit into the commutative diagram (6).
2) The natural transformation ζ : L′G −→ FL of Lemma 2.2 is a functorial isomor-

phism.
The map ζ will be called the canonical transformation of the datum.

Proposition 2.4. Let (F,G) : (L,R) → (L′, R′) and (F ′, G′) : (L′, R′) → (L′′, R′′) be a 
commutation data. Then (F ′F,G′G) : (L,R) → (L′′, R′′) is a commutation datum.

In the following result we will adopt the notations of Definition 1.7 for L1, R1, B1 and 
their analogue with primes.

Proposition 2.5. Let (F,G) : (L,R) → (L′, R′) be a commutation datum of functors as 
in (6). Assume also that F preserves coequalizers of reflexive pairs of morphisms in A and 
that the comparison functors R′

1 and R1 have left adjoints L′
1 and L1 respectively. Then 

G lifts to a functor G1 : B1 → B′
1 such that G1 (B,μ) := (GB,Gμ ◦R′ζB), G1 (f) = Gf

and the following diagrams commute.

B1
G1

U

B′
1

U ′

B G B′

A F

R1

A′

R′
1

B1
G1 B′

1

Moreover (F,G1) : (L1, R1) → (L′
1, R

′
1) is a commutation datum.
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Furthermore the functor G1 is conservative (resp. faithful) whenever G is.
If G is faithful then G1 is full (resp. injective on objects) whenever G is.

Proof. Denote by ζ the canonical map of the datum (F,G) : (L,R) → (L′, R′). Set 
λ := R′ζ : (R′L′)G → R′FL = G (RL). By Lemma 2.2, ζ fulfills (9). By (7), we have 
λ ◦ η′G = Gη and

GRεL ◦ λRL ◦R′L′λ = GRεL ◦R′ζRL ◦R′L′R′ζ = R′ [FεL ◦ ζRL ◦ L′R′ζ]
(9)= R′ [ε′FL ◦ L′R′ζ] = R′ [ζ ◦ ε′L′G] = λ ◦R′ε′L′G

Hence we can apply [23, Lemma 1] to the case ”K” = R′L′, ”H” = RL and ”T” = G. 
Thus we get a functor G1 : B1 → B′

1 such that U ′G1 = GU . Explicitly G1 (B,μ) :=
(GB,Gμ ◦R′ζB), G1 (f) = Gf . We have

G1R1A = G1 (RA,RεA) = (GRA,GRεA ◦R′ζRA)

= (R′FA,R′ [FεA ◦ ζRA]) (9)= (R′FA,R′ε′FA) = R′
1FA

and G1R1f = GRf = R′Ff = R′
1Ff so that G1R1 = R′

1F . By the proof of [10, 
Theorem 1], if we set π := εL1 ◦ LUη1, we get the following coequalizer of a reflexive 
pair of morphisms in A.

LRLB
Lμ

εLB
LB = LU (B,μ)

π(B,μ)
L1(B,μ)

Since F preserves coequalizers of reflexive pairs of morphisms in A, we get the bottom 
fork in the diagram below is a coequalizer.

L′R′L′GB
L′(Gμ◦R′ζB

)
ε′L′GB

ζRLB◦L′R′ζB

L′GB

ζB

Fπ(B,μ)◦ζB
FL1 (B,μ)

IdFL1(B,μ)

FLRLB
FLμ

FεLB
FLB

Fπ(B,μ)
FL1(B,μ)

(10)

We compute

FLμ ◦ (ζRLB ◦ L′R′ζB) = ζB ◦ L′Gμ ◦ L′R′ζB = ζB ◦ L′ (Gμ ◦R′ζB) ,

F εLB ◦ (ζRLB ◦ L′R′ζB) (9)= ε′FLB ◦ L′R′ζB = ζB ◦ ε′L′GB

so that diagram (10) serially commutes. Since, in this diagram, the vertical arrows are 
isomorphisms, the upper fork is a coequalizer too. In a similar way, if we set π′ :=
ε′L′

1 ◦ L′U ′η′1 we have the coequalizer
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L′R′L′B′
L′μ′

ε′L′B′
L′B′

π′(B′,μ′)
L′

1(B′, μ′)

For (B′, μ′) := G1 (B,μ) we get the coequalizer

L′R′L′GB
L′(Gμ◦R′ζB

)
ε′L′GB

L′GB
π′G1(B,μ)

L′
1G1 (B,μ)

By the foregoing, Fπ (B,μ) ◦ ζB coequalizes the pair (L′ (Gμ ◦R′ζB) , ε′L′GB). By the 
universal property of coequalizers, there is a unique morphism ζ1 (B,μ) : L′

1G1 (B,μ) −→
FL1 (B,μ) such that ζ1 (B,μ) ◦ π′G1 (B,μ) = Fπ (B,μ) ◦ ζB. By the uniqueness of the 
coequalizers, ζ1 (B,μ) is an isomorphism.

Let us check that ζ1 (B,μ) is natural. Let f : (B,μ) → (B′, μ′) in B1. Then

FL1f ◦ ζ1 (B,μ) ◦ π′G1 (B,μ) = FL1f ◦ Fπ (B,μ) ◦ ζB = Fπ (B′, μ′) ◦ FLUf ◦ ζB

= Fπ (B′, μ′) ◦ ζB′ ◦ L′GUf = ζ1 (B′, μ′) ◦ π′G1 (B′, μ′) ◦ L′U ′G1f

= ζ1 (B′, μ′) ◦ L1G1f ◦ π′G1 (B,μ)

so that FL1f ◦ζ1 (B,μ) = ζ1 (B′, μ′)◦L1G1f and hence we get a functorial isomorphism 
ζ1 : L′

1G1 −→ FL1. We have

ε1 ◦ πR1 = ε1 ◦ εL1R1 ◦ LUη1R1 = ε ◦ LRε1 ◦ LUη1R1 = ε ◦ LU [R1ε1 ◦ η1R1] = ε,

Rπ ◦ ηU = RεL1 ◦RLUη1 ◦ ηU = RεL1 ◦ ηUR1L1 ◦ Uη1 = RεL1 ◦ ηRL1 ◦ Uη1 = Uη1

so that, we obtain that ε1 ◦ πR1 = ε and Rπ ◦ ηU = Uη1 and similar equations for 
(L′, R′). We compute

U ′ (R′
1ζ1 ◦ η′1G1) = R′ζ1 ◦R′π′G1 ◦ η′U ′G1

def. ζ1= R′Fπ ◦R′ζU ◦ η′GU

(7)= R′Fπ ◦GηU = G [Rπ ◦ ηU ] = GUη1 = U ′G1η1

so that R′
1ζ1 ◦ η′1G1 = G1η1. Let us check that G1 is conservative whenever G is. Let 

f : (B,μ) → (B′, μ′) in B1 be such that G1f is an isomorphism. Then U ′G1f = GUf is 
an isomorphism. Since G and U are conservative (see [12, Proposition 4.1.4, page 189]), 
we get that f is an isomorphism.

If G is faithful, from U ′G1 = GU and the fact that U is faithful, we deduce that G1

is faithful.
Assume G is faithful and full. Let f ∈ B′

1 (G1 (B,μ) , G1 (B′, μ′)). Then U ′f ∈
B′ (GB,GB′) so that there is h ∈ B (B,B′) such that Gh = U ′f . We have
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G (μ′ ◦RLh) ◦R′ζB = Gμ′ ◦GRLh ◦R′ζB = Gμ′ ◦R′FLh ◦R′ζB

= Gμ′ ◦R′ζB′ ◦R′L′Gh = Gμ′ ◦R′ζB′ ◦R′L′U ′f

= U ′f ◦Gμ ◦R′ζB = Gh ◦Gμ ◦R′ζB = G (h ◦ μ) ◦R′ζB.

Since ζ is an isomorphism and G is faithful, we get that μ′ ◦RLh = h ◦ μ so that there 
is a unique morphism k ∈ B1 ((B,μ) , (B′, μ′)) such that Uk = h. Hence U ′f = Gh =
GUk = U ′G1k and hence f = G1k. Thus G1 is faithful and full.

Assume G is faithful and injective on objects. If G1 (B,μ) = G1 (B′, μ′) i.e. 
(GB,Gμ ◦R′ζB) = (GB′, Gμ′ ◦R′ζB′) then GB = GB′ and Gμ ◦R′ζB = Gμ′ ◦R′ζB′. 
In view of the assumptions on G and since ζ is an isomorphism, we get (B,μ) = (B′, μ′)
so that G1 is faithful and injective on objects. �
Lemma 2.6. Let (L,R) and (L′, R′) be adjunctions of functors as in (6). Assume that 
R′ζR is a functorial isomorphism where ζ : L′G −→ FL is the natural transformation 
of Lemma 2.2. Assume also that G is conservative.

1) Let A ∈ A be such that η′R′FA is an isomorphism. Then ηRA is an isomorphism.
2) If the adjunction (L′, R′) is idempotent then (L,R) is idempotent.

Proof. 1) Since η′R′FA = η′GRA is an isomorphism and R′ζR is an isomorphism, 
we get that R′ζRA ◦ η′GRA is an isomorphism. By (7) this means that GηRA is an 
isomorphism. Since G is conservative, we conclude.

2) (L,R) is idempotent if and only if ηR is a functorial isomorphism and similarly for 
(L′, R′). Thus (L′, R′) is idempotent if and only if η′R′ is a functorial isomorphism. If 
the latter condition holds then η′R′F is a functorial isomorphism and, by 1), so is ηR
and hence (L,R) is idempotent. �
Lemma 2.7. Let (F,G) : (L,R) → (L′, R′) be a commutation datum. If G is conservative 
and η′ is an isomorphism so is η.

Proof. By (7), we have R′ζ ◦ η′G = Gη. �
Corollary 2.8. Let (F,G) : (L,R) → (L′, R′) be a commutation datum. Assume also that 
F preserves coequalizers of reflexive pairs of morphisms in A and that G is conservative. 
Assume that both R and R′ are comparable. Let N ∈ N.

1) Let A ∈ A be such that η′NR′
NFA is an isomorphism. Then ηNRNA is an isomor-

phism.
2) If (L′

N , R′
N ) is idempotent so is (LN , RN ).

Proof. Apply Proposition 2.5 and Lemma 2.6. �
Next lemma will be a useful tool to construct new commutation data.
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Lemma 2.9. Let (L′, R′) be an adjunction and let F and G be full and faithful functors 
which are also injective on objects and have domain and codomain as in the following 
diagrams. Assume that Im(L′G) ⊆ Im(F ) and that Im(R′F ) ⊆ Im(G). Set L := L̂′G

and R := R̂′F with notation as in Lemma 1.12 so that L and R are the unique functors 
which make the following diagrams commute

A F A′

B
L

G B′
L′

A F

R

A′

R′

B G B′

Then (L,R) is an adjunction with unit η : IdB → RL and counit ε : LR → IdA which 
satisfy

Gη = η′G and Fε = ε′F (11)

where η′ and ε′ are the corresponding unit and counit of (L′, R′). Moreover (F,G) :
(L,R) → (L′, R′) is a commutation datum and the canonical transformation ζ : L′G →
FL is IdL′G.

Proof. Apply Lemma 1.12 once observed that RL = R̂′L′G, LR = L̂′R′F , Ĝ = IdB and 
F̂ = IdA. Then define η := η̂′G and ε := ε̂′F . �
3. Braided objects and adjunctions

Definition 3.1. Let (M,⊗,1) be a monoidal category (as usual we omit the brackets 
although we are not assuming the constraints are trivial).

1) Let V be an object in M. A morphism c = cV : V ⊗ V → V ⊗ V is called a Yang–
Baxter operator (see [26, Definition XIII.3.1]) if it satisfies the quantum Yang–Baxter 
equation

(c⊗ V ) (V ⊗ c) (c⊗ V ) = (V ⊗ c) (c⊗ V ) (V ⊗ c) (12)

on V ⊗ V ⊗ V . We further assume that c is invertible. The pair (V, c) will be called 
a braided object in M. A morphism of braided objects (V, cV ) and (W, cW ) in M is a 
morphism f : V → W such that cW (f ⊗ f) = (f ⊗ f)cV . This defines the category BrM
of braided objects and their morphisms.

2) [9] A quadruple (A, m, u, c) is called a braided algebra if

• (A, m, u) is an algebra in M;
• (A, c) is a braided object in M;
• m and u commute with c, that is the following conditions hold:
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c(m⊗A) = (A⊗m)(c⊗A)(A⊗ c), (13)

c(A⊗m) = (m⊗A) (A⊗ c) (c⊗A), (14)

c(u⊗A)l−1
A = (A⊗ u) r−1

A , c(A⊗ u)r−1
A = (u⊗A) l−1

A . (15)

A morphism of braided algebras is, by definition, a morphism of algebras which, in 
addition, is a morphism of braided objects. This defines the category BrAlgM of braided 
algebras and their morphisms.

3) Dually one introduces the category BrCoalgM of braided coalgebras and their 
morphisms.

4) [39, Definition 5.1] A sextuple (B, m, u, Δ, ε, c) is a called a braided bialgebra if

• (B, m, u, c) is a braided algebra;
• (B, Δ, ε, c) is a braided coalgebra;
• the following relations hold:

Δm = (m⊗m)(B ⊗ c⊗B)(Δ ⊗ Δ), Δu = (u⊗ u)Δ1, (16)

εm = m1 (ε⊗ ε) , εu = Id1. (17)

A morphism of braided bialgebras is both a morphism of braided algebras and coal-
gebras. This defines the category BrBialgM of braided bialgebras.

Recall that a Yang–Baxter operator c is called symmetric or a symmetry whenever 
c2 = Id. Denote by BrsM, BrAlgsM, BrCoalgsM and BrBialgsM the full subcategories of the 
respective categories above consisting of objects with symmetric Yang–Baxter operator. 
Denote by

IsBr : BrsM → BrM, IsBrAlg : BrAlgsM → BrAlgM,

IsBrCoalg : BrCoalgsM → BrCoalgM, IsBrBialg : BrBialgsM → BrBialgM

the obvious inclusion functors. Note that they are full, faithful, injective on objects and 
conservative.

Remark 3.2. Let M be a monoidal category. Let A be one of the following categories 
BrM, BrAlgM, BrCoalgM and BrBialgM, let As be the corresponding full subcategory 
of objects with symmetric Yang–Baxter operator and denote by IsA : As → A the obvious 
inclusion functor. Let DA : A → M be the forgetful functor.

1) Let X ∈ A, Y s ∈ As and let α : X → IsAY
s be a morphism in A such that α := DAα

is a monomorphism. Set X := DAX and Y := DAIsAY
s. Since α is braided we have 

(α⊗ α) c2X = c2Y (α⊗ α) = α⊗ α where cX and cY are the Yang–Baxter operators of X
and Y respectively. Assume that α⊗α is a monomorphism. Then we obtain c2X = IdX⊗X

so that we can write X = IsAX
s for some Xs ∈ As and α is a morphism in As. Since DA
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reflects monomorphisms, we have proved that As is closed in A for those subobjects in 
A which are preserved by DA and by (−)⊗2 ◦DA where (−)⊗2 : M → M : V 
→ V ⊗ V .

2) Dually As is closed in A for those quotients in A which are preserved by DA and 
by (−)⊗2 ◦ DA.

3.3. Let M and M′ be monoidal categories. Following [6, Proposition 2.5], every monoidal 
functor (F, φ0, φ2) : M → M′ induces in a natural way suitable functors BrF , AlgF , 
BrAlgF and BrBialgF such that the following diagrams commute

BrM
BrF

H

BrM′

H′

M F M′

AlgM
AlgF

Ω

AlgM′

Ω′

M F M′

BrAlgM
BrAlgF

HAlg

BrAlgM′

H′
Alg

AlgM
AlgF

AlgM′

BrAlgM
BrAlgF

ΩBr

BrAlgM′

Ω′
Br

BrM
BrF BrM′

BrBialgM
BrBialgF

�Br

BrBialgM′

�′
Br

BrAlgM
BrAlgF

BrAlgM′

where the vertical arrows denote the obvious forgetful functors. Moreover

(1) The functors H, Ω, HAlg, ΩBr, �Br are conservative.
(2) BrF , AlgF , BrAlgF and BrBialgF are equivalences (resp. isomorphisms or conser-

vative) whenever F is.
(3) F preserves symmetric objects (this follows by definition of the Yang–Baxter oper-

ator induced by F ). Thus we can define BrsF , BrAlgsF and BrBialgsF such that

BrsM
BrsF

IsBr

BrsM′

IsBr

BrM
BrF BrM′

BrAlgsM
BrAlgsF

IsBrAlg

BrAlgsM′

IsBrAlg

BrAlgM
BrAlgF

BrAlgM′

BrBialgsM
BrBialgsF

IsBrBialg

BrBialgsM′

IsBrBialg

BrBialgM
BrBialgF

BrBialgM′

(18)

Next aim is to recall some meaningful adjunctions that will be investigated in the 
paper.

3.4. Let M be a monoidal category. Assume that M has denumerable coproducts and 
that the tensor products preserve such coproducts. In view of [6, Proposition 3.1], the 
functor ΩBr has a left adjoint TBr and the following diagrams commute.

BrAlgM
HAlg

AlgM

BrM

TBr

H M
T

BrAlgM
HAlg

ΩBr

AlgM
Ω

BrM
H M

(19)
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The unit ηBr and the counit εBr are uniquely determined by the following equations

HηBr = ηH, HAlgεBr = εHAlg, (20)

where η and ε denote the unit and counit of the adjunction (T,Ω) of Remark 1.3. Using 
Lemma 2.9, one shows that the adjunction (TBr,ΩBr) induces an adjunction (T s

Br,Ωs
Br)

such that the following diagrams commute.

BrAlgsM
IsBrAlg

BrAlgM

BrsM

T s
Br

IsBr BrM

TBr

BrAlgsM
IsBrAlg

Ωs
Br

BrAlgM
ΩBr

BrsM
IsBr BrM

(21)

The lemma can be applied by the following argument. It is clear that Im(ΩBrIsBrAlg) ⊆
Im(IsBr). Let (M, c) ∈ BrsM and set (A,mA, uA, cA) := TBrIsBr (M, c).

Using [6, (42)], we have cA (αmM ⊗ αnM) = (αnV ⊗ αmM) cm,n
A so that

c2A (αmM ⊗ αnM) = cA (αnV ⊗ αmM) cm,n
A = (αmM ⊗ αnM) cn,mA cm,n

A

and cn,mA cm,n
A = IdM⊗(m+n) . The latter is proved by induction on t = m + n ∈ N using 

[6, Proposition 2.7].
Thus c2A (αmM ⊗ αnM) = (αmM ⊗ αnM) for every m, n ∈ N and hence c2A = IdA⊗A. 

Therefore (A,mA, uA, cA) ∈ BrAlgsM and TBrIsBr (M, c) = IsBrAlg (A,mA, uA, cA). Hence 
Im(TBrIsBr) ⊆ Im(IsBrAlg). Thus, by Lemma 2.9 we have the desired adjunction with unit 
ηsBr : IdBrsM → Ωs

BrT
s
Br and counit εsBr : T s

BrΩs
Br → IdBrAlgs

M which are uniquely defined 
by

IsBrAlgε
s
Br = εBrI

s
BrAlg and IsBrη

s
Br = ηBrI

s
Br. (22)

Furthermore 
(
IsBrAlg, I

s
Br
)

: (T s
Br,Ωs

Br) → (TBr,ΩBr) is a commutation datum with canon-
ical transformation given by the identity.

Definition 3.5. Let M be a preadditive monoidal category with equalizers. Assume that 
the tensor products are additive. Let C := (C,ΔC , εC , uC) be a coalgebra (C,ΔC , εC)
endowed with a coalgebra morphism uC : 1 → C. In this setting we always implicitly 
assume that we can choose a specific equalizer

P (C)
ξC

C
ΔC

(C⊗uC)r−1
C +(uC⊗C)l−1

C

C ⊗ C (23)

We will use the same symbol when C comes out to be enriched with an extra structure 
such us when C will denote a bialgebra or a braided bialgebra.
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We now investigate some properties of TBr.

3.6. Let M be a preadditive monoidal category with equalizers and denumerable co-
products. Assume that the tensor products are additive and preserve equalizers and 
denumerable coproducts. By 3.4, the forgetful functor ΩBr : BrAlgM → BrM has a left 
adjoint TBr : BrM → BrAlgM. In view of [6, Lemma 3.4], TBr induces a functor TBr
such that

BrBialgM
�Br BrAlgM

BrM
TBr TBr

(24)

Explicitly, for all (V, c) ∈ BrM, we can write TBr (V, c) in the form (A, mA, uA, ΔA, εA,
cA) where ΔA : A → A ⊗A and εA : A → 1 are unique algebra morphisms such that

ΔA ◦ α1V = δlV + δrV , (25)

εA ◦ α1V = 0, (26)

where δlV := (uA ⊗ α1V ) ◦ l−1
V and δrV := (α1V ⊗ uA) ◦ r−1

V . Moreover

εA ◦ αnV = δn,0Id1, for every n ∈ N. (27)

In view of [6, Theorem 3.5], the functor TBr has a right adjoint PBr : BrBialgM →
BrM, which is constructed in [6, Lemma 3.3]. The unit ηBr and the counit εBr are 
uniquely determined by the following equalities

ξTBr ◦ ηBr = ηBr, (28)

εBr�Br ◦ TBrξ = �BrεBr, (29)

where (V, c) ∈ BrM, B ∈ BrBialgM while ηBr and εBr denote the unit and counit of the 
adjunction (TBr,ΩBr) respectively. Moreover ξ : PBr → ΩBr�Br is a natural transforma-
tion induced by the canonical morphism in (23).

Note that from 3.4 it is clear that Im(TBrIsBr) ⊆ Im(IsBrBialg). Let B ∈ BrBialgsM
and set (P, cP ) := PBrIsBrBialgB. Since the tensor products preserve equalizers, we have 
that ξB ⊗ ξB is a monomorphism so that we can apply 1) in Remark 3.2 to get that 
(P, cP ) ∈ BrsM. Thus Im(PBrIsBrBialg) ⊆ Im(IsBr). Hence, by Lemma 2.9 we have an 
adjunction 

(
T s

Br, P
s
Br
)

such that the diagrams

BrBialgsM
IsBrBialg

BrBialgM

BrsM

T s
Br

IsBr BrM

TBr

BrBialgsM
IsBrBialg

P s
Br

BrBialgM
PBr

BrsM
IsBr BrM

(30)



A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488–563 507
commute and the unit ηsBr : IdBrsM → P s
BrT

s
Br and the counit εsBr : T s

BrP
s
Br → IdBrBialgs

M

are uniquely defined by

IsBrBialgε
s
Br = εBrI

s
BrBialg and IsBrη

s
Br = ηBrI

s
Br. (31)

Moreover 
(
IsBrBialg, I

s
Br
)

:
(
T s

Br, P
s
Br
)
→

(
TBr, PBr

)
is a commutation datum with canon-

ical transformation given by the identity. Note that the functor �Br induces a functor 
�s

Br such that the following diagrams commute.

BrBialgsM
IsBrBialg

�s
Br BrAlgsM

IsBrAlg

BrBialgM
�Br BrAlgM

BrsM

T s
Br

T s
Br BrBialgsM

�s
Br

BrAlgsM

(32)

Furthermore, by Lemma 1.12, the natural transformation ξ : PBr → ΩBr�Br induces a 
natural transformation ξ := ̂ξIsBrBialg : P s

Br → Ωs
Br�s

Br such that IsBrξ = ξIsBrBialg.

Proposition 3.7. Let (F, φ0, φ2) : M → M′ be a monoidal functor between monoidal 
categories. Assume that M and M′ have denumerable coproducts and that F and the 
tensor products preserve such coproducts. Then both

(AlgF, F ) : (T,Ω) → (T ′,Ω′) and (BrAlgF,BrF ) : (TBr,ΩBr) → (T ′
Br,Ω′

Br)

are commutation data.

Proof. First we deal with (AlgF, F ) : (T,Ω) → (T ′,Ω′). By 3.3, we have that Ω′ ◦
AlgF = F ◦ Ω. By Remark 1.3, we have that Ω and Ω′ have left adjoints T and T ′

respectively. The structure morphisms φ0, φ2 induce, for every n ∈ N, the isomorphism 
φ̂nV : (FV )⊗n → F (V ⊗n) given by

φ̂0V : = φ0, φ̂1V := IdFV , φ̂2V := φ2 (V, V ) , and, for n > 2

φ̂nV : = φ2

(
V ⊗(n−1), V

)
◦
(
φ̂n−1 ⊗ FV

)
.

Using the naturality of φ2 and (2) it is straightforward to check, by induction on 
n ∈ N, that

mn−1
(AlgF )TV ◦ (Fα1V )⊗n = FαnV ◦ φ̂nV. (33)

Let ζ be the map of Lemma 2.2 i.e. ζ = ε′ (AlgF )T ◦ T ′Fη. We compute

Ω′ζV ◦ αnFV = Ω′ε′ (AlgF )TV ◦ Ω′T ′FηV ◦ αnFV

(4)= Ω′ε′ (AlgF )TV ◦ Ω′T ′Fα1V ◦ αnFV = Ω′ε′ (AlgF )TV ◦ αnFΩTV ◦ (Fα1V )⊗n
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(4)= mn−1
(AlgF )TV ◦ (Fα1V )⊗n (33)= FαnV ◦ φ̂nV

= (∇t∈NFαtV ) ◦ jnV ◦ φ̂nV = (∇t∈NFαtV ) ◦
(
⊕t∈Nφ̂tV

)
◦ αnFV

where jnV : F (V ⊗n) → ⊕t∈NF (V ⊗t) denotes the canonical morphism. Since this equal-
ity holds for an arbitrary n ∈ N, we obtain Ω′ζV = (∇n∈NFαnV )◦

(
⊕n∈Nφ̂nV

)
. Now φ̂n

is an isomorphism by construction and ∇n∈NFαnV : ⊕n∈NF (V ⊗n) → F (⊕n∈NV
⊗n) is 

an isomorphism as F preserves denumerable coproducts. Hence Ω′ζV is an isomorphism. 
This clearly implies ζV is an isomorphism and hence (AlgF, F ) : (T,Ω) → (T ′,Ω′) is a 
commutation datum.

Now, let us consider (BrAlgF,BrF ) : (TBr,ΩBr) → (T ′
Br,Ω′

Br). By 3.4, the functor 
ΩBr : BrAlgM → BrM has a left adjoint TBr : BrM → BrAlgM and the (co)unit of 
the adjunction obeys (20). Moreover HAlgTBr = TH. By 3.3, we have H ′ (BrF ) = FH, 
Ω′ (AlgF ) = FΩ, H ′

Alg (BrAlgF ) = (AlgF )HAlg and Ω′
Br (BrAlgF ) = (BrF ) ΩBr. In 

view of Lemma 2.2 the diagrams

BrAlgM
BrAlgF

ΩBr

BrAlgM′

Ω′
Br

BrM
BrF BrM′

AlgM
AlgF

Ω

AlgM′

Ω′

M F M′

(34)

induce the maps ζBr : T ′
Br (BrF ) → (BrAlgF )TBr and ζ : T ′F → (AlgF )T defined by

ζBr = ε′Br (BrAlgF )TBr ◦ T ′
Br (BrF ) ηBr and ζ = ε′ (AlgF )T ◦ T ′Fη. (35)

One easily checks that

H ′
AlgζBr = ζH. (36)

By the first part of the proof, ζ is a functorial isomorphism so that we get that H ′
AlgζBr

is a functorial isomorphism too. Since H ′
Alg trivially reflects isomorphisms, we get that 

ζBr is a functorial isomorphism. �
Proposition 3.8. Let M and M′ be preadditive monoidal categories with equalizers. As-
sume that the tensor functors are additive and preserve equalizers in both categories. For 
any monoidal functor (F, φ0, φ2) : M → M′ which preserves equalizers, the following 
diagram commutes

BrBialgM
BrBialgF

PBr

BrBialgM′

P ′
Br

BrM
BrF BrM′

(37)
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where BrBialgF and BrF are the functors of 3.3. Moreover we have

ξ′ (BrBialgF ) = (BrF ) ξ. (38)

Assume also that the categories M and M′ have denumerable coproducts and that F
and the tensor products preserve such coproducts. Then (BrBialgF,BrF ) :

(
TBr, PBr

)
→(

T ′
Br, P

′
Br
)

is a commutation datum.

Proof. The first part is [6, Proposition 3.6]. Let us prove the last assertion. As-
sume that the monoidal category M has denumerable coproducts and that the tensor 
products preserve such coproducts. By 3.6, we have that PBr and P ′

Br have left ad-
joints TBr and T ′

Br respectively. By 3.3, we have �′
Br (BrBialgF ) = (BrAlgF ) �Br and 

Ω′
Br (BrAlgF ) = (BrF ) ΩBr. By (24), we have �BrTBr = TBr. The commutative diagrams 

(37) and (34)-left induce the natural transformations ζBr : T ′
Br (BrF ) → (BrBialgF )TBr

and ζBr : T ′
Br (BrF ) → (BrAlgF )TBr of Lemma 2.2 i.e.

ζBr = ε′Br (BrBialgF )TBr ◦ T ′
Br (BrF ) ηBr and

ζBr = ε′Br (BrAlgF )TBr ◦ T ′
Br (BrF ) ηBr.

Using (29), (38) and (28), one easily checks that �′
BrζBr = ζBr. By Proposition 3.7, we 

know that ζBr is a functorial isomorphism. Since �′
Br is trivially conservative, we deduce 

that ζBr is a functorial isomorphism too. �
4. Braided categories

4.1. A braided monoidal category (M, ⊗, 1, c) is a monoidal category (M, ⊗, 1) equipped 
with a braiding c, that is an isomorphism cU,V : U ⊗ V → V ⊗ U , natural in U, V ∈ M, 
satisfying, for all U, V, W ∈ M,

cU,V⊗W = (V ⊗ cU,W ) ◦ (cU,V ⊗W ) and cU⊗V,W = (cU,W ⊗ V ) ◦ (U ⊗ cV,W ).

A braided monoidal category is called symmetric if we further have cV,U ◦ cU,V = IdU⊗V

for every U, V ∈ M.
A (symmetric) braided monoidal functor is a monoidal functor F : M → M′ such 

that F (cU,V ) ◦ φ2(U, V ) = φ2(V, U) ◦ c′F (U),F (V ). More details on these topics can be 
found in [26, Chapter XIII].

Remark 4.2. Given a braided monoidal category (M, ⊗, 1, c) the category AlgM becomes 
monoidal where, for every A, B ∈ AlgM the multiplication and unit of A ⊗B are given 
by

mA⊗B : = (mA ⊗mB) ◦ (A⊗ cB,A ⊗B) : (A⊗B) ⊗ (A⊗B) → A⊗B,

uA⊗B : = (uA ⊗ uB) ◦ l−1
1 : 1 → A⊗B.
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Moreover the forgetful functor AlgM → M is a strict monoidal functor, cf. [25, page 60].

Definition 4.3. A bialgebra in a braided monoidal category (M, ⊗, 1, c) is a coalge-
bra (B, Δ, ε) in the monoidal category AlgM. Equivalently a bialgebra is a quintuple 
(A,m, u,Δ, ε) where (A,m, u) is an algebra in M and (A,Δ, ε) is a coalgebra in M such 
that Δ and ε are morphisms of algebras where A ⊗ A is an algebra as in the previous 
remark. Denote by BialgM the category of bialgebras in M and their morphisms, defined 
in the expected way.

4.4. Let M be a braided monoidal category. In view of [6, Proposition 4.4], there are 
obvious functors J , JAlg and JBialg such that the diagrams

BialgM
JBialg

�
BrBialgM

�Br

AlgM
JAlg

BrAlgM

AlgM
JAlg

Ω

BrAlgM
ΩBr

M J BrM

(39)

commute. In fact the functors J , JAlg and JBialg add the evaluation of the braiding of 
M on the object on which they act. Moreover they are full, faithful, injective on objects 
and conservative.

Assume that M has denumerable coproducts and that the tensor functors preserve 
such coproducts. Then, by [6, Proposition 4.5], the following diagram

AlgM
JAlg

BrAlgM

M
T

J BrM

TBr
(40)

is commutative. When M is symmetric the functors J , JAlg and JBialg factor through 
functors Js, Js

Alg and Js
Bialg i.e. the following diagrams commute (apply Lemma 1.12).

M

J

Js

BrsM

IsBr
BrM

AlgM

JAlg

Js
Alg

BrAlgsM

IsBrAlg
BrAlgM

BialgM

JBialg

Js
Bialg

BrBialgsM

IsBrBialg
BrBialgM

(41)

Note that they are full, faithful, injective on objects and conservative and the following 
diagram commutes.
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BialgM
�

Js
Bialg

BrBialgsM
�s

Br

AlgM
Js
Alg

BrBialgsM

(42)

4.5. Let M be a preadditive braided monoidal category with equalizers. Assume that 
the tensor products are additive and preserve equalizers. Define the functor

P := H ◦ PBr ◦ JBialg : BialgM → M

For any B := (B,mB , uB ,ΔB , εB) ∈ BialgM one easily gets that P (B) =
P (B,ΔB , εB , uB), see [6, 4.6]. The canonical inclusion ξP (B,ΔB , εB , uB) :
P (B,ΔB , εB , uB) → B will be denoted by ξB. Thus we have the equalizer

P (B)
ξB

B
ΔB

(B⊗uB)r−1
B +(uB⊗B)l−1

B

B ⊗B

By [6, Proposition 4.7], we have a commutative diagram

BialgM
JBialg

P

BrBialgM
PBr

M J BrM

(43)

where the horizontal arrows are the functors of 4.4. Furthermore

ξJBialg = Jξ. (44)

Assume further that M has denumerable coproducts and that the tensor products pre-
serve such coproducts. By Remark 1.3, the forgetful functor Ω : AlgM → M has a left 
adjoint T : M → AlgM. Note that

IsBrAlgT
s
BrJ

s (21)= TBrI
s
BrJ

s (41)= TBrJ
(40)= JAlgT

(41)= IsBrAlgJ
s
AlgT

and hence, since IsBrAlg is both injective on morphisms and objects, we get that the 
following diagram commutes

AlgM
Js
Alg

BrAlgsM

M
T

Js

BrsM

T s
Br

(45)

In view of [6, 4.8], there is a functor
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T : M → BialgM

such that the following diagrams commute.

BialgM
JBialg

BrBialgM

M
T

J BrM

TBr
(46)

BialgM
� AlgM

MT T

(47)

By [6, Theorem 4.9], the functor T is a left adjoint of the functor P : BialgM → M. The 
unit η and counit ε of the adjunction are uniquely determined by the following equalities

ξT ◦ η = η, ε� ◦ Tξ = �ε, (48)

where η and ε denote the unit and counit of the adjunction (T,Ω) respectively. We have 
that

IsBrBialgT
s
BrJ

s (30)= TBrI
s
BrJ

s (41)= TBrJ
(46)= JBialgT

(41)= IsBrBialgJ
s
BialgT

and that

IsBrP
s
BrJ

s
Bialg

(30)= PBrI
s
BrBialgJ

s
Bialg

(41)= PBrJBialg
(43)= JP

(41)= IsBrJ
sP

so that the following diagram commutes.

BialgM
Js
Bialg

BrBialgsM

M
T

Js

BrsM

T s
Br

BialgM
P

Js
Bialg

BrBialgsM
P s

Br

M Js

BrsM

(49)

Proposition 4.6. Let M be a preadditive braided monoidal category with equalizers. 
Assume that the tensor products are additive and preserve equalizers. Assume further 
that M has denumerable coproducts and that the tensor products preserve such coprod-
ucts. Then the morphism ζ : TBrJ −→ JBialgT of Lemma 2.2 is IdTBrJ

. In particular 
(JBialg, J) :

(
T , P

)
→

(
TBr, PBr

)
is a commutation datum.

Proof. Consider the commutative diagram (43). By Lemma 2.2, then there is a unique 
natural transformation ζ : TBrJ −→ JBialgT such that PBrζ ◦ ηBrJ = Jη. By [6, Equal-
ity (75)], we also have ηBrJ = Jη. By uniqueness of ζ, we have ζ = IdTBrJ

. �
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Proposition 4.7. Let M be a preadditive symmetric monoidal category with equalizers. 
Assume that the tensor products are additive and preserve equalizers. Assume further that 
M has denumerable coproducts and that the tensor products preserve such coproducts. 
Then the morphism ζs : T s

BrJ
s −→ Js

BialgT of Lemma 2.2 is IdT s
BrJ

s . In particular (
Js

Bialg, J
s
)

:
(
T , P

)
→

(
T s

Br, P
s
Br
)

is a commutation datum.

Proof. Consider the commutative diagram (49). By Lemma 2.2, then there is a unique 
natural transformation ζs : T s

BrJ
s −→ Js

BialgT such that P s
Brζ

s ◦ ηsBrJ
s = Jsη. Now

IsBrη
s
BrJ

s (31)= ηBrI
s
BrJ

s (41)= ηBrJ
(∗)= Jη

(41)= IsBrJ
sη

where in (∗) we used [6, Equality (75)]. Thus ηsBrJ
s = Jsη. By uniqueness of ζs, we have 

ζs = IdT s
BrJ

s (note that we are using that the domain and codomain of ζs coincide by 
(49)). �
4.8. Let M and M′ be braided monoidal categories. Following [6, Proposition 4.10], 
every braided monoidal functor (F, φ0, φ2) : M → M′ induces in a natural way a functor 
BialgF and the following diagrams commute.

M F

J

M′

J ′

BrM
BrF BrM′

BialgM
BialgF

JBialg

BialgM′

J ′
Bialg

BrBialgM
BrBialgF

BrBialgM′

BialgM
BialgF

�
BialgM′

�′

AlgM
AlgF

AlgM′

Moreover

1) BialgF is an equivalence (resp. category isomorphism or conservative) whenever F
is.

2) If F preserves equalizers, the following diagram commutes.

BialgM
BialgF

P

BialgM′

P ′

M F M′

5. Lie algebras

The following definition extends the classical notion of Lie algebra to a monoidal 
category which is not necessarily braided. We expected this notion to be well-known, 
but we could not find any reference. We point out that in the following definition we 
should more properly speak of “right braided Lie” algebra as condition (51) and its left 
analogue (56) seem not to be equivalent in general, see Lemma 5.3.
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Definition 5.1. 1) Given an abelian monoidal category M a braided Lie algebra in M con-
sists of a tern (M, c, [−] : M ⊗M → M) where (M, c) ∈ BrM and the following equalities 
hold true:

[−] = − [−] ◦ c (skew-symmetry); (50)

[−] ◦ (M ⊗ [−]) ◦
[
Id(M⊗M)⊗M + (M ⊗ c) (c⊗M) + (c⊗M) (M ⊗ c)

]
= 0 (Jacobi condition); (51)

c ◦ (M ⊗ [−]) = ([−] ⊗M) ◦ (M ⊗ c) ◦ (c⊗M) ; (52)

c ◦ ([−] ⊗M) = (M ⊗ [−]) ◦ (c⊗M) ◦ (M ⊗ c) . (53)

Of course one should take care of the associativity constraints, but as we did before, we 
continue to omit them. A morphism of braided Lie algebras (M, c, [−]) and 

(
M ′, c′, [−]′

)
in M is a morphism f : (M, c) → (M ′, c′) of braided objects such that f ◦ [−] =
[−]′ ◦ (f ⊗ f). This defines the category BrLieM of braided Lie algebras in M and their 
morphisms. Denote by

HBrLie : BrLieM → BrM : (M, c, [−]) 
→ (M, c)

the obvious functor forgetting the bracket and acting as the identity on morphisms. Note 
that HBrLie is faithful and conservative.

Denote by BrLiesM the full subcategory BrLieM consisting of braided Lie algebras 
with symmetric Yang–Baxter operator. Denote by

IsBrLie : BrLiesM → BrLieM

the inclusion functor. It is clear that, by Lemma 1.12, the functor HBrLie induces a 
functor Hs

BrLie such that the diagram

BrLiesM
IsBrLie

Hs
BrLie BrsM

IsBr

BrLieM
HBrLie BrM

(54)

commutes. Since HBrLie and both vertical arrows are faithful and conservative, the same 
is true for Hs

BrLie.
2) Let M be an abelian braided monoidal category. A Lie algebra in M consists of 

a pair (M, [−] : M ⊗M → M) such that (M, cM,M , [−]) ∈ BrLieM, where cM,M is the 
braiding c of M evaluated on M . A morphism of Lie algebras (M, [−]) and 

(
M ′, [−]′

)
in M is a morphism f : M → M ′ in M such that f ◦ [−] = [−]′ ◦ (f ⊗ f). This defines 
the category LieM of Lie algebras in M and their morphisms. Note that there is a full, 
faithful, injective on objects and conservative functor
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JLie : LieM → BrLieM : (M, [−]) 
→ (M, cM,M , [−])

which acts as the identity on morphisms. This notion already appeared in [30, c) page 82], 
where a Lie algebra in M is called an M-Lie algebra. Denote by

HLie : LieM → M : (M, [−]) 
→ M

the obvious functor forgetting the bracket and acting as the identity on morphisms. Note 
that HBrLieJLie = JHLie.

3) Let M be an abelian symmetric monoidal category. Given (M, [−]) ∈ LieM it is 
clear that (M, cM,M , [−]) ∈ BrLiesM so that JLie factors through a functor Js

Lie such that 
the following diagrams commute.

LieM

Js
Lie

JLie BrLieM

BrLiesM
IsBrLie

BrLiesM
Hs

BrLie BrsM

LiesM

Js
Lie

HLie M
Js (55)

Remark 5.2. We point out that BrLiesM = YBLieAlg(M) with the notations of [21, 
Definition 2.5] (note that (52) follows from (53) as we are in the symmetric case).

Lemma 5.3. Let M be an abelian monoidal category. Consider a tern (M, c, [−] : M ⊗
M → M) where (M, c) ∈ BrM. If c2 = Id and (50) holds, then we have that (51) is 
equivalent to

[−] ◦ ([−] ⊗M) ◦
[
Id(V⊗V )⊗V + (M ⊗ c) (c⊗M) + (c⊗M) (M ⊗ c)

]
= 0. (56)

Proof. This proof is essentially the same as [20, Lemma 2.9]. �
Remark 5.4. In view of Lemma 5.3, in the particular case when M is the category of 
vector spaces and (M, c) ∈ BrM, conditions (50) and (56) encode the notion of Lie 
algebra in the sense of Gurevich’s [19].

Definition 5.5. Let M a preadditive monoidal category with equalizers and denumerable 
coproducts. Let (M, c) ∈ BrM. For α2M as in of Remark 1.3, we set

θ(M,c) := α2M ◦ (IdM⊗M − c) : M ⊗M → ΩTM. (57)

When M is braided and its braiding on M is cM,M we will simply write θM for θ(M,cM,M ).

Definition 5.6. Let M be a monoidal category. Let (A,mA, uA) be an algebra in M and 
let f : X → A be a morphism in M. We set

Λf := mA ◦ (mA ⊗A) ◦ (A⊗ f ⊗A) : A⊗X ⊗A → A. (58)
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When the category M is also abelian we can consider the two-sided ideal of A generated 
by f which is defined by (〈f〉 , if ) := Im (Λf ) and it has the following property (see e.g. 
[7, Lemma 3.18]): for every algebra morphism g : A → B one has that g ◦ if = 0 if and 
only if g ◦ f = 0.

Remark 5.7. Let M be an abelian monoidal category. Let (A,mA, uA) be an algebra 
in M.

1) Note that Λf − Λg = Λf−g for every f , g : X → A.
2) Assume that the tensor products preserve epimorphisms. Let f : X → A be a 

morphism in M and set (S, j : S → A) := Im (f). Define the ideal (S) generated by S
by setting ((S) , i) := Im (Λj). Write f = j ◦ p where p : X → S is an epimorphism. We 
compute Im (Λf ) = Im (Λj◦p) = Im (Λj◦p) = Im (Λj ◦ (A⊗ p⊗A)) = Im (Λj) so that 
(〈f〉 , if ) := Im (Λf ) = ((S) , i). Therefore 〈f〉 = (Im (f)).

Next aim is to construct suitable universal enveloping algebra type functors.

Remark 5.8. Let M an abelian monoidal category with denumerable coproducts. Assume 
that the tensor products preserve denumerable coproducts. Note that M has also finite 
coproducts as it has a zero object and denumerable coproduct. Thus, by [37, Proposition 
3.3] the tensor products are additive as they preserve denumerable coproducts.

Proposition 5.9. Let M an abelian monoidal category with denumerable coproducts. As-
sume that the tensor products are right exact and preserve denumerable coproducts.

Let (M, c, [−] : M ⊗M → M) ∈ BrLieM and set

f := f(M,c,[−]) := α1M ◦ [−] − θ(M,c) : M ⊗M → ΩTM.

Let UBr (M, c, [−]) := R := ΩTM/ 〈f〉 and let pR : ΩTM → R denote the canonical 
projection. Then there are morphisms mR, uR, cR such that (R,mR, uR, cR) ∈ BrAlgM
and pR is a morphism of braided algebras. This way we get a functor

UBr : BrLieM → BrAlgM,

and the projections pR define a natural transformation p : TBrHBrLie → UBr. Moreover 
there is a functor Us

Br : BrLiesM → BrAlgsM such that the diagram

BrLiesM
Us

Br

IsBrLie BrLieM
UBr

BrAlgsM
IsBrAlg

AlgM

(59)

commutes and there is a natural transformation ps : T s
BrH

s
BrLie → Us

Br uniquely defined 
by
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IsBrAlgp
s = pIsBrLie. (60)

Proof. Set (A,mA, uA, cA) := TBr (M, c). We will use the equalities for the graded part 
cm,n
A of the Yang–Baxter operator cA which are in [6, Proposition 2.7]. Note that, by [6, 

(42)], we have that cA ◦ (αmM ⊗ αnM) = (αnM ⊗ αmM) ◦ cm,n
A for every m, n ∈ N. By 

induction on n ∈ N, using (52), one checks that

cn,1A ◦
(
M⊗n ⊗ [−]

)
=

(
[−] ⊗M⊗n

)
◦ cn,2A . (61)

If we apply [6, (32) and (34)], we get

cl,n+m
A

(
M⊗l ⊗ cm,n

A

)
=

(
cm,n
A ⊗M⊗l

)
cl,m+n
A .

If we apply this equality to the case ” (l,m, n) ” = (n, 1, 1), we obtain

cn,2A

(
M⊗n ⊗ c

)
=

(
c⊗M⊗n

)
cn,2A , for every n ∈ N. (62)

Since 〈f〉 is an ideal of TM , it is clear that R is an algebra and pR is an algebra 
morphism. Consider the exact sequence

0 → 〈f〉 if→A
pR→R → 0

If we apply to it the functor A ⊗ (−), we obtain the exact sequence

A⊗ 〈f〉A⊗if→ A⊗A
A⊗pR→ A⊗R → 0

We have that (〈f〉 , if ) := Im (Λf ) so that we can write Λf = if ◦ pf where pf : A ⊗
X ⊗ A → 〈f〉 is an epimorphism. Since the tensor products preserve epimorphisms, 
we have that A ⊗ pf is an epimorphism so that (pR ⊗A) cA (A⊗ if ) = 0 if and only 
if (pR ⊗A) cA (A⊗ Λf ) = 0. Using the definition of cA, (61) and (62) one checks that 
(pR ⊗A) cA (A⊗ f) (αnM ⊗M ⊗M) = 0. Since this holds for every n ∈ N and the 
tensor products preserve the denumerable coproducts, we get

(pR ⊗A) cA (A⊗ f) = 0. (63)

Now using (14) and (63) one gets (pR ⊗A) cA (A⊗ Λf ) = 0. Hence, by the foregoing, we 
get (pR ⊗A) cA (A⊗ if ) = 0. Thus there is a unique morphism cA,R : A ⊗ R → R ⊗ A

such that cA,R ◦ (A⊗ pR) = (pR ⊗A) ◦ cA. Consider now the exact sequence

〈f〉 ⊗R
if⊗R→ A⊗R

pR⊗R→ R⊗R → 0.

We will prove that (R⊗ pR) cA,R (if ⊗R) = 0.
This equality is equivalent to prove (R⊗ pR) cA,R (Λf ⊗R) = 0. We have
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(R⊗ pR) cA,R (Λf ⊗R) (A⊗M ⊗M ⊗A⊗ pR)

= (R⊗ pR) cA,R (A⊗ pR) (Λf ⊗A) = (R⊗ pR) (pR ⊗A) cA (Λf ⊗A)

= (pR ⊗R) (A⊗ pR) cA (Λf ⊗A) .

Note that the latter term vanishes as (A⊗ pR) cA (Λf ⊗A) = 0 by a similar argument to 
the one used to prove (pR ⊗A) cA (A⊗ Λf ) = 0 and using (53). Since A ⊗M⊗M⊗A ⊗pR
is an epimorphism, we get that (R⊗ pR) cA,R (Λf ⊗R) = 0 and hence there is a unique 
morphism cR : R⊗R → R⊗R such that cR ◦ (pR ⊗R) = (R⊗ pR) ◦ cA,R. We get

cR (pR ⊗ pR) = cR (pR ⊗R) (A⊗ pR) = (R⊗ pR) cA,R (A⊗ pR)

= (R⊗ pR) (pR ⊗A) cA = (pR ⊗ pR) cA.

If we rewrite (52) and (53) in terms of c−1 we get that 
(
M, c−1) fulfills (52) and 

(53). Thus we can repeat the argument above obtaining a morphism c′R such that 
c′R (pR ⊗ pR) = (pR ⊗ pR) c−1

A . It is easy to check that c′R is an inverse for cR. By 
Lemma B.4, we get that (R, cR) is an object in BrM and pR becomes a morphism 
in BrM from (A, cA) to this object. We have

cR(mR ⊗R) (pR ⊗ pR ⊗ pR) = cR (pR ⊗ pR) (mA ⊗A) = (pR ⊗ pR) cA(mA ⊗A)
(13)= (pR ⊗ pR) (A⊗m)(c⊗A)(A⊗ c)

= (R⊗mR)(cR ⊗R)(R⊗ cR) (pR ⊗ pR ⊗ pR)

so that (13) holds for (R,mR, cR). Similarly one proves (14). Moreover

cR(uR ⊗R)l−1
R pR = cR(uR ⊗R) (1 ⊗ pR) l−1

A = cR(pRuA ⊗ pR)l−1
A

= (pR ⊗ pR) cA(uA ⊗A)l−1
A

(15)= (pR ⊗ pR) (A⊗ uA) r−1
A

= (pR ⊗ uR) r−1
A = (R⊗ uR) r−1

R pR

and hence cR(uR ⊗ R)l−1
R = (R⊗ uR) r−1

R . Similarly one gets cR(R ⊗ uR)r−1
R =

(uR ⊗R) l−1
R . We have so proved that (R,mR, uR, cR) ∈ BrAlgM. It is clear that pR

is a morphism of braided algebras.
Let ν : (M, c, [−]) →

(
M ′, c′, [−]′

)
be a morphism of braided Lie algebras. 

Consider the morphism of braided algebras TBrν : TBr (M, c) → TBr (M ′, c′). Set 
R′ := UBr

(
M ′, c′, [−]′

)
and denote by pR′ the corresponding projection and set f ′ :=

f(M ′,c′,[−]′). We have

pR′ ◦ ΩHAlgTBrHBrLieν ◦ f (19)= pR′ ◦ ΩTHHBrLieν ◦
(
α1M ◦ [−] − θ(M,c)

)
= pR′ ◦ ΩTHHBrLieν ◦ α1M ◦ [−] − pR′ ◦ ΩTHHBrLieν ◦ α2M ◦ (IdM⊗M − c)
(1)= pR′ ◦ α1M

′ ◦HHBrLieν ◦ [−] − pR′ ◦ α2M
′ ◦ (HHBrLieν ⊗HHBrLieν)
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◦ (IdM⊗M − c)

= pR′ ◦ α1M
′ ◦HHBrLieν ◦ [−] − pR′ ◦ α2M

′ ◦ (IdM ′⊗M ′ − c′)

◦ (HHBrLieν ⊗HHBrLieν)

= pR′ ◦ α1M
′ ◦ [−]′ ◦ (HHBrLieν ⊗HHBrLieν) − pR′ ◦ θ(M ′,c′)

◦ (HHBrLieν ⊗HHBrLieν)

= pR′ ◦ f ′ ◦ (HHBrLieν ⊗HHBrLieν) = 0.

Since pR′ ◦ΩHAlgTBrHBrLieν◦ is an algebra morphism we get pR′ ◦ΩHAlgTBrHBrLieν ◦
if = 0 so that there is a unique morphism UBrν : UBr (M, c, [−]) → UBr

(
M ′, c′, [−]′

)
such that UBrν ◦ pR = pR′ ◦ TBrHBrLieν. It is easy to check that UBrν is a morphism of 
braided bialgebras. Since TBr is a functor it is then clear that UBr becomes a functor as 
well and that the projections define a natural transformation p : TBrHBrLie → UBr.

Let us construct Us
Br. We already observed that the functor IsBrAlg is full, faithful and 

injective on objects.
Let (M, c, [−]) ∈ BrLiesM. Then, by Remark 3.2-2), we get that R = UBr (M, c, [−]) ∈

BrAlgsM as R is a quotient of TBrHBrLie (M, c, [−]) which is preserved by the required 
functors. Hence Im(UBrIsBrLie) ⊆ Im(IsBrAlg). By Lemma 1.12, there is a unique functor 
Us

Br := ̂UBrIsBrLie such that (59) commutes. We have

TBrHBrLieI
s
BrLie

(54)= TBrI
s
BrH

s
BrLie

(21)= IsBrAlgT
s
BrH

s
BrLie. (64)

By Lemma 1.12, we have ̂TBrHBrLieIsBrLie = T s
BrH

s
BrLie, ̂UBrIsBrLie = Us

Br and there is a 

unique natural transformation ps := p̂IsBrLie : T s
BrH

s
BrLie → Us

Br such that (60) holds. �
Lemma 5.10. Let M a preadditive monoidal category with denumerable coproducts. 
Assume that the tensor products are additive and preserve such coproducts. Let 
(M, c, [−] : M ⊗M → M) ∈ BrLieM, set (A,mA, uA,ΔA, εA, cA) := TBr (M, c) and use 
the notations of 3.6. Then,

ΔA ◦ θ(M,c) =
[
(uA ⊗A) ◦ l−1

A + (A⊗ uA) ◦ r−1
A

]
◦ θ(M,c) if c2 = IdM⊗M ; (65)

ΔA ◦ α1M =
[
(uA ⊗A) ◦ l−1

A + (A⊗ uA) ◦ r−1
A

]
◦ α1M. (66)

Proof. Using, in the given order, (2), the multiplicativity of ΔA, (25), the definitions of 
δlM and δrM , the equalities cA ◦ (αiM ⊗ αjM) = (αjM ⊗ αjM) ◦ ci,jA for i, j ∈ {1, 2}, the 
equalities c1,0A = l−1

M rM ,c1,1A = c, c0,0A = l−1
1 r1 and c0,1A = r−1

M lM , the equalities (3) and (2), 
the equalities rM ⊗M = M ⊗ lM and r1 ⊗M = 1 ⊗ lM , the equalities l−1

M ⊗M = l−1
M⊗M , 

M ⊗ l−1
1 = r−1

M ⊗ 1 and M ⊗ r−1
M = r−1

M⊗M , the equalities m1 = r1 = l1, the naturality 
of the unit constraints, l−1

M ⊗M = l−1
M⊗M , M ⊗ r−1

M = r−1
M⊗M and rM ⊗M = M ⊗ lM , 

the equality (3) and the naturality of the unit constraints one proves that
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ΔA ◦ α2M =
[
(uA ⊗A) ◦ l−1

A + (A⊗ uA) ◦ r−1
A

]
◦ α2M

+ (α1M ⊗ α1M) ◦ (IdM⊗M + c) .

From this equality, composing with IdM⊗M − c on both sides, we get (65) holds true 
when c2 = IdM⊗M .

On the other hand, (66) follows by (25), the definitions of δlM and δrM , the naturality 
of the unit constraints. �
Proposition 5.11. Let (B,mB , uB ,ΔB , εB , cB) ∈ BrBialgM be a bialgebra in a monoidal 
category M. Assume that the category M is abelian and the tensor products are additive 
and right exact. Let (R,mR, uR, cR) ∈ BrAlgM and let pR : B → R be an epimorphism 
which is a morphism of braided algebras. Set (I, iI : I → B) := Ker (pR). Assume that

(pR ⊗ pR) ◦ ΔB ◦ iI = 0, (67)

εB ◦ iI = 0. (68)

Then there are morphisms ΔR, εR such that (R,mR, uR,ΔR, εR, cR) ∈ BrBialgM and 
pR is a morphism of braided bialgebras.

Proof. Since (R, pR) = Coker (iI), by (67), there is a unique morphism ΔR : R → R⊗R

such that ΔR◦pR = (pR ⊗ pR)◦ΔB and, by (68), there is a unique morphism εR : R → 1
such that εR◦pR = εB . The rest of the proof is straightforward and relies on the fact that 
pR⊗pR = (pR ⊗R) (A⊗ pR) is an epimorphism by exactness of the tensor functors. �
Theorem 5.12. Let M an abelian monoidal category with denumerable coproducts. As-
sume that the tensor products are right exact and preserve denumerable coproducts. Then 
there is a functor Us

Br : BrLiesM → BrBialgsM such that

BrLiesM

Us
Br

Us
Br BrBialgsM

�s
Br

BrAlgsM

(69)

Moreover there is a natural transformation ps : T s
BrH

s
BrLie → Us

Br uniquely defined by

�BrI
s
BrBialgp

s = pIsBrLie and �s
Brp

s = ps (70)

where p : TBrHBrLie → UBr and ps : T s
BrH

s
BrLie → Us

Br are the natural transformations of 
Proposition 5.9.

Proof. Let (M, c, [−]) ∈ BrLiesM and set (A,mA, uA,ΔA, εA, cA) := T s
Br (M, c) and 

f := f(M,c,[−]). Set (R,mR, uR, cR) := UBr (M, c, [−]) and let pR be the morphism in 
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M underlying the canonical projection p (M, c, [−]) : TBr (M, c) → UBr (M, c, [−]). By 
Proposition 5.9, we know that pR : A → R is a morphism of braided algebras. Using 
(65) and (66), we get

ΔA ◦ f =
[
(uA ⊗A) ◦ l−1

A + (A⊗ uA) ◦ r−1
A

]
◦ f (71)

Since pR is an algebra morphism and pR ◦ if = 0, we get that pR ◦ f = 0. We want to 
apply Proposition 5.11 to the case (I, iI) = (〈f〉 , if ). Since (pR ⊗ pR) ◦ΔA is an algebra 
morphism as a composition of algebra morphisms (use e.g. [6, Proposition 2.2-3)] to 
prove that pR ⊗ pR is an algebra morphism and use (16) to have that ΔA is an algebra 
morphism), we have that (67) is equivalent to (pR ⊗ pR)◦ΔA◦f = 0 and the latter holds 
by (71), unitality of pR, naturality of the unit constraints, and the equality pR ◦ f = 0.

Since εA is an algebra morphism, we have that (68) if and only if εA ◦ f = 0 and the 
latter holds by definition of f and (27). Then, by Proposition 5.11, there are morphisms 
ΔR, εR such that (R,mR, uR,ΔR, εR, cR) ∈ BrBialgM and pR is a morphism of braided 
bialgebras. By Remark 3.2-2) one easily checks that (R,mR, uR,ΔR, εR, cR) ∈ BrBialgsM. 
We denote this datum by Us

Br (M, c, [−]). Let ν : (M, c, [−]) →
(
M ′, c′, [−]′

)
be a mor-

phism in BrLiesM. We know that ṽ := ΩHAlgUBrν : R → R′ is a morphism in BrAlgM. 
Using that pR is comultiplicative and natural, and that ΩHAlg�BrTBrHBrLiev is a coal-
gebra morphism one easily gets that (ṽ ⊗ ṽ) ◦ ΔR ◦ pR = ΔR′ ◦ ṽ ◦ pR and hence ṽ is 
comultiplicative. A similar argument shows that ṽ is also counitary and hence UBrν is 
a morphism in BrBialgsM. This defines a functor Us

Br : BrLiesM → BrBialgsM such that 
�s

Br ◦ Us
Br = Us

Br. Since pR is a morphism of braided bialgebras and it is natural in R at 
the level of BrAlgM, it is clear that ps such that �BrIsBrBialgp

s = pIsBrLie exists. Moreover 
we have

IsBrAlgp
s (60)= pIsBrLie = �BrI

s
BrBialgp

s (32)= IsBrAlg�s
Brp

s

and hence ps = �s
Brp

s. �
6. Adjunctions for enveloping functors

Given a braided algebra B, in general it is not true that the commutator bracket 
[−]B := mB ◦ (IdB⊗B − cB) defines a braided Lie algebra structure on B as in the 
classic case unless c is a symmetry. For example, let (V, c) be a braided vector space and 
consider the braided tensor algebra B := TBr(V, c). Assume that [−]B fulfills (50). An 
easy calculation shows that the restriction of this equality to V ⊗ V forces c (whence 
also cB) to be a symmetry. For this reason in this section we restrict to symmetries in 
order to construct an adjoint for UBr.

Proposition 6.1. Let M an abelian monoidal category with denumerable coproducts. As-
sume that the tensor products are right exact and preserve denumerable coproducts. Then 
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the functor Us
Br : BrLiesM → BrAlgsM has a right adjoint Ls

Br : BrAlgsM → BrLiesM
acting as the identity on morphisms and defined on objects by Ls

Br (B,mB , uB , cB) :=
(B, cB , [−]B), where [−]B := mB ◦ (IdB⊗B − cB). The unit ηsBrL : IdBrLiesM → Ls

BrUs
Br

and the counit εsBrL : Us
BrLs

Br → IdBrAlgs
M of the adjunction fulfill

εsBrL ◦ psLs
Br = εsBr and Hs

BrLieLs
Brp

s ◦ ηsBrH
s
BrLie = Hs

BrLieη
s
BrL. (72)

Proof. The construction of the functor Ls
Br is given in [21, Construction 2.16] where 

BrAlgsM plays the role of YBAlg(M) therein. Let us check that (Us
Br,Ls

Br) is an adjunc-
tion.

Consider the natural transformation ps : T s
BrH

s
BrLie → Us

Br of Proposition 5.9.
Note that Hs

BrLieLs
Br (B,mB , uB , cB) = Hs

BrLie (B, cB , [−]B) = (B, cB) =
Ωs

Br(B, mB , uB , cB) and Hs
BrLieLs

Br and Ωs
Br both act as the identity on morphisms 

so that Hs
BrLieLs

Br = Ωs
Br. Then we have psLs

Br : T s
BrΩs

Br → Us
BrLs

Br. Consider 
εsBr : T s

BrΩs
Br → IdBrAlgs

M . Using the notation of Proposition 5.9, by means of (22), 
(20), (57) and (4) we get

ΩHAlgI
s
BrAlgε

s
Br (B,mB , uB , cB) ◦ fLs

Br(B,mB ,uB ,cB) = 0.

Since εsBr is a morphism of braided algebras, by construction of Us
BrLs

Br, the latter equality 
implies there is a unique morphism εsBrL : Us

BrLs
Br → IdBrAlgs

M such that εsBrL ◦ psLs
Br =

εsBr.
Consider the morphism Hs

BrLieLs
Brp

s ◦ ηsBrH
s
BrLie : Hs

BrLie → Hs
BrLieLs

BrUs
Br.

Let (M, cM , [−]) ∈ BrLiesM and set ν := HIsBrH
s
BrLieLs

Brp
s (M, cM , [−]) ◦

HIsBrη
s
BrH

s
BrLie(M, cM , [−]), (R,mR, uR, cR) := Us

Br (M, cM , [−]) and (A,mA, uA, cA) :=
T s

Br (M, cM ). Clearly ν : (M, cM ) → (R, cR) is a morphism of braided objects. Using 
(54), (22), (60), (20), (4) and the equality pR = HΩBrpIsBrLie (M, cM , [−]) (which follows 
by definition of p in Proposition 5.9), we obtain that ν = pR ◦ α1M . By the latter 
formula, the fact that pR is a braided morphisms, the definition of cA given by [6, (42)], 
the multiplicativity of pR, using (2), (57) and the formula pR ◦ f(M,cM ,[−]) = 0, we ob-
tain [−]R ◦ (ν ⊗ ν) = ν ◦ [−]. Since ν is the morphism in M defining Hs

BrLieLs
Brp

s ◦
ηsBrH

s
BrLie : Hs

BrLie → Hs
BrLieLs

BrUs
Br, we get that there is a unique natural transforma-

tion ηsBrL : IdBrLiesM → Ls
BrUs

Br such that Hs
BrLieLs

Brp
s ◦ ηsBrH

s
BrLie = Hs

BrLieη
s
BrL. It is 

straightforward to check that this gives rise to the claimed adjunction. Note that

HIsBrH
s
BrLieη

s
BrL (M, cM , [−]) = v = pR ◦ α1M. (73)

The latter equality will be used elsewhere. �
As a consequence of the construction of UBr we can introduce an enveloping algebra 

functor U in the braided case. We remark that in [22, 2.2] such a functor is just assumed 
to exist and the functor L : AlgM → LieM in the following result is also considered.



A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488–563 523
Theorem 6.2. Let M be an abelian symmetric monoidal category with denumerable co-
products. Assume that the tensor products are right exact and preserve denumerable 
coproducts. There are unique functors U and L such that the following diagrams com-
mute.

AlgM
Js
Alg

BrAlgsM

LieM

U
Js
Lie BrLiesM

Us
Br

AlgM
L

Js
Alg

BrAlgsM
Ls

Br

LieM
Js
Lie BrLiesM

(74)

Moreover (U ,L) is an adjunction with unit ηL : IdLieM → LU and counit εL : UL →
IdAlgM defined by

Js
AlgεL = εsBrLJ

s
Alg and Js

LieηL = ηsBrLJ
s
Lie, (75)

and 
(
Js

Alg, J
s
Lie

)
: (U ,L) → (Us

Br,Ls
Br) is a commutation datum with canonical trans-

formation given by the identity. The functor U can be described explicitly by U :=
HAlgUBrJLie while L : AlgM → LieM acts as the identity on morphisms and is defined 
on objects by L (B,mB , uB) := (B, [−]B), where [−]B := mB ◦ (IdB⊗B − cB,B).

Proof. The existence and uniqueness of U and L as in the statement follows by 
Lemma 2.9. It remains to prove the last sentence. The equality U = HAlgUBrJLie follows 
by (74), (59) and (55). For (B,mB , uB) ∈ AlgM, by the foregoing, we have

Js
LieL (B,mB , uB) (74)= Ls

BrJ
s
Alg (B,mB , uB) = (B, [−]B , cB,B)

so that L (B,mB , uB) = (B, [−]B). Since Js
Lie, Ls

Br and Js
Alg act as the identity on 

morphisms so does L. �
Proposition 6.3. Let M be an abelian monoidal category with denumerable coproducts. 
Assume that the tensor products are right exact and preserve denumerable coproducts. 
Then the functor Us

Br : BrLiesM → BrBialgsM has a right adjoint Ps
Br : BrBialgsM →

BrLiesM such that the following diagram commutes

BrBialgsM
Ps

Br P s
Br

BrLiesM
Hs

BrLie BrsM

(76)

and the natural transformation ξ : P s
Br → Ωs

Br�s
Br induces a natural transformation 

ξ : Ps
Br → Ls

Br�s
Br such that Hs

BrLieξ = ξ. The unit ηsBrL : IdBrLiesM → Ps
BrUs

Br and the 
counit εsBrL : Us

BrPs
Br → IdBrBialgs

M of the adjunction satisfy

ξUs
Br ◦ ηsBrL = ηsBrL and εsBrL�s

Br ◦ Us
Brξ = �s

Brε
s
BrL. (77)
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Proof. Let B := (B,mB , uB ,ΔB , εB , cB) ∈ BrBialgsM. Write P s
BrB = (P, cP ). By [21, 

Proposition 6.6(i)], there is a morphism [−]P := P ⊗ P → P such that Ps
BrB :=

(P, cP , [−]P ) ∈ BrLiesM and ξB : (P, cP , [−]P ) → (B, cB , [−]B) is a morphism in BrLiesM
where [−]B := mB ◦ (IdB⊗B − cB). Clearly [−]P is uniquely determined by the compati-
bility with ξB. In this way we get a functor Ps

Br : BrBialgsM → BrLiesM which acts as P s
Br

on morphisms. Let us check that there is a unique morphism ηsBrL : IdBrLiesM → Ps
Br Us

Br
such that ξUs

Br ◦ ηsBrL = ηsBrL. Let (M, c, [−]) ∈ BrLiesM, set (R,mR, uR,ΔR, εR, cR) :=
Us

Br (M, c, [−]) and set also (A,mA, uA,ΔA, εA, cA) := T s
Br (M, c). Using that pR is co-

multiplicative, the equality (25), unitality of pR and the naturality of the unit constraints, 
one easily checks that

ν := HIsBrH
s
BrLieη

s
BrL (M, c, [−]) (73)= pR ◦ α1M : M → R

is equalized by the fork in (23). Hence ν induces a morphism ν′ : M → P
(
Us

Br (M, c, [−])
)

=: P such that ξUs
Br (M, c, [−]) ◦ ν′ = ν. One easily proves that ν′ defines a natural 

transformation ηsBrL : IdBrLiesM → Ps
Br Us

Br such that ξUs
Br ◦ ηsBrL = ηsBrL. Let us check 

there is a natural transformation εsBrL : Us
BrPs

Br → IdBrBialgs
M such that εsBrL�s

Br ◦Us
Brξ =

�s
Brε

s
BrL.

Let B := (B,mB , uB ,ΔB , εB , cB) ∈ BrBialgsM and consider

γ := HΩBrI
s
BrAlg (εsBrL�s

BrB ◦ Us
BrξB) : R → B

where (R,mR, uR,ΔR, εR, cR) := Us
BrPs

BrB. By definition γ is a morphism of braided 
algebras and a direct computation shows that γ ◦ pR = HΩBr�BrεBrIsBrBialgB, using 
the equality pR = HΩBrI

s
BrAlgp

sP s
BrB and the equalities (72), (22), (21), (32), (29). 

Since εBrIsBrBialgB is a morphism of braided bialgebras and pR is an epimorphism and a 
morphism of braided bialgebras, it is straightforward to prove that also γ is. Hence there 
is a unique morphism εsBrLB : Us

BrPs
BrB → B such that HΩBrIsBrAlgε

s
BrLB = γ. From the 

definition of γ and the fact that HΩBrIsBrAlg is faithful, we deduce εsBrL�s
BrB ◦ Us

BrξB =
�s

Brε
s
BrLB. The naturality of the left-hand side of the latter equality and the faithfulness 

of �s
Br yield the naturality of εsBrLB. One easily checks that the ηsBrL and εsBrL make 

(Us
Br, Ps

Br) an adjunction. �
Next aim is to prove that, in the symmetric case, the functor U factors through a 

functor U : LieM → BialgM such that � ◦ U = U .

Theorem 6.4. Let M an abelian symmetric monoidal category with denumerable co-
products. Assume that the tensor products are right exact and preserve denumerable 
coproducts. Then there are unique functors U and P such that the following diagrams 
commute
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BialgM
Js
Bialg

BrBialgsM

LieM

U
Js
Lie BrLiesM

Us
Br

BialgM
P

Js
Bialg

BrBialgsM
Ps

Br

LieM
Js
Lie BrLiesM

LieM

U

U BialgM

�
AlgM

(78)

where U is the functor of Theorem 6.2. Moreover 
(
U ,P

)
is an adjunction with unit 

ηL : IdLieM → PU and counit εL : UP → IdBialgM uniquely determined by

Js
LieηL = ηsBrLJ

s
Lie and Js

BialgεL = εsBrLJ
s
Bialg, (79)

and (Js
Bialg, J

s
Lie) : (U , P) → (Us

Br, Ps
Br) is a commutation datum with canonical transfor-

mation given by the identity. Furthermore there is a natural transformation p : THLie →
U such that

psJs
Lie = Js

Bialgp and �BrJBialgp = pJLie (80)

where ps : T s
BrH

s
BrLie → Us

Br is the natural transformation of Theorem 5.12 and 
p : TBrHBrLie → UBr is the natural transformation of Proposition 5.9. The natural trans-
formation ξ : Ps

Br → Ls
Br�s

Br induces a natural transformation ξ : P → L� such that 
Js

Lieξ = ξJs
Bialg.

Proof. The first part is a consequence of Lemma 2.9. The commutativity of the third 
diagram of (78) follows by (42), (78), (69) and (74). By Lemma 1.12, there is a natural 
transformation p := p̂sJs

Lie : THLie → U such that Js
Bialgp = psJs

Lie. Using (41) (80), (70)
and (55) we get �BrJBialgp=(55) pJLie. By Lemma 1.12, there is a natural transformation 
ξ := ξ̂Js

Bialg : P → L� such that Js
Lieξ = ξJs

Bialg. �
Remark 6.5. By Lemma 1.12, there is a natural transformation q := p̂sJs

Lie : THLie → U
such that

Js
Bialgq = psJs

Lie. (81)

Using (81), (70) and (55) one checks that �q = HAlgpJLie where p is the morphism of 
Proposition 5.9. This means that for every (M, [−]) ∈ LieM the morphism q (M, [−]) is 
really induced by the canonical projection pR : ΩTM → R := Us

BrJLie (M, [−]) defining 
in this lemma the universal enveloping algebra. Summing up, as a bialgebra in M we have 
that U (M, [−]) is a quotient of THLie (M, [−]) = TM via q (M, [−]) and the underlying 
algebra structure is the original one underlying Us

BrJLie (M, [−]).
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7. Stationary monadic decomposition

Theorem 7.1. Let M be an abelian monoidal category with denumerable coproducts. As-
sume that the tensor products are exact and preserve denumerable coproducts.

BrBialgsM

P s
Br

BrBialgsM

(P s
Br)1

IdBrBialgsM BrBialgsM

(P s
Br)2

IdBrBialgsM

IdBrBialgsM

BrBialgsM
Ps

Br

IdBrBialgsM

BrsM

T s
Br

(BrsM)1

(T s
Br)1

U0,1
(BrsM)2

(T s
Br)2

U1,2

ΛBrBrLiesM

Us
Br

Hs
BrLie

(82)

The functor P s
Br is comparable so that we can use the notation of Definition 1.9. There is 

a functor ΛBr : (BrsM)2 → BrLiesM such that ΛBr◦(P s
Br)2 = Ps

Br and Hs
BrLie◦ΛBr = U0,2. 

Moreover there exists a natural transformation χs
Br : Us

BrΛBr → (T s
Br)1U1,2 such that

χs
Br ◦ psΛBr = πs

1U1,2 (83)

where ps is the natural transformation of Theorem 5.12 and πs
1 : T s

BrU0,1 → (T s
Br)1 is 

the canonical natural transformation defining (T s
Br)1.

Assume ηsBrLΛBr is an isomorphism.

1) The adjunction 
(
Us

Br,Ps
Br
)

is idempotent.
2) The adjunction 

(
(T s

Br)1, (P s
Br)1

)
is idempotent, we can choose (T s

Br)2 := (T s
Br)1U1,2, 

πs
2 = Id(T s

Br)2
and (T s

Br)2 is full and faithful i.e. (ηsBr)2 is an isomorphism.
3) The functor P s

Br has a monadic decomposition of monadic length at most two.
4) (IdBrBialgs

M , ΛBr) : ((T s
Br)2, (P s

Br)2) → (Us
Br, Ps

Br) is a commutation datum whose 
canonical transformation is χs

Br.
5) The pair 

(
(P s

Br)2 Us
Br,ΛBr

)
is an adjunction with unit ηsBrL and counit (ηsBr)

−1
2 ◦

(P s
Br)2 χ

s
Br so that ΛBr is full and faithful. Hence ηsBrL is an isomorphism if and only 

if 
(
(P s

Br)2 Us
Br,ΛBr

)
is an equivalence of categories. In this case 

(
(T s

Br)2, (P s
Br)2

)
identifies with 

(
Us

Br,Ps
Br
)

via ΛBr.

Proof. By 3.6 we have an adjunction 
(
T s

Br, P
s
Br
)
. By Proposition B.11, the right adjoint 

functor R = P s
Br is comparable and we can use the notation of Definition 1.9.

Let M2 = (M1, μ1) ∈ (BrsM)2. Then we can write M1 = (M0, μ0) ∈ (BrsM)1 and 
M0 = (M, c) ∈ BrsM. Let θ(M,c) := θIsBr(M,c) : M ⊗ M → ΩT (M) be defined as in 
(57) and set A := (A,mA, uA,ΔA, εA, cA) := TBrM0 = TBr (M, c). Since c2 = IdM⊗M



A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488–563 527
we have that θ(M,c) fulfills (65). Thus there is a unique morphism θ(M,c) := θIsBr(M,c) :
M ⊗M → P

(
TBr (M, c)

)
such that

ξA ◦ θ(M,c) = θ(M,c). (84)

Set

[−] := HIsBrμ0 ◦ θ(M,c) : M ⊗M → M.

Let us check that (M, c, [−]) ∈ BrLiesM. Now μ1 ◦ (ηsBr)1 M1 = IdM1 so that 
(ηsBr)1 M1 is a split monomorphism. Set S := (S,mS , uS ,ΔS , εS , cS) :=

(
T s

Br
)
1 M1. Thus 

HIsBrU0,1 (ηsBr)1 M1 : M → P (S) is a split monomorphism too. Let πs
1 : T s

BrU0,1 →(
T s

Br
)
1 be the canonical natural transformation defining 

(
T s

Br
)
1. By construction one 

has

P s
Brπ

s
1 ◦ ηsBrU0,1 = U0,1 (ηsBr)1 . (85)

We have

HξTBrI
s
Br ◦HIsBrη

s
Br = H

(
ξTBrI

s
Br ◦ IsBrη

s
Br
)

(31)= H
(
ξTBrI

s
Br ◦ ηBrI

s
Br
) (28)= HηBrI

s
Br

(20)= ηHIsBr. (86)

In particular, we have

ξA ◦HIsBrη
s
BrM0 = ξA ◦HIsBrη

s
BrM0 = HξTBrI

s
BrM0 ◦HIsBrη

s
BrM0

(86)= ηHIsBrM0 = ηM
(4)= α1M

so that

ξA ◦HIsBrη
s
BrM0 = α1M (87)

We compute

ξA ◦ [−]P (A) ◦ (HIsBrη
s
BrM0 ⊗HIsBrη

s
BrM0)

= [−]A ◦ (ξA⊗ ξA) ◦ (HIsBrη
s
BrM0 ⊗HIsBrη

s
BrM0)

= mA ◦ (IdA⊗A − cA) ◦ (ξA⊗ ξA) ◦ (HIsBrη
s
BrM0 ⊗HIsBrη

s
BrM0)

(87)= mA ◦ (IdA⊗A − cA) ◦ (α1M ⊗ α1M) = mA ◦ (α1M ⊗ α1M) ◦
(
IdM⊗M − c1,1A

)
(2)= α2M ◦ (IdM⊗M − c) (57)= θ(M,c)

(84)= ξA ◦ θ(M,c).

Since ξA is a monomorphism we get
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θ(M,c) = [−]P (A) ◦ (HIsBrη
s
BrM0 ⊗HIsBrη

s
BrM0) . (88)

Moreover since πs
1M1 : A = T s

BrU0,1M1 →
(
T s

Br
)
1 M1 = S is a morphism in BrBialgsM, 

we have that HIsBrP
s
Brπ

s
1M1

(76)= HIsBrH
s
BrLiePs

Brπ
s
1M1 commutes with Lie brackets i.e.

[−]P (S) ◦ (HIsBrP
s
Brπ

s
1M1 ⊗HIsBrP

s
Brπ

s
1M1) = HIsBrP

s
Brπ

s
1M1 ◦ [−]P (A) (89)

Hence we get

[−]P (S) ◦ (HIsBrU0,1 (ηsBr)1 M1 ⊗HIsBrU0,1 (ηsBr)1 M1)
(85)= [−]P (S) ◦ (HIsBrP

s
Brπ

s
1M1 ⊗HIsBrP

s
Brπ

s
1M1) ◦ (HIsBrη

s
BrM0 ⊗HIsBrη

s
BrM0)

(89)= HIsBrP
s
Brπ

s
1M1 ◦ [−]P (A) ◦ (HIsBrη

s
BrM0 ⊗HIsBrη

s
BrM0)

(88)= HIsBrP
s
Brπ

s
1M1 ◦ θ(M,c)

(∗)= HIsBrP
s
Brπ

s
1M1 ◦HIsBrη

s
BrU0,1M1 ◦HIsBrμ0 ◦ θ(M,c)

(85)= HIsBrU0,1 (ηsBr)1 M1 ◦ [−]

where in (∗) we used that P s
Brπ

s
1M1 ◦ ηsBrU0,1M1 ◦ μ0 = P s

Brπ
s
1M1 which follows from 

πs
1M1 ◦ T s

Brμ0 = πs
1M1 ◦ εsBrT

s
BrM0 (true by definition of π1) and [4, Lemma 3.3]. We 

have so proved

[−]P (S) ◦ (HIsBrU0,1 (ηsBr)1 M1 ⊗HIsBrU0,1 (ηsBr)1 M1) = HIsBrU0,1 (ηsBr)1 M1 ◦ [−] .

(90)

Using the fact that HIsBrU0,1 (ηsBr)1 M1 is a monomorphism in M and(
P (S) , cP (S), [−]P (S)

)
= Ps

BrS ∈ BrLiesM,

one easily checks that ΛBr (M2) := (M, c, [−]) ∈ BrLiesM and that HIsBrU0,1 (ηsBr)1 M1 :
M → P (S) is a morphism in BrLiesM. Let ν : M2 → M ′

2 be a morphism in (BrsM)2. 
It is clearly a morphism of braided objects. Since, by (76), we have HIsBrP

s
Br =

HIsBrH
s
BrLiePs

Br, then HIsBrP
s
BrT

s
BrU0,2ν commutes with Lie brackets and hence

θ(M ′,c′) ◦ (HIsBrU0,2ν ⊗HIsBrU0,2ν)
(88)= [−]P (A′) ◦ (HIsBrη

s
BrM

′
0 ⊗HIsBrη

s
BrM

′
0) ◦ (HIsBrU0,2ν ⊗HIsBrU0,2ν)

= [−]P (A′) ◦
(
HIsBrP

s
BrT

s
BrU0,2ν ⊗HIsBrP

s
BrT

s
BrU0,2ν

)
◦ (HIsBrη

s
BrM0 ⊗HIsBrη

s
BrM0)

= HIsBrP
s
BrT

s
BrU0,2ν ◦ [−]P (A) ◦ (HIsBrη

s
BrM0 ⊗HIsBrη

s
BrM0)

(88)= HIsBrP
s
BrT

s
BrU0,2ν ◦ θ(M,c)
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so that θ(M ′,c′) ◦ (HIsBrU0,2ν ⊗HIsBrU0,2ν) = HPBrTBrI
s
BrU0,2ν ◦ θ(M,c). Using the 

latter equality, (30) and that ν is a morphism in (BrsM)2 we obtain that [−]′ ◦
(HIsBrU0,2ν ⊗HIsBrU0,2ν) = HIsBrU0,2ν ◦ [−]. Thus ν induces a morphism ΛBrv ∈
BrLiesM. It is clear that this defines a functor ΛBr : (BrsM)2 → BrLiesM acting as the iden-
tity on morphisms. Let B := (B,mB , uB ,ΔB , εB , cB) ∈ BrBialgsM. Set M2 := (P s

Br)2 B. 
Then

(M1, μ1) : = M2 = ((P s
Br)1 B, (P

s
Br)1 (εsBr)1 B) ,

(M0, μ0) : = M1 = (P s
Br)1 B = (P s

BrB, P
s
Brε

s
BrB) ,

(M, c) : = M0 = P s
BrB

The bracket for this specific M is

[−] := HIsBrμ0 ◦ θ(M,c) = HIsBrP
s
Brε

s
BrB ◦ θP s

BrB
.

It is straightforward to prove that ξB ◦ [−] = [−]B ◦ (ξB⊗ ξB) = ξB ◦ [−]P (B) so that 
[−] = [−]P (B) and hence

ΛBr (P s
Br)2 B =

(
P s

BrB, [−]P (B)

)
= Ps

BrB.

It is clear that the functors ΛBr (P s
Br)2 and Ps

Br coincide also on morphisms so that we 
obtain ΛBr ◦ (P s

Br)2 = Ps
Br. Let M2 ∈ (BrsM)2. Then

Hs
BrLieΛBrM2 = Hs

BrLie (M, c, [−]) = (M, c) = U0,2M2.

Since Hs
BrLie, ΛBr and U0,2 act as the identity on morphisms, we get Hs

BrLie ◦ΛBr = U0,2.
In view (87), naturality of ξ, the equality (∗) used above and (84) we obtain

HIsBrΩs
Br�s

Brπ
s
1M1 ◦ α1M ◦ [−] = HIsBrΩs

Br�s
Brπ

s
1M1 ◦ θ(M,c).

Thus we get HIsBrΩs
Br�s

Brπ
s
1M1 ◦ fΛBrM2 = 0.

Since πs
1M1 is an algebra map, we have HIsBrΩs

Br�s
Brπ

s
1M1 ◦ ifΛBrM2

= 0 so that, 
by construction of Us

Br there is a braided algebra morphism χs
BrM2 : Us

BrΛBrM2 →
�s

Br
(
T s

Br
)
1 M1 such

χs
BrM2 ◦ psΛBrM2 = �s

Brπ
s
1M1 = �s

Brπ
s
1U1,2M2.

By naturality of the other terms we obtain that also χs
BrM2 is natural in M2 so that we 

get

χs
Br ◦ psΛBr = �s

Brπ
s
1U1,2.
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By (70) we get χs
Br◦�s

Brp
sΛBr = �s

Brπ
s
1U1,2. Since both psΛBr and πs

1U1,2 are morphism of 
braided bialgebras and the underlying morphism in M of ps is p which is an epimorphism, 
one gets that χs

Br is a morphism of braided bialgebras too that will be denoted by 
χs

Br : Us
BrΛBr →

(
T s

Br
)
1 U1,2. Thus �s

Brχ
s
Br = χs

Br and hence

χs
Br ◦ psΛBr = πs

1U1,2. (91)

A direct computation, shows that IsBrη
s
Br = IsBrξT

s
Br ◦ IsBrη

s
Br and hence

ηsBr = ξT s
Br ◦ ηsBr.

Thus, using (76), naturality of ξ, (77), (72), (70), (91), again naturality of ξ and (85) in 
the given order, we get

ξ
(
T s

Br
)
1 U1,2 ◦Hs

BrLie (Ps
Brχ

s
Br ◦ ηsBrLΛBr) = ξ

(
T s

Br
)
1 U1,2 ◦ U0,1 (ηsBr)1 U1,2.

Therefore, we obtain

Hs
BrLie (Ps

Brχ
s
Br ◦ ηsBrLΛBr) = U0,1 (ηsBr)1 U1,2. (92)

The latter is a split monomorphism. Since Hs
BrLie is faithful, we get that the evaluation 

on objects of Ps
Brχ

s
Br ◦ ηsBrLΛBr is a monomorphism.

Assume that ηsBrLΛBr is an isomorphism. Note that ηsBrLΛBr isomorphism implies 
ηsBrLΛBr (P s

Br)2 isomorphism. Since Ps
Br = ΛBr (P s

Br)2 this means that ηsBrLPs
Br is an 

isomorphism and hence the adjunction 
(
Us

Br,Ps
Br
)

is idempotent, cf. [34, Proposi-
tion 2.8]. Moreover, since ηsBrLΛBr is an isomorphism, then the evaluation of Ps

Brχ
s
Br :

Ps
BrUs

BrΛBr → Ps
Br

(
T s

Br
)
1 U1,2 is a monomorphism. Let M2 ∈ (BrsM)2 and consider the 

coequalizer

T s
BrP

s
BrT

s
BrM0

T s
Brμ0

εsBrT
s
BrM0

T s
BrM0

πs
1M1

(T s
Br)1M1

Then, from χs
Br ◦ psΛBr = πs

1U1,2, we get χs
BrM2 ◦ psΛBrM2 ◦ T s

Brμ0 = χs
BrM2 ◦

psΛBrM2 ◦εsBrT
s
BrM0. If we apply Ps

Br, from the fact that Ps
Brχ

s
BrM2 is a monomorphism, 

we obtain

Ps
Br

(
psΛBrM2 ◦ T s

Brμ0
)

= Ps
Br

(
psΛBrM2 ◦ εsBrT

s
BrM0

)
.

If we apply on both sides Hs
BrLie, by (76), we obtain

P s
Br

(
psΛBrM2 ◦ T s

Brμ0
)

= P s
Br

(
psΛBrM2 ◦ εsBrT

s
BrM0

)
.
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Since 
(
Us

Br,Ps
Br
)

is idempotent, by [34, Proposition 2.8], we also have that εsBrLUs
Br

is an isomorphism. Note that the arguments of P s
Br in the above displayed equality are 

morphisms of the form T s
BrX → Y for some objects X, Y . Given two such morphisms 

f , g : T s
BrX → Y with P s

Brf = P s
Brg we have

f = f ◦ εsBrT
s
BrX ◦ T s

Brη
s
BrX = εsBrY ◦ T s

BrP
s
Brf ◦ T s

Brη
s
BrX

= εsBrY ◦ T s
BrP

s
Brg ◦ T s

Brη
s
BrX = g ◦ εsBrT

s
BrX ◦ T s

Brη
s
BrX = g.

In our case we get psΛBrM2 ◦ T s
Brμ0 = psΛBrM2 ◦ εsBrT

s
BrM0. By the universal property 

of the coequalizer above, there is a braided bialgebra morphism τM2 :
(
T s

Br
)
1 M1 →

Us
BrΛBrM2 such that

τM2 ◦ πs
1M1 = psΛBrM2.

Note that, by Proposition B.11, the morphism πs
1M1 can be chosen in such a way to be a 

coequalizer when regarded as a morphism in M. We already observed that ps is also an 
epimorphism in M. Using these facts one easily checks that χs

BrM2 and τM2 are mutual 
inverses and hence χs

Br : Us
BrΛBr →

(
T s

Br
)
1 U1,2 is an isomorphism.

Therefore U0,1 (ηsBr)1 U1,2 = Hs
BrLie (Ps

Brχ
s
Br ◦ ηsBrLΛBr) is an isomorphism. Since U0,1

reflects isomorphisms, we conclude that (ηsBr)1 U1,2 is an isomorphism. We have so proved 
that the adjunction 

((
T s

Br
)
1 , (P

s
Br)1

)
is idempotent. Note that in this case we can 

choose 
(
T s

Br
)
2 :=

(
T s

Br
)
1 U1,2 (and πs

2 to be the identity) and it is full and faithful 
(cf. [4, Proposition 2.3]) i.e. (ηsBr)2 is an isomorphism. By the quoted result we also have 
(ηsBr)1 U1,2 = U1,2 (ηsBr)2 so that

Hs
BrLie (Ps

Brχ
s
Br ◦ ηsBrLΛBr)

(92)= U0,1 (ηsBr)1 U1,2 = U0,1U1,2 (ηsBr)2 = Hs
BrLieΛBr (ηsBr)2

and hence Ps
Brχ

s
Br ◦ ηsBrLΛBr = ΛBr (ηsBr)2. This proves (7) holds i.e. that (IdBrBialgs

M ,

ΛBr) :(
(
T s

Br
)
2 , (P

s
Br)2) → (Us

Br, Ps
Br) is a commutation datum whose canonical transfor-

mation is χs
Br. Let us check that 

(
(P s

Br)2 Us
Br,ΛBr

)
is an adjunction with unit and counit 

as in the statement. We have

ΛBr

(
(ηsBr)

−1
2 ◦ (P s

Br)2 χ
s
Br

)
◦ ηsBrLΛBr = ΛBr (ηsBr)

−1
2 ◦ ΛBr (P s

Br)2 χ
s
Br ◦ ηsBrLΛBr

= ΛBr (ηsBr)
−1
2 ◦ Ps

Brχ
s
Br ◦ ηsBrLΛBr = ΛBr (ηsBr)

−1
2 ◦ ΛBr (ηsBr)2 = ΛBr.

Moreover, by (9) applied to our commutation datum, we have (εsBr)2 ◦ χs
Br (P s

Br)2 =
εsBrL so that (

(ηsBr)
−1
2 ◦ (P s

Br)2 χ
s
Br

)
(P s

Br)2 Us
Br ◦ (P s

Br)2 Us
Brη

s
BrL

= (ηsBr)
−1
2 (P s

Br)2 Us
Br ◦ (P s

Br)2 χ
s
Br (P s

Br)2 Us
Br ◦ (P s

Br)2 Us
Brη

s
BrL
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= (P s
Br)2 (εsBr)2 Us

Br ◦ (P s
Br)2 χ

s
Br (P s

Br)2 Us
Br ◦ (P s

Br)2 Us
Brη

s
BrL

= (P s
Br)2

[
(εsBr)2 Us

Br ◦ χs
Br (P s

Br)2 Us
Br ◦ Us

Brη
s
BrL

]
= (P s

Br)2
[
εsBrLUs

Br ◦ Us
Brη

s
BrL

]
= (P s

Br)2 .

Note that the counit is an isomorphism so that ΛBr is full and faithful.
It is then clear that 

(
(P s

Br)2 Us
Br,ΛBr

)
is an equivalence of categories if and only if 

ηsBrL is an isomorphism (see e.g. [11, Proposition 3.4.3]). �
Theorem 7.2. Let M be an abelian symmetric monoidal category with denumerable co-
products. Assume that the tensor products are exact and preserve denumerable coproducts.

M2
Js
2

Λ

(BrsM)2

ΛBr

LieM
Js
Lie BrLiesM

BialgM

P

BialgM

P1

IdBialgM BialgM

P2

IdBialgM

IdBialgM

BialgM
P

IdBialgM

M

T

M1

T 1

U0,1
M2

T 2

U1,2

ΛLieM

U

HLie

(93)

The functor P is comparable so that we can use the notation of Definition 1.9. We have 
HLieP = P and there is a functor Λ : M2 → LieM such that ΛBrJ

s
2 = Js

LieΛ, Λ ◦P2 = P
and HLie ◦ Λ = U0,2. Moreover there exists a natural transformation χ : UΛ → T 1U1,2
such that

Js
Bialgχ = ζs1U1,2 ◦ χs

BrJ
s
2 , χ ◦ pΛ = π1U1,2

where p is the natural transformation of Theorem 6.4 and π1 : TU0,1 → T 1 is the 
canonical natural transformation defining T 1.

Assume ηsBrLΛBr is an isomorphism.

1) The adjunction (U , P) is idempotent.
2) The adjunction 

(
T 1, P1

)
is idempotent, we can choose T 2 := T 1U1,2, π2 = IdT 2

and 
T 2 is full and faithful i.e. η2 is an isomorphism.

3) The functor P has a monadic decomposition of monadic length at most two.
4) (IdBialgM , Λ) : (T 2, P2) → (U , P) is a commutation datum whose canonical transfor-

mation is χ.
5) The pair 

(
P2U ,Λ

)
is an adjunction with unit ηL and counit (η2)−1 ◦ P2χ so that 

Λ is full and faithful. Hence ηL is an isomorphism if and only if 
(
P2U ,Λ

)
is an 

equivalence of categories. In this case 
(
T 2, P2

)
identifies with 

(
U ,P

)
via Λ.

6) If ηsBrL is an isomorphism so is ηL.
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Proof. We have

JsHLieP
(55)= Hs

BrLieJ
s
LieP

(78)= Hs
BrLiePs

BrJ
s
Bialg

(76)= P s
BrJ

s
Bialg

(49)= JsP

so that HLieP = P . By Proposition 4.7, 
(
Js

Bialg, J
s
)

:
(
T , P

)
→

(
T s

Br, P
s
Br
)

is a com-
mutation datum. Moreover, by Lemma A.5, Js

Bialg : BialgM → BrBialgsM preserves 
coequalizers. By Proposition B.11, the right adjoint functor R = P s

Br is comparable 
and we can use the notation of Definition 1.9. By Lemma A.4 and Lemma 1.11 we 
have that P is also comparable. Applying iteratively Proposition 2.5, we get functors 
Js
n : Mn → (BrsM)n, for all n ∈ N, such that Js

n ◦ Pn = (P s
Br)n ◦ Js

Bialg. Let M2 ∈ M2
and consider ΛBrJ

s
2M2. Note that, by construction we have

Js
2M2 = (Js

1M1, J
s
1μ1 ◦ (P s

Br)1ζs1M1) and Js
1M1 = (JsM0, J

sμ0 ◦ P s
Brζ

s
0M0)

where ζsi : (T s
Br)iJs

i → Js
BialgT i for i = 0, 1 are the canonical transformations of the 

respective commutation data. By construction we have ΛBrJ
s
2M2 = (M0, cM0,M0 , [−])

where

[−] := HIsBrJ
sμ0 ◦HIsBrP

s
Brζ

s
0M0 ◦ θ(M0,cM0,M0

) = μ0 ◦HIsBrP
s
Brζ

s
0M0 ◦ θM0 .

Now ΛBrJ
s
2M2 ∈ BrLiesM so that (M0, cM0,M0 , [−]) ∈ BrLieM i.e. (M0, [−]) ∈ LieM

and ΛBrJ
s
2M2 = Js

Lie (M0, [−]). Thus Im(ΛBrJ
s
2 ) ⊆ Im(Js

Lie). Hence, by Lemma 1.12, 
there is a unique functor Λ : M2 → LieM such that ΛBrJ

s
2 = Js

LieΛ. This equality 
implies that Λ acts as the identity on morphisms and that

ΛM2 = (M0, [−]) .

Note that, by Proposition 4.7, we have ζs0 = IdT s
BrJ

s so that we obtain

[−] := μ0 ◦ θM0 .

We have

Js
LieΛP2 = ΛBrJ

s
2P2 = ΛBr(P s

Br)2Js
Bialg

(82)= Ps
BrJ

s
Bialg

(78)= Js
LieP.

Since Js
Lie is both injective on morphisms and objects, we get ΛP2 = P. It is clear that 

HLieΛ = U0,2. We have

Js
BialgUΛ (78)= Us

BrJ
s
LieΛ = Us

BrΛBrJ
s
2

so that ̂Us
BrΛBrJs

2 = UΛ. Thus, by Lemma 1.12, there is a natural transformation χ :=
̂ζs1U1,2 ◦ χs

BrJ
s
2 : UΛ → T 1U1,2 such that Js

Bialgχ = ζs1U1,2 ◦ χs
BrJ

s
2 . We compute
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Js
LieηLΛ (79)= ηsBrLJ

s
LieΛ = ηsBrLΛBrJ

s
2 (94)

so that

JsHLie (Pχ ◦ ηLΛ) = JsHLiePχ ◦ JsHLieηLΛ
(55)= JsPχ ◦Hs

BrLieJ
s
LieηLΛ (49),(94)= P s

BrJ
s
Bialgχ ◦Hs

BrLieη
s
BrLΛBrJ

s
2

= P s
Brζ

s
1U1,2 ◦ P s

Brχ
s
BrJ

s
2 ◦Hs

BrLieη
s
BrLΛBrJ

s
2

(76)= P s
Brζ

s
1U1,2 ◦Hs

BrLiePs
Brχ

s
BrJ

s
2 ◦Hs

BrLieη
s
BrLΛBrJ

s
2

= P s
Brζ

s
1U1,2 ◦Hs

BrLie (Ps
Brχ

s
Br ◦ ηsBrLΛBr)Js

2

(92)= U0,1 (P s
Br)1 ζ

s
1U1,2 ◦ U0,1 (ηsBr)1 U1,2J

s
2

(92)= U0,1 (P s
Br)1 ζ

s
1U1,2 ◦ U0,1 (ηsBr)1 J

s
1U1,2 = U0,1 ((P s

Br)1 ζ
s
1 ◦ (ηsBr)1 J

s
1 )U1,2

= U0,1J
s
1η1U1,2 = JsU0,1η1U1,2

so that

HLie (Pχ ◦ ηLΛ) = U0,1η1U1,2. (95)

We have

Js
Bialg (χ ◦ pΛ) = Js

Bialgχ ◦ Js
BialgpΛ

(80)= ζs1U1,2 ◦ χs
BrJ

s
2 ◦ psJs

LieΛ

= ζs1U1,2 ◦ χs
BrJ

s
2 ◦ psΛBrJ

s
2

(83)= ζs1U1,2 ◦ πs
1U1,2J

s
2

= ζs1U1,2 ◦ πs
1J

s
1U1,2 = (ζs1 ◦ πs

1J
s
1 )U1,2

(∗)=
(
Js

Bialgπ1 ◦ ζs0
)
U1,2

= Js
Bialgπ1U1,2

where (∗) follows by construction of ζs1 (see the proof of Proposition 2.5). Thus we obtain 
χ ◦ pΛ = π1U1,2.

Assume ηsBrLΛBr is an isomorphism. By Theorem 7.1, we have that χs
Br is an isomor-

phism. Thus, from Js
Bialgχ = ζs1U1,2 ◦ χs

BrJ
s
2 and the fact that ζs1 is an isomorphism, we 

deduce that χ is an isomorphism too. Moreover, by (94), we also have that ηLΛ is an 
isomorphism. From this we get that ηLΛP2 is an isomorphism. Since ΛP2 = P we have 
that ηLP is an isomorphism. By [34, Proposition 2.8], this means that the adjunction 
(U , P) is idempotent.

Moreover, since ηLΛ is an isomorphism, by (95), we deduce that η1U1,2 is an isomor-
phism i.e. 

(
T 1, P1

)
is idempotent (cf. [4, Remark 2.2]). Note that in this case we can 

choose T 2 := T 1U1,2 and it is full and faithful (cf. [4, Proposition 2.3]) i.e. η2 is an 
isomorphism. The choice T 2 := T 1U1,2 implies we can choose the canonical projection 
π2 : T 1U1,2 → T 2 to be the identity. In this case by definition, η1 is given by the for-
mula η1U1,2 = U1,2η2. Thus the second term of 95 becomes U0,1η1U1,2 = U0,1U1,2η2 =
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U0,2η2 = HLieΛη2. Since HLie is faithful, by (95) we obtain Pχ ◦ ηLΛ = Λη2 which 
means that (IdBialgM , Λ) : (T 2, P2) → (U , P) is a commutation datum whose canonical 
transformation is χ.

We already observed that ΛBrJ
s
2 = Js

LieΛ. Moreover, from Js
n ◦ Pn = (P s

Br)n ◦ Js
Bialg, 

we deduce

Js
2
(
P2U

)
= (P s

Br)2Js
BialgU

(78)=
(
(P s

Br)2 Us
Br
)
Js

Lie.

We know that Js
Lie is full, faithful and injective on objects. Since Js fulfills the same 

properties, by Proposition 2.5 applied to the commutation datum 
(
Js

Bialg, J
s
)

:
(
T , P

)
→(

T s
Br, P

s
Br
)
, we deduce that the same is true for Js

1 and hence, by same argument, also 
for Js

2 . Thus we can apply Lemma 2.9 to the case L′ =
(
(P s

Br)2 Us
Br
)
, R′ = ΛBr, F =

Js
2 , G = Js

Lie. Then L = P2U and R = Λ, the pair (L,R) is an adjunction and the 
unit and counit of (L,R) and (L′, R′) are related by (11). Since F and G are both 
conservative, we get that ε and η are an isomorphism whenever ε′ and η′ = ηsBrL are. By 
Theorem 7.1, we know that ΛBr is full and faithful i.e. ε′ is an isomorphism and hence 
ε is an isomorphism i.e. Λ is full and faithful. It is clear that 

(
P2U ,Λ

)
is an equivalence 

if and only if η is an isomorphism. By (79), we have Js
LieηL = ηsBrLJ

s
Lie i.e. GηL = η′G. 

Thus, since G is faithful, (11) implies η = ηL. If we write (7) for the commutation datum (
Js

Bialg, J
s
2
)

:
(
T 2, P2

)
→

(
(T s

Br)2, (P s
Br)2

)
, we get (P s

Br)2ζs2 ◦ (ηsBr)2 J
s
2 = Js

2η2 (note that 
(ηsBr)2 is an isomorphism by Theorem 7.1-2)). Using this equality we compute

Js
2

(
(η2)−1 ◦ P2χ

)
= Js

2 (η2)−1 ◦ Js
2P2χ = Js

2 (η2)−1 ◦ (P s
Br)2Js

Bialgχ

= Js
2 (η2)−1 ◦ (P s

Br)2 (ζs1U1,2 ◦ χs
BrJ

s
2 )

= [(P s
Br)2ζs2 ◦ (ηsBr)2 J

s
2 ]−1 ◦ (P s

Br)2ζs1U1,2 ◦ (P s
Br)2χs

BrJ
s
2

= (ηsBr)
−1
2 Js

2 ◦ (P s
Br)2 (ζs2)−1 ◦ (P s

Br)2ζs1U1,2 ◦ (P s
Br)2χs

BrJ
s
2 .

Now, by construction of ζs2 (see the proof of Proposition 2.5), the fact that π2 :
T 1U1,2 → T 2 is the identity and that also πs

2 is the identity (see Theorem 7.1-2)), we 
have that ζs2 = ζs1U1,2 and hence

F
(
(η2)−1 ◦ P2χ

)
= Js

2

(
(η2)−1 ◦ P2χ

)
= (ηsBr)

−1
2 Js

2 ◦ (P s
Br)2χs

BrJ
s
2

=
(
(ηsBr)

−1
2 ◦ (P s

Br)2χs
Br

)
Js

2 = ε′F.

Thus, by (11), we get ε = (η2)−1 ◦ P2χ. �
The following remark was inspired by the comments of the Referee.

Remark 7.3. 1) Theorem 7.1 establishes that the functor P s
Br has a monadic decompo-

sition of monadic length at most two whenever ηsBrLΛBr is invertible. In this case note 
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that this monadic decomposition cannot have monadic length 0 as T s
Br is not full and 

faithful in general: the unit ηsBr : Id → P s
BrT

s
Br needs not to be invertible; for instance, if 

M is the category of vector spaces over a field k and V is a vector space endowed with 
the canonical flip τ , then ηsBr(V, τ) is not surjective. It is not clear to us if the length 
above can be exactly 2. A similar argument applies to the setting of Theorem 7.2.

2) It is natural to wonder if there is a primitive type functor, similar to the one in 
Theorem 7.1, but having monadic decomposition of monadic length strictly greater than 
two. In this direction, consider the adjunction (TBr, PBr) of 3.6 in the case when M
is the category of vector spaces over a field k. Then we expect that the functor PBr

has a monadic decomposition of monadic length strictly greater than two. Analogously 
the functor P of Theorem 7.2 is expected to have a monadic decomposition of monadic 
length strictly greater than two if we drop the assumption that M is symmetric. These 
facts will be hopefully investigated in a different paper.

Definition 7.4. An MM-category (Milnor–Moore-category) is an abelian monoidal cat-
egory M with denumerable coproducts such that the tensor products are exact and 
preserve denumerable coproducts and such that the unit ηsBrL : IdBrLiesM → Ps

BrUs
Br of 

the adjunction 
(
Us

Br,Ps
Br
)

is a functorial isomorphism i.e. the functor Us
Br : BrLiesM →

BrBialgsM is full and faithful (see e.g. [11, dual of Proposition 3.4.1, page 114]).

Remark 7.5. 1) The celebrated Milnor–Moore Theorem, cf. [32, Theorem 5.18] states 
that, in characteristic zero, there is a category equivalence between the category of Lie 
algebras and the category of primitively generated bialgebras. The fact that the counit 
of the adjunction involved is an isomorphism just encodes the fact that the bialgebras 
considered are primitively generated. On the other hand the crucial point in the proof 
is that the unit of the adjunction is an isomorphism.

In our wider context this translates to the unit of the adjunction 
(
Us

Br,Ps
Br
)

being a 
functorial isomorphism. From this the definition of MM-category stems. Note that for a 
MM-category M we can apply Theorem 7.1 to obtain that the functor P s

Br has a monadic 
decomposition of monadic length at most two. Moreover we can identify the category 
(BrsM)2 with BrLiesM.

2) In the case of a symmetric MM-category M the connection with Milnor–Moore 
Theorem becomes more evident. In fact, in this case, we can apply Theorem 7.2 to obtain 
that the unit of the adjunction 

(
U ,P

)
is a functorial isomorphism.

8. Lifting the structure of MM-category

We first prove a crucial result for braided vector spaces.

Theorem 8.1. The category of vector spaces over a fixed field k of characteristic zero is 
a MM-category.
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Proof. Let M = M be the category of vector spaces over k. We have just to prove that 
ηsBrL is an isomorphism. Let (M, c, [−]) ∈ BrLiesM. Since we are working on vector spaces, 
we can express explicitly the universal enveloping algebra Us

Br (M, c, [−]) with elements 
as follows

Us
Br (M, c, [−]) = T s

Br (M, c)
([x⊗ y] − x⊗ y + c (x⊗ y) | x, y ∈ M) .

By Lemma 5.3, (M, [−]) is a Lie c-algebra and Us
Br (M, c, [−]) coincides with the 

corresponding universal enveloping algebra in the sense of [27, Section 2.5]. Hence we 
can apply [27, Lemma 6.2] to conclude that the canonical map from M into the primitive 
part of Us

Br (M, c, [−]) is an isomorphism. In our notation this means that

HIsBrH
s
BrLieη

s
BrL (M, c, [−]) : M → HIsBrH

s
BrLiePs

BrUs
Br (M, c, [−])

is bijective. Note that H, IsBr and Hs
BrLie are conservative by 3.3, Definition 3.1 and 

Definition 5.1 respectively. Thus HIsBrH
s
BrLie is conservative and hence we get that 

ηsBrL (M, c, [−]) is an isomorphism for all (M, c, [−]) ∈ BrLiesM. We have so proved that 
ηsBrL is an isomorphism. �

In the rest of this section we will deal with symmetric braided monoidal categories 
M endowed with a faithful monoidal functor W : M → M which is not necessarily 
braided. The examples we will treat take M = MH for a dual quasi-bialgebra H or 
M = HM for a quasi-bialgebra case. Note that in general the obvious forgetful functors 
need not to be monoidal, see e.g. [28, Example 9.1.4] so that further conditions will be 
required on H. Note that the results on MH and HM are not dual each other, unless H
is finite-dimensional.

Lemma 8.2. Let M and N be monoidal categories. Any monoidal functor (F, φ0, φ2) :
M → N induces a functor BrLieF : BrLieM → BrLieN which acts as F on mor-
phisms and such that BrLieF (M, cM , [−]M ) := (FM, cFM , [−]FM ) where (FM, cFM ) =
BrF (M, cM ) and

[−]FM := F [−]M ◦ φ2 (M,M) : FM ⊗ FM → F (M) .

Moreover the first diagram below commutes and there is a unique functor BrLiesF such 
that the second diagram commutes.

BrLieM
HBrLie

BrLieF BrLieN
HBrLie

BrM
BrF BrN

BrLiesM
IsBrLie

BrLiesF BrLiesN
IsBrLie

BrLieM
BrLieF BrLieN
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BrLiesM
Hs

BrLie

BrLiesF BrLiesN
Hs

BrLie

BrsM
BrsF BrsN

(96)

Furthermore the functors BrLieF and BrLiesF are conservative whenever F is.

Proof. It is straightforward. �
Theorem 8.3. Let M and N be monoidal categories. Assume that both M and N are 
abelian with denumerable coproducts, and that the tensor products are exact and pre-
serves denumerable coproducts. Assume that there exists an exact monoidal functor 
(F, φ0, φ2) : M → N which preserves denumerable coproducts. Then we have the fol-
lowing commutation data with the respective canonical transformations

(BrAlgsF,BrLiesF ) : (Us
Br,Ls

Br) → (Us
Br,Ls

Br) ,

ζsBrL : Us
Br (BrLiesF ) → (BrAlgsF )Us

Br,

(BrBialgsF,BrLiesF ) :
(
Us

Br,Ps
Br
)
→

(
Us

Br,Ps
Br
)
,

ζsBrL : Us
Br (BrLiesF ) → (BrBialgsF )Us

Br.

Proof. A direct computation using (96) shows that

IsBrLie (BrLiesF )Ls
Br (B,mB , uB , cB) = IsBrLieLs

Br (BrAlgsF ) (B,mB , uB , cB) .

Since both functors act as F on morphisms, we get IsBrLie (BrLiesF )Ls
Br =

IsBrLieLs
Br (BrAlgsF ). Since IsBrLie is both injective on morphisms and objects we ob-

tain

(BrLiesF )Ls
Br = Ls

Br (BrAlgsF ) .

Now, using in the given order (54), (96), again (54), (38) and again (96), we get 
the equality IsBrH

s
BrLie (BrLiesF ) ξ = IsBrH

s
BrLieξ (BrBialgsF ). Then one shows that 

(BrLiesF ) ξ and ξ (BrBialgsF ) have the same domain and codomain. Thus, from 
IsBrH

s
BrLie (BrLiesF ) ξ = IsBrH

s
BrLieξ (BrBialgsF ) we deduce that

(BrLiesF ) ξ = ξ (BrBialgsF ) .

Consider the natural transformation ζsBrL : Us
Br (BrLiesF ) → (BrBialgsF )Us

Br of 
Lemma 2.2. By definition

ζsBrL := εsBrL (BrBialgsF )Us
Br ◦ Us

Br (BrLiesF ) ηsBrL.

It is straightforward to check that
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�s
Brζ

s
BrL = ζsBrL (97)

where ζsBrL : Us
Br (BrLiesF ) → (BrAlgsF )Us

Br is the canonical morphism of Lemma 2.2, 
and also

ζsBrL ◦ ps (BrLiesF ) = (BrAlgsF ) ps ◦ ζsBrH
s
BrLie.

Let (M, cM , [−]M ) ∈ BrLiesM. Then we have that (M ⊗M, cM⊗M ) ∈ BrLiesM where 
cM⊗M := (M ⊗ cM ⊗M) (cM ⊗ cM ) (M ⊗ cM ⊗M). It is easy to check that [−] : M ⊗
M → M and θ(M,cM ) : M ⊗M → ΩTM induce morphisms of braided objects

[−]s : (M ⊗M, cM⊗M ) → (M, cM ) and

θs(M,cM ) : (M ⊗M, cM⊗M ) → Ωs
BrT

s
Br (M, cM )

such that

HIsBr [−]s = [−] and HIsBrθ
s
(M,cM ) = θ(M,cM ).

Let us check that the following is a coequalizer in BrAlgsM

T s
Br (M ⊗M, cM⊗M )

T s
Br[−]s

εsBrT
s
Br(M,cM )◦T s

Brθ
s(
M,cM

) T s
Br (M, cM )

ps
(
M,cM ,[−]M

)
Us

Br (M, cM , [−])M .

(98)

By applying HAlgIsBrAlg to this diagram we get the diagram

T (M ⊗M)
T [−]

εTM◦Tθ(M,cM
) T (M)

HAlgpI
s
BrLie

(
M,cM ,[−]M

)
HAlgUBrIsBrLie (M, c, [−]) ,

(99)

which can be checked to be a coequalizer in AlgM. By Lemma B.6 we have that HAlg

reflects coequalizers and by [11, Proposition 2.9.9], we have that IsBrAlg reflects coequal-
izers. Thus (98) is also a coequalizer. By Lemma B.10, since F preserves coequalizers, 
we get that AlgF preserves the coequalizer (99). Denote by AlgF (99) the coequalizer 
obtained in this way. Now, with the same notation, AlgF (99) can also be obtained as 
HAlgIsBrAlg(BrAlgsF )(98) (this is straightforward). Since we already observed that both 
HAlg and IsBrAlg reflect coequalizers, we deduce that (BrAlgsF )(98) is a coequalizer too. 
This coequalizer appears in the second line of the diagram
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T s
Br (FM ⊗ FM, cFM⊗FM )

T s
Br[−]sFM

εsBrT
s
Br(FM,cFM )◦T s

Brθ
s(
FM,cFM

)T
s
BrH

s
BrLie (BrLiesF )M

ζs
BrH

s
BrLieM

ps(BrLiesF )M
Us

Br (BrLiesF )M

ζs
BrLM

FT s
Br (M ⊗M, cM⊗M )

FT s
Br[−]s

F
(
εsBrT

s
Br(M,cM )◦T s

Brθ
s(
M,cM

)) FT s
Br (M, cM )

FpsM
FUs

BrM

where, for sake of shortness, we set M := (M, cM , [−]M ) and F := BrAlgsF . One proves 
that the morphism

T s
Br (FM ⊗ FM, cFM⊗FM ) T s

Brφ2(M,M)−→ T s
Br

(
F (M ⊗M) , cF (M⊗M)

)
= T s

Br (BrsF ) (M ⊗M, cM⊗M ) ζs
Br(M⊗M,cM⊗M )−→ (BrAlgsF )T s

Br (M ⊗M, cM⊗M )

is an isomorphism (we just point out that, as one easily checks, the morphism φ2 (M,M)
is a braided morphism so that the morphism above is well-defined) and it completes 
the diagram above on the left making it a serially commutative diagram. The fact it is 
serially commutative depends on the following equality that can be easily checked

IsBrAlgζ
s
Br = ζBrI

s
Br. (100)

Now, by (100) we have IsBrAlgζ
s
Br = ζBrIsBr. On the other hand, by Proposition 3.7 (here we 

use the fact that F preserves denumerable coproducts), we know that ζBr is a functorial 
isomorphism. Since IsBrAlg is conservative, we deduce that ζsBr is a functorial isomor-
phism. Thus, by the uniqueness of coequalizers (note that the first line in the diagram 
above is just (98) applied to (BrLiesF ) (M, cM , [−]M ) = (FM, cFM , [−]FM ) instead of 
(M, cM , [−]M )), we get that ζsBrL (M, c, [−]) is an isomorphism too. Thus ζsBrL is a func-
torial isomorphism.

By (97) we have �s
Brζ

s
BrL = ζsBrL so that ζsBrL is a functorial isomorphism too. �

Theorem 8.4. Let M be an abelian monoidal category with denumerable coproducts and 
such that the tensor products are exact and preserve denumerable coproducts. Let N be a 
MM-category and assume that there exists a conservative (see 2.1) and exact monoidal 
functor (F, φ0, φ2) : M → N which preserves denumerable coproducts. Then M is a 
MM-category.

Proof. By Theorem 8.3, we have the following commutation datum

(BrBialgsF,BrLiesF ) :
(
Us

Br,Ps
Br
)
→

(
Us

Br,Ps
Br
)
.

By Lemma 8.2, we know that BrLiesF is conservative as F is. By Lemma 2.7, we have 
that the unit ηsBrL : IdBrLiesM → Ps

BrUs
Br is a functorial isomorphism. �

Theorem 8.5. Let M be the category of vector spaces over a field k with chark = 0. Let 
M be an abelian monoidal category with denumerable coproducts, such that the tensor 
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functors are exact and preserve denumerable coproducts. Assume that there exists a con-
servative and exact monoidal functor (F, φ0, φ2) : M → M which preserves denumerable 
coproducts. Then M is a MM-category.

Proof. By Theorem 8.1 we have M is a MM-category. We conclude by Theorem 8.4. �
9. Examples of MM-categories

Example 9.1. Let k be a field with char (k) = 0. Let H be any Hopf algebra over k
and consider the monoidal category of Yetter–Drinfeld modules 

(
H
HYD,⊗k, k

)
. Then the 

forgetful functor F :
(
H
HYD,⊗k, k

)
→ (M,⊗k, k) is monoidal. One can prove by hand 

that HHYD is abelian with denumerable coproducts. The tensor products are clearly exact 
and preserve denumerable coproducts in HHYD as this is the case in M. Furthermore F is 
clearly conservative and exact and preserves denumerable coproducts. By Theorem 8.5, 
we conclude that 

(
H
HYD,⊗k, k

)
is a MM-category. Note that, by Theorem [35], this 

category, with respect to its standard pre-braiding, is not symmetric unless H = k.

9.1. Quasi-bialgebras

The following definition is not the original one given in [17, page 1421]. We adopt the 
more general form of [17, Remark 1, page 1423] (see also [26, Proposition XV.1.2]) in 
order to comprise the case of monoidal Hom-Lie algebras. Later on, for dual quasi-
bialgebras, we will take the simplified respective definition from the very beginning 
having no meaningful example to treat in the full generality.

Definition 9.2. A quasi-bialgebra is a datum (H,m, u,Δ, ε, φ, λ, ρ) where (H,m, u) is an 
associative algebra, Δ : H → H ⊗ H and ε : H → k are algebra maps, λ, ρ ∈ H are 
invertible elements, φ ∈ H ⊗H ⊗H is a counital 3-cocycle i.e. it is an invertible element 
and satisfies

(H ⊗H ⊗ Δ) (φ) · (Δ ⊗H ⊗H) (φ) = (1H ⊗ φ) · (H ⊗ Δ ⊗H) (φ) · (φ⊗ 1H) ,

(H ⊗ ε⊗H) (φ) = ρ⊗ λ−1.

Moreover Δ is required to be quasi-coassociative and counitary i.e. to satisfy

(H ⊗ Δ) Δ (h) = φ · (Δ ⊗H) Δ (h) · φ−1,

(ε⊗H)Δ (h) = λ−1hλ, (H ⊗ ε) Δ (h) = ρ−1hρ.

A morphism of quasi-bialgebras Ξ : (H,m, u,Δ, ε, φ, λ, ρ) → (H ′,m′, u′,Δ′, ε′, φ′, λ′, ρ′)
(see [26, page 371]) is an algebra homomorphism Ξ : (H,m, u) → (H ′,m′, u′) such that 
(Ξ ⊗ Ξ)Δ = Δ′Ξ, ε′Ξ = ε, (Ξ ⊗ Ξ ⊗ Ξ) (φ) = φ′, Ξ (λ) = λ′ and Ξ (ρ) = ρ′. It is 



542 A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488–563
an isomorphism of quasi-bialgebras if, in addition, it is invertible. We will adopt the 
standard notation

φ1 ⊗ φ2 ⊗ φ3 := φ (summation understood).

In the case when φ is not trivial and λ = ρ = 1H , we call H an ordinary quasi-bialgebra. 
If further φ is trivial we then land at the classical concept of bialgebra.

A quasi-subbialgebra of a quasi-bialgebra H ′ is a quasi-bialgebra H such that H is a 
vector subspace of H ′ and the canonical inclusion is a morphism of dual quasi-bialgebras.

Let (H, m, u, Δ, ε, φ, λ, ρ) be a quasi-bialgebra. It is well-known, see [26, page 285 
and Proposition XV.1.2], that the category HM of left H-modules becomes a monoidal 
category as follows. Given a left H-module V , we denote by μ = μl

V : H ⊗ V → V,

μ(h ⊗ v) = hv, its left H-action. The tensor product of two left H-modules V and W
is a module via diagonal action i.e. h (v ⊗ w) = h1v ⊗ h2w. The unit is k, which is 
regarded as a left H-module via the trivial action i.e. hk = ε (h) k, for all h ∈ H, k ∈ k. 
The associativity and unit constraints are defined, for all V, W, Z ∈ HM and v ∈ V, w ∈
W, z ∈ Z, by aV,W,Z((v⊗w) ⊗z) := φ1v⊗(φ2w⊗φ3z), lV (1 ⊗v) := λv and rV (v⊗1) := ρv. 
This monoidal category will be denoted by (HM, ⊗, k, a, l, r). Given an invertible element 
α ∈ H ⊗ H, we can construct a new quasi-bialgebra Hα = (H,m, u,Δα, ε, φα, λα, ρα)
where

Δα (h) = α · Δ (h) · α−1, λα = λ · (εH ⊗H)
(
α−1) , ρα = ρ · (H ⊗ εH)

(
α−1) ,

φα = (1H ⊗ α) · (H ⊗ Δ) (α) · φ · (Δ ⊗H)
(
α−1) · (α−1 ⊗ 1H

)
.

Definition 9.3. We refer to [26, Proposition XV.2.2] but with a different terminology 
(cf. [17, page 1439]). A quasi-bialgebra (H,m, u,Δ, ε, φ, λ, ρ) is called quasi-triangular
whenever there exists an invertible element R ∈ H ⊗H such that, for every h ∈ H, one 
has

(Δ ⊗H) (R) =
[ (

φ2 ⊗ φ3 ⊗ φ1) (R1 ⊗ 1 ⊗R2) (φ1 ⊗ φ3 ⊗ φ2)−1(
1 ⊗R1 ⊗R2) (φ1 ⊗ φ2 ⊗ φ3)

]

(H ⊗ Δ) (R) =
[ (

φ3 ⊗ φ1 ⊗ φ2)−1 (
R1 ⊗ 1 ⊗R2) (φ2 ⊗ φ1 ⊗ φ3)(

R1 ⊗R2 ⊗ 1
) (

φ1 ⊗ φ2 ⊗ φ3)−1

]
Δcop (h) = RΔ (h)R−1

where φ := φ1 ⊗ φ2 ⊗ φ3, R = R1 ⊗R2. A morphism of quasi-triangular quasi-bialgebras
is a morphism Ξ : H → H ′ of quasi-bialgebras such that (Ξ ⊗ Ξ) (R) = R′.

By [26, Proposition XV.2.2], HM = (HM, ⊗, k, a, l, r) is braided if and only if there is 
an invertible element R ∈ H ⊗H such that (H,m, u,Δ, ε, φ, λ, ρ,R) is quasi-triangular. 
Note that the braiding is given, for all X, Y ∈ HM, by
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cX,Y : X ⊗ Y → Y ⊗X : x⊗ y 
→ R2y ⊗R1x.

Moreover HM is symmetric if and only if we further assume R2 ⊗ R1 = R−1. Such 
a quasi-bialgebra will be called a triangular quasi-bialgebra. A morphism of triangular 
quasi-bialgebras is just a morphism of the underlying quasi-triangular quasi-bialgebras 
structures.

Given an invertible element α ∈ H ⊗ H, if H is (quasi-)triangular so is Hα with 
respect to Rα =

(
α2 ⊗ α1)Rα−1, where α := α1 ⊗ α2.

Let (H,m, u,Δ, ε, φ, λ, ρ) be a quasi-bialgebra. We want to apply Theorem 8.5 to 
the case M = HM. Let F : HM → M be the forgetful functor. We need a monoidal 
(F,ψ0, ψ2) : (HM, ⊗, k, a, l, r) → M.

Lemma 9.4. Let (H,m, u,Δ, ε, φ, λ, ρ) be a quasi-bialgebra. Let F : HM → M be the 
forgetful functor. The following are equivalent.

(1) There is a natural transformation ψ2 such that (F, Idk, ψ2) : (HM, ⊗, k, a, l, r) →
M is monoidal.

(2) There is an invertible element α ∈ H ⊗H such that Hα is an ordinary bialgebra.
(3) There is an invertible element α ∈ H ⊗H such that

φ = (H ⊗ Δ)
(
α−1) · (1H ⊗ α−1) · (α⊗ 1H) · (Δ ⊗H) (α) , (101)

(εH ⊗H) (α) = λ, (H ⊗ εH) (α) = ρ. (102)

Moreover, if (2) holds, we can choose ψ2 (V,W ) (v ⊗ w) := α−1 (v ⊗ w).

Proof. (1) ⇔ (2) Cf. [2, Proposition 1]. (2) ⇔ (3) We have that Hα is an ordinary 
bialgebra if and only if φα = 1H ⊗ 1H ⊗ 1H , λα = 1H and ρα = 1H , if and only if α
fulfills the equations in (3). �

Note that F : HM → M is clearly conservative and preserves equalizers, epimorphisms 
and coequalizers. Furthermore we need HM to be braided.

Theorem 9.5. Let (H,m, u,Δ, ε, φ, λ, ρ) be a quasi-bialgebra such that (101) and (102)
hold for some invertible element γ ∈ H ⊗ H. Let M be the monoidal category 
(HM, ⊗, k, a, l, r) of left modules over H. Assume chark = 0. Then M is a MM-category. 
In particular, if (H,m, u,Δ, ε, φ, λ, ρ) is endowed with a triangular structure, then M is 
a symmetric MM-category.

Proof. First note that M is a Grothendieck category. In M the tensor products are 
exact and preserve denumerable coproducts. We can apply Theorem 8.5 to the monoidal 
functor (F, Idk, ψ2) : (HM, ⊗, k, a, l, r) → M of Lemma 9.4. Then M is a MM-category.

If (H,m, u,Δ, ε, φ, λ, ρ) is endowed with a triangular structure, by the foregoing M
is also symmetric monoidal. �
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Example 9.6. Let H be a bialgebra over a field k of characteristic zero. Then H is a 
quasi-bialgebra with φ, λ, ρ trivial. Note that (101) and (102) hold for γ = εH⊗εH . Thus, 
by Theorem 9.5, the monoidal category HM of left modules over H is an MM-category.

Example 9.7. Examples of triangular quasi-bialgebra structures on the group algebra 
k [G] over a torsion-free abelian group G are investigated in [2, Proposition 3]. Consider 
the particular case when G = 〈g〉 is the group Z in multiplicative notation, where g is 
a generator. Let (q, a, b) ∈ (k\{0}) × Z × Z. In view of [2, Proposition 3], we have the 
triangular quasi-bialgebra

k[〈g〉]a,bq = (k[〈g〉],Δ, ε, φ, λ, ρ,R)

on the group algebra k[〈g〉] which is defined by

Δ (g) = g ⊗ g, ε (g) = 1, φ = ga ⊗ 1H ⊗ gb

λ = qg−b, ρ = qga, R = ga+b ⊗ g−a−b.

In order to apply Theorem 9.5 in case H = k[〈g〉]a,bq , we must check that (101) and (102)
hold for some invertible element γ ∈ H ⊗ H. By [2, Theorem 2], one has k[〈g〉]a,bq =
k[〈g〉]α where α := q−1g−a ⊗ gb and k[〈g〉] is the usual bialgebra structure on the group 
algebra regarded as a trivial triangular quasi-bialgebras (i.e. φ, λ, ρ, R are all trivial). 
Set γ := α−1 = qga ⊗ g−b. Then Hγ = k 〈g〉 which is an ordinary bialgebra so that, 
by Lemma 9.4 we have that (101) and (102) hold for our γ. Hence by Theorem 9.5 the 
symmetric monoidal category (HM, ⊗, k, a, l, r) of left modules over H is a MM-category.

Definition 9.8. Let C be an ordinary category. Following [16, Section 1], we associate 
to C a new category H (C) as follows. Objects are pairs (M, fM ) with M ∈ C and 
fM ∈ AutC(M). A morphism ξ : (M,fM ) → (N, fN ) is a morphism ξ : M → N in C
such that fN ◦ ξ = ξ ◦ fM . The category H (C) is called the Hom-category associated 
to C.

Example 9.9. Take C := M. In view of [2, Theorem 4], to each datum (q, a, b) ∈ (k\{0}) ×
Z × Z one associates a monoidal category

Ha,b
q (M) = (H(M),⊗, (k, fk), a, l, r)

which consists of the category H(M) equipped with a suitable braided (actually symmet-
ric) monoidal structure. By [2, Theorem 4] there is a strict symmetric monoidal category 
isomorphism

(W,w0, w2) : k[〈g〉]a,b
q

M → Ha,b
q (M) .

The underlying functor W : k[〈g〉]M → H (M) is given on objects by
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W (X,μX : k[〈g〉] ⊗X → X) = (X, fX : X → X) ,

where fX (x) := μX (g ⊗ x), for all x ∈ X, and on morphisms by Wξ = ξ.
Composing W−1 with the forgetful functor 

k[〈g〉]a,b
q

M → M we get a monoidal func-
tor Ha,b

q (M) → M to which we can apply Theorem 8.5 to get that Ha,b
q (M) is an 

MM-category.

Remark 9.10. By [2, Proposition 5], M := H1,−1
1 (M) is the symmetric braided monoidal 

category H̃ (M) of [16, Proposition 1.1]. Thus, by the foregoing, H̃ (M) is a MM-category. 
By [16, page 2236], an object in (M, [−]) ∈ LieM is nothing but a monoidal Hom-Lie alge-
bra. By Remark 6.5, U (M, [−]) as a bialgebra is a quotient of TM . The morphism giving 
the projection is induced by the canonical projection pR : ΩTM → R := Us

BrJLie (M, [−])
defining the universal enveloping algebra. At algebra level we have

�U (M, [−]) = TM(
fJs

Lie(M,[−]) (x⊗ y) |x, y ∈ M
)

= TM(
[x, y] − θ(M,cM,M ) (x⊗ y) |x, y ∈ M

)
= TM

([x, y] − x⊗ y + cM,M (x⊗ y) |x, y ∈ M)

= TM

([x, y] − x⊗ y + y ⊗ x|x, y ∈ M)

which is the Hom-version of the universal enveloping algebra, see [16, Section 8]. Note 
that, as a by-product, we have that ηL : IdLieM → PU is an isomorphism so that 
(M, [−]) ∼= PU (M, [−]).

9.2. Dual quasi-bialgebras

First, observe that dual quasi-bialgebras can be understood as a dual version of 
quasi-bialgebras just in the finite-dimensional case. In fact, for an infinite-dimensional 
quasi-bialgebra H (as in the case for H = kZ considered above) it is not true that the 
dual is a dual quasi-bialgebra so that the results in the two settings are independent, in 
general.

Definition 9.11. A dual quasi-bialgebra is a datum (H, m, u, Δ, ε, ω) where (H, Δ, ε) is 
a coassociative coalgebra, m : H ⊗ H → H and u : k → H are coalgebra maps called 
multiplication and unit respectively, we set 1H := u(1k), ω : H ⊗H ⊗H → k is a unital 
3-cocycle i.e. it is convolution invertible and satisfies

ω (H ⊗H ⊗m) ∗ ω (m⊗H ⊗H) = (ε⊗ ω) ∗ ω (H ⊗m⊗H) ∗ (ω ⊗ ε) (103)

and ω (h⊗ k ⊗ l) = ε (h) ε (k) ε (l) whenever 1H ∈ {h, k, l}. (104)
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Moreover m is quasi-associative and unitary i.e. it satisfies

m (H ⊗m) ∗ ω = ω ∗m (m⊗H) ,

m (1H ⊗ h) = h and m (h⊗ 1H) = h, for all h ∈ H.

The map ω is called the reassociator of the dual quasi-bialgebra.
A morphism of dual quasi-bialgebras Ξ : (H,m, u,Δ, ε, ω) → (H ′,m′, u′,Δ′, ε′, ω′) is 

a coalgebra homomorphism Ξ : (H,Δ, ε) → (H ′,Δ′, ε′) such that m′(Ξ ⊗ Ξ) = Ξm, 
Ξu = u′ and ω′ (Ξ ⊗ Ξ ⊗ Ξ) = ω. It is an isomorphism of dual quasi-bialgebras if, in 
addition, it is invertible.

A dual quasi-subbialgebra of a dual quasi-bialgebra H ′ is a quasi-bialgebra H such 
that H is a vector subspace of H ′ and the canonical inclusion is a morphism of dual 
quasi-bialgebras.

Let (H, m, u, Δ, ε, ω) be a dual quasi-bialgebra. It is well-known that the category MH

of right H-comodules becomes a monoidal category as follows. Given a right H-comodule 
V , we denote by ρ = ρrV : V → V ⊗H, ρ(v) = v0 ⊗ v1, its right H-coaction. The tensor 
product of two right H-comodules V and W is a comodule via diagonal coaction i.e. 
ρ (v ⊗ w) = v0 ⊗ w0 ⊗ v1w1. The unit is k, which is regarded as a right H-comodule 
via the trivial coaction i.e. ρ (k) = k ⊗ 1H . The associativity and unit constraints are 
defined, for all U, V, W ∈ MH and u ∈ U, v ∈ V, w ∈ W,k ∈ k, by aU,V,W ((u ⊗ v) ⊗w) :=
u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1), lU (k ⊗ u) := ku and rU (u ⊗ k) := uk. This monoidal 
category will be denoted by (MH , ⊗, k, a, l, r).

Let (H,m, u,Δ, ε, ω) be a dual quasi-bialgebra. Let v : H ⊗H → k be a gauge trans-
formation i.e. a convolution invertible map such that v (1H ⊗ h) = ε (h) = v (h⊗ 1H)
for all h ∈ H. Then Hv := (H,mv, u,Δ, ε, ωv) is also a dual quasi-bialgebra where

mv := v ∗m ∗ v−1 (105)

ωv := (ε⊗ v) ∗ v (H ⊗m) ∗ ω ∗ v−1 (m⊗H) ∗
(
v−1 ⊗ ε

)
. (106)

Definition 9.12. A dual quasi-bialgebra (H,m, u,Δ, ε, ω) is called quasi-co-triangular
whenever there exists R ∈ Reg

(
H⊗2, k

)
such that

R (m⊗H) =
[
ωτH⊗H,H ∗R (H ⊗ lH) (H ⊗ ε⊗H)
∗ω−1 (H ⊗ τH,H) ∗mk (ε⊗R) ∗ ω

]
,

R (H ⊗m) =
[
ω−1τH,H⊗H ∗R (H ⊗ lH) (H ⊗ ε⊗H)

∗ω (τH,H ⊗H) ∗mk (R⊗ ε) ∗ ω−1

]
,

mτH,H ∗R = R ∗m.

By [28, Exercice 9.2.9, page 437], [26, dual to Proposition XIII.1.4, page 318], MH =(
MH ,⊗k, k, a, l, r

)
is braided if and only if there is a map R ∈ Reg

(
H⊗2, k

)
such that 
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(H,m, u,Δ, ε, ω,R) is quasi-co-triangular. Note that the braiding is given, for all X, Y ∈
MH , by

cX,Y : X ⊗ Y → Y ⊗X : x⊗ y 
→
∑

y〈0〉 ⊗ x〈0〉R
(
x〈1〉 ⊗ y〈1〉

)
.

Moreover MH is symmetric if and only if cY,X ◦ cX,Y = IdX⊗Y for all X, Y ∈ MH i.e. if 
and only if ∑

x〈0〉 ⊗ y〈0〉R
(
y〈1〉 ⊗ x〈1〉

)
R
(
x〈2〉 ⊗ y〈2〉

)
= x⊗ y.

This is equivalent to requiring that

R
(
h〈1〉 ⊗ l〈1〉

)
R
(
l〈2〉 ⊗ h〈2〉

)
= εH (h) εH (l) , for every h, l ∈ H. (107)

Such a dual quasi-bialgebra will be called a co-triangular dual quasi-bialgebra.
Let (H, m, u, Δ, ε, ω) be a dual quasi-bialgebra. We want to apply Theorem 8.5 to 

the case M = MH . We need a monoidal functor (F, φ0, φ2) : (MH , ⊗, k, a, l, r) → M.

Take F : MH → M to be the forgetful functor. Note that F is clearly conservative and 
preserves equalizers, epimorphisms and coequalizers. Note also that we will further need 
MH to be braided.

Lemma 9.13. Let (H, m, u, Δ, ε, ω) be a dual quasi-bialgebra. Let F : MH → M be the 
forgetful functor. The following are equivalent.

(1) There is a natural transformation ψ2 such that (F, Idk, φ2) : (MH , ⊗, k, a, l, r) →
M is monoidal.

(2) There is a gauge transformation v : H ⊗ H → k such that Hv is an ordinary 
bialgebra.

(3) There is a gauge transformation v : H ⊗H → k such that

ω = v−1 (H ⊗m) ∗
(
ε⊗ v−1) ∗ (v ⊗ ε) ∗ v (m⊗H) (108)

Moreover, if (2) holds, we can choose φ2 (V,W ) (x⊗ y) = x0 ⊗ y0v
−1 (x1 ⊗ y1).

Proof. It is similar to the one of Lemma 9.4. �
Lemma 9.14. (Cf. [28, Lemma 2.2.2].) Let (H,m, u,Δ, ε, ω,R) be a quasi-co-triangular 
dual quasi-bialgebra. Then R is unital i.e. R (1H ⊗ h) = ε (h) = R (h⊗ 1H) for all h ∈ H.

Theorem 9.15. Let (H, m, u, Δ, ε, ω) be a dual quasi-bialgebra such that ω fulfills (108)
for some gauge transformation γ : H ⊗ H → k. Let M be the monoidal category (
MH ,⊗k, k, a, l, r

)
of right comodules over H. Assume chark = 0. Then M is a MM-

category. In particular, if (H, m, u, Δ, ε, ω) is endowed with a co-triangular structure, 
then M is a symmetric MM-category.
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Proof. It is analogous to the proof of Theorem 9.5 but using, from Lemma 9.13, the 
functor (F, Idk, φ2) : (MH , ⊗, k, a, l, r) → M. �
Example 9.16. Let H be a bialgebra over a field k of characteristic zero. Then H is a 
dual quasi-bialgebra with reassociator ω = εH ⊗ εH ⊗ εH . Note that ω fulfills (108) for 
γ = εH ⊗ εH . Thus, by Theorem 9.15, the monoidal category MH of right comodules 
over H is a MM-category. In particular, for H = k [N], the monoid bialgebra over the 
naturals, defined by taking Δn = n ⊗n and ε (n) = 1 for every n ∈ N, then the category 
MH is the category of N-graded vector spaces V = ⊕n∈NVn with monoidal structure 
having tensor product given by (V ⊗W )n = ⊕n

i=0 (Vi ⊗Wn−i) and unit k concentrated 
in degree 0. The constraints are the same of vector spaces. The category MH is braided 
with respect to the canonical flip (this can be seen by showing that R = εH ⊗ εH turns 
H into a co-triangular bialgebra, see remark below).

Remark 9.17. Let (H,m, u,Δ, ε, ω,R) be a co-triangular dual quasi-bialgebra. Assume 
that ω fulfills (108) for γ = εH⊗εH . This means ω = εH⊗εH⊗εH and (H,m, u,Δ, ε, R)
is a co-triangular bialgebra i.e. for every x, y, z ∈ H we have

R (xy ⊗ z) = R (x⊗ z1)R (y ⊗ z2) , R (x⊗ yz) = R (x1 ⊗ z)R (x2 ⊗ y) ,

y1x1R (x2 ⊗ y2) = R (x1 ⊗ y1)x2y2.

Let (M, [−]) ∈ LieM. Then (50) and (56) become

[x, y] = −
∑[

y〈0〉, x〈0〉
]
R
(
x〈1〉 ⊗ y〈1〉

)
,∑

[[x, y] , z] +
∑

[
[
y〈0〉, z〈0〉

]
, x〈0〉]R

(
x〈1〉 ⊗ y〈1〉z〈1〉

)
+

∑[[
z〈0〉, x〈0〉

]
, y〈0〉

]
R
(
x〈1〉y〈1〉 ⊗ z〈1〉

)
= 0.

This means that (M, [−]) is an (H,R)-Lie algebra in the sense of [13, Definition 4.1]. By 
Remark 6.5, U (M, [−]) as a bialgebra is a quotient of TM . The morphism giving the 
projection is induced by the canonical projection pR : ΩTM → R := Us

BrJLie (M, [−])
defining the universal enveloping algebra. At algebra level we have

U (M, [−]) (78)= �U (M, [−]) = TM(
fJs

Lie(M,[−]) (x⊗ y) |x, y ∈ M
)

= TM(
[x, y] − θ(M,cM,M ) (x⊗ y) |x, y ∈ M

) = TM

([x, y] − x⊗ y + cM,M (x⊗ y) |x, y ∈ M)

= TM(
[x, y] − x⊗ y +

∑
y〈0〉 ⊗ x〈0〉R

(
x〈1〉 ⊗ y〈1〉

)
|x, y ∈ M

)
which is the universal enveloping algebra of our (H,R)-Lie algebra, see e.g. [18, (2.6)]. 
Note that, as a by-product, we have that ηL : IdLieM → PU is an isomorphism so that 
(M, [−]) ∼= PU (M, [−]).
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Example 9.18. Let k be a field with char(k) = 0 and let G be an abelian group endowed 
with an anti-symmetric bicharacter χ : G ×G → k \ {0}, i.e. for all g, h, k ∈ G, we have:

χ(g, hk) = χ(g, h)χ(g, k), χ(gh, k) = χ(g, k)χ(h, k), χ(g, h)χ(h, g) = 1.

Extend χ by linearity to a k-linear map R : k [G] ⊗ k [G] → k, where k [G] denotes 
the group algebra. Then (k [G] , R) is a co-triangular bialgebra, cf. [28, Example 2.2.5]. 
Hence, we can apply Theorem 9.15 and Remark 9.17 to H = k [G]. Note that the category (
MH ,⊗k, k, a, l, r, c

)
consists of G-graded modules V = ⊕g∈GVg. Given G-graded mod-

ules V and W , their tensor product V ⊗W is graded with (V ⊗W )g := ⊕hl=g (Vh ⊗Wl). 
The braiding is given on homogeneous elements by

cV,W : V ⊗W → W ⊗ V, cV,W (v ⊗ w) = w ⊗ vχ(|v|, |w|),

where |v| denotes the degree of v. In this case a (H,R)-Lie algebra (V, [−,−]) in the 
sense of [13, Definition 4.1] means

[x, y] = − [y, x]χ (|x|, |y|) ,

[[x, y] , z] +
∑

[[y, z] , x]χ (|x| , |y| |z|) +
∑

[[z, x] , y]χ (|x| |y| , |z|) = 0.

Multiplying by χ (|z| , |x|) the two sides of the second equality, we get the equivalent

[[x, y] , z]χ (|z| , |x|) +
∑

[[y, z] , x]χ (|x| , |y|) +
∑

[[z, x] , y]χ (|y| , |z|) = 0.

This means that (V, [−,−]) is a (G,χ)-Lie color algebra in the sense of [33, Ex-
ample 10.5.14]. Note that the braiding defined in [33, page 200] is c′V,W (v ⊗ w) =
w⊗vχ(|w|, |v|) = w⊗vχ−1(|v|, |w|) so that we should say more precisely that (V, [−,−])
is a 

(
G,χ−1)-Lie color algebra. The corresponding enveloping algebra is

U (V, [−]) = TV

([x, y] − x⊗ y + y ⊗ xχ (|x|, |y|) | x, y ∈ V homogeneous) .

Example 9.19. Lie superalgebras are a particular instance of the construction above. One 
has to take G = Z2 and consider the anti-symmetric bicharacter χ : G × G → k \ {0}
defined by χ 

(
a, b

)
:= (−1)ab for all a, b ∈ Z.

Example 9.20. Let G := (Z,+, 0). Let k be a field and let q ∈ k \ {0}. Then it is easy to 
check that 〈−,−〉 : G ×G → k, 〈a, b〉 := qab is a bicharacter of G.

Remark 9.21. Let k be a field with char (k) = 0. Let H be a finite-dimensional Hopf alge-
bra. By [36, Proposition 6], the category of Yetter–Drinfeld modules HHYD and HYDH are 
isomorphic. Moreover, by [33, Proposition 10.6.16], the HYDH can be identified with the 
category D(H)M of left modules over the Drinfeld double D (H). Now D(H)M ∼= MD(H)∗
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and D (H)∗ is a quasi-co-triangular bialgebra. Thus we can identify HHYD with MD(H)∗ . 
One is tempted to apply Theorem 9.15. Unfortunately, D (H) is never triangular (whence 
D (H)∗ is never co-triangular) in view of [35], unless H = k.
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Appendix A. (Co)equalizers and (co)monadicity

Definition A.1. (See [31, page 112].) Let I be a small category. Recall that a func-
tor V : A → B creates limits for a functor F : I → A if in case V F has a limit (
X, (τI : X → V FI)I∈I

)
, then there is exactly one pair 

(
L, (σI : L → FI)I∈I

)
which is 

a limit of F and such that V L = X, V σI = τI for every I ∈ I. We just say that 
V : A → B creates limits if it creates limits for all functors F : I → A and for all small 
category I. Similarly one defines creation of colimits.

Lemma A.2. Let M be a monoidal category. Then the functor Ω : AlgM → M creates 
limits and the functor � : CoalgM → M creates colimits.

Proof. It is straightforward. �
A.3. Let M be a monoidal category. Assume that M has coequalizers and that the 
tensor products preserve them. It is well-known that AlgM has coequalizers, see e.g. 
[3, Proposition 2.1.5]. Given an algebra morphism α : E → A, consider Λα := m2

A ◦
(A⊗ α⊗A) of (58) where m2

A : A ⊗ A ⊗ A → A is the iterated multiplication. The 
coequalizer of algebra morphisms α, β : E → A is, as an object in M, the coequalizer 
(B, π : A → B) of (Λα,Λβ) in M and the algebra structure is the unique one making π
an algebra morphism.

Lemma A.4. Let M be a monoidal category.
1) If M has coequalizers then CoalgM has coequalizers, and � : CoalgM → M

preserves coequalizers. Moreover if the tensor products preserve the coequalizers in M, 
then AlgM has coequalizers.

2) If M has equalizers then AlgM has equalizers, and Ω : AlgM → M preserves 
equalizers. Moreover if the tensor products preserve the equalizers in M, then CoalgM
has equalizers.

3) If M is braided, it has coequalizers and the tensor products preserve them, then 
BialgM has coequalizers and � : BialgM → AlgM preserves coequalizers.

4) If M is braided, it has equalizers and the tensor products preserve them, then 
BialgM has equalizers and Ω : BialgM → CoalgM preserves equalizers.
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Proof. 1) The first part follows by Lemma A.2 and uniqueness of coequalizers in CoalgM. 
By A.3, AlgM has coequalizers. 2) is dual to 1).

3) Note that BialgM = CoalgN for N := AlgM. By 1) we have that N has coequalizers 
and then CoalgN has coequalizers, and � : CoalgN → N preserves coequalizers. 4) is 
dual to 3). �
Lemma A.5. Let M be a braided monoidal category. Assume that M is abelian and that 
the tensor products preserve equalizers, coequalizers.

1) Let α : JBialgD → E be a morphism in BrBialgM. Then there is a bialgebra 
Q ∈ BialgM a morphism π : D → Q in BialgM and a morphism σ : JBialgQ → E

in BrBialgM such that α = σ ◦ JBialg (π) and σ and π are a monomorphism and an 
epimorphism respectively when regarded as morphism in M.

2) The functor JBialg : BialgM → BrBialgM preserves coequalizers.
3) Assume that M is symmetric. Then Js

Bialg : BialgM → BrBialgsM preserves co-
equalizers.

Proof. 1) Denote by D and E the underlying objects in M of D and E. Since M is 
abelian we can factor α : D → E as the composition of a monomorphism σ : Q → E

and an epimorphism π : D → Q in M where Q is the image of α in M.
It is straightforward to check that Q fulfills the required properties.
2) By 4.4, we have JBialg (B,mB , uB ,ΔB , εB) = (B,mB , uB ,ΔB , εB , cB,B) and 

JBialg (f) = f .
Let (e0, e1) from (B,mB , uB ,ΔB , εB) to (D,mD, uD,ΔD, εD) be a pair of morphisms 

in BialgM. Assume that this pair has coequalizer (E, p) in BialgM

B
e0

e1
D

p
E

Let us check that JBialg preserves this coequalizer. Let α : JBialgD → Z be a morphism 
in BrBialgM such that αe0 = αe1. By 1) we write α = σ ◦ JBialg (π). Since σ is a 
monomorphism in M, we have that πe0 = πe1. Since the coequalizer (E, p) is in BialgM, 
there is a unique morphism π : E → Q in BialgM such that π ◦ p = π. Set α := σπ :
E → Z as morphisms in M. Then αp = σπp = σπ = α. Moreover σ and π commute 
with (co)multiplications and (co)units and

(α⊗ α) cE,E = (σ ⊗ σ) (π ⊗ π) cE,E

= (σ ⊗ σ) cQ,Q (π ⊗ π) = cZ (σ ⊗ σ) (π ⊗ π) = cZ (α⊗ α) .

We have so proved that α is a morphism in BrBialgM from JBialgE to Z.
Let β : JBialgE → Z in BrBialgM be such that βp = α as morphisms in BrBialgM. 

Then βp = αp as morphisms in M. Since (E, p) is a coequalizer in BialgM and M
has coequalizers (it is abelian) we have that (E, p) can be constructed as a suitable 
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coequalizer in M (cf. the proof of Lemma A.4) so that p is an epimorphism in M. Hence 
we get β = α as morphisms in M whence in BrBialgM.

3) By 2) JBialg : BialgM → BrBialgM preserves the coequalizers. Since JBialg =
IsBrBialg ◦ Js

Bialg we get that IsBrBialg ◦ Js
Bialg preserves coequalizers. Since IsBrBialg is both 

full and faithful, it reflects colimits (see the dual of [11, Proposition 2.9.9]) so that Js
Bialg

preserves coequalizers. �
The following result can be obtained mimicking the proof of (1) ⇒ (2) in [12, The-

orem 4.6.2]. For the reader’s sake we write here a proof in the specific case we are 
concerned.

Theorem A.6. Let M be a monoidal category.

1) If the forgetful functor Ω : AlgM → M has a left adjoint, then Ω is monadic. In fact 
the comparison functor is a category isomorphism.

2) If the forgetful functor � : CoalgM → M has a right adjoint, then � is comonadic. 
In fact the comparison functor is a category isomorphism.

Proof. 1) We will apply Theorem [14, Theorem 2.1] (which is a form of Beck’s Theorem). 
First, in order to prove that Ω is monadic, we have to check that Ω is conservative and 
that for any reflexive pair of morphisms in AlgM whose image by Ω has a split coequalizer 
has a coequalizer which is preserved by Ω. Clearly if f is a morphism in AlgM such that 
Ωf is an isomorphism then the inverse of Ωf is a morphism of monoids whence it gives 
rise to an inverse of f in AlgM. Thus Ω is conservative.

Let (d0, d1) from A to A′ be a reflexive pair as above. Then there exists C ∈ M and 
a morphism c : ΩA′ → C such that

ΩA
Ωd0

Ωd1

ΩA′ c
C

is a split coequalizer, whence preserved by any functor in particular by Fn : M → M, 
the functor defined by Fn := (−)⊗n i.e. the nth tensor power functor. Then we have a 
commutative diagram with exact rows

ΩA⊗ ΩA

mΩA

Ωd0⊗Ωd0

Ωd1⊗Ωd1

ΩA′ ⊗ ΩA′

mΩA′

c⊗c
C ⊗ C

ΩA
Ωd0

Ωd1

ΩA′ c
C

By the universal property of coequalizers there is a unique morphism mC : C⊗C → C in 
M such that mC ◦ (c⊗ c) = c ◦mΩA′ . One easily checks that Q := (C,mC , uC) ∈ AlgM
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where uC := c ◦uΩA′ . Moreover c gives rise to a morphism q : A′ → Q in AlgM such that 
Ωq = c. Since Ω is faithful, it is straightforward to check that (Q, q) is the coequalizer 
of (d0, d1) in Mm. Thus Ω is monadic.

Let us check that the comparison functor is indeed a category isomorphism. It suffices 
to check that for any isomorphism f : ΩX → B in the category M there exists a unique 
pair (A, g : X → A), where A is an object in AlgM and g a morphism in AlgM, such 
that ΩA = B and Ωg = f . This is trivial (just induce on B the monoid structure of X
via f).

2) It is dual to 1). �
Example A.7. Let k be a field. Let M be the category of vector spaces over k.

1) By [38, Theorem 6.4.1], the forgetful functor � : CoalgM → M has a right adjoint 
given by the cofree coalgebra functor.

2) By [1, Theorem 2.3], the forgetful functor � : BialgM → AlgM has a right adjoint.
In both cases, by Theorem A.62), we have that � is comonadic and that the compar-

ison functor is a category isomorphism.

Lemma A.8. Let M be a monoidal category. Assume that the tensor products preserve 
coequalizers of reflexive pairs in M. Given two coequalizers

X1
f1

g1
Y1

p1
Z1 X2

f2

g2
Y2

p2
Z2

in M, where (f1, g1) and (f2, g2) are reflexive pairs of morphisms in M, we have that

X1 ⊗X2
f1⊗f2

g1⊗g2

Y1 ⊗ Y2
p1⊗p2

Z1 ⊗ Z2

is a coequalizer too.

Proof. See [40, Proposition 2] (where we can drop the assumption on abelianity as the 
result follows by [24, Lemma 0.17] where this condition is not used). �
Proposition A.9. Let M be a monoidal category. Assume that the tensor products preserve 
coequalizers of reflexive pairs in M. Then the forgetful functor Ω : AlgM → M creates 
coequalizers of those pairs (f, g) in AlgM for which (Ωf,Ωg) is a reflexive pair.

Proof. Let f , g : (A,mA, uA) → (B,mB , uB) be a pair of morphism in AlgM that fits 
into a coequalizer

A
Ωf

Ωg
B

p
C
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in M such that (Ωf,Ωg) is a reflexive pair. By Lemma A.8, we have the following 
coequalizer

A⊗A
Ωf⊗Ωf

Ωg⊗Ωg
B ⊗B

p⊗p
C ⊗ C

We have

p ◦mB ◦ (Ωf ⊗ Ωf) = p ◦ Ωf ◦mA = p ◦ Ωg ◦mA = p ◦mB ◦ (Ωg ⊗ Ωg) .

The universal property of the latter coequalizer entails there is a unique morphism 
mC : C ⊗C → C such that mC ◦ (p⊗ p) = p ◦mB . Set uC := p ◦ uB . It is easy to check 
that (C,mC , uC) ∈ AlgM, that p becomes an algebra morphism from (B,mB , uB) to 
(C,mC , uC) and that

(A,mA, uA)
f

g
(B,mB , uB)

p
(C,mC , uC)

is a coequalizer in AlgM. �
Corollary A.10. Let M be a monoidal category with coequalizers of reflexive pairs. Assume 
these coequalizers are preserved by the tensor products in M. Then AlgM has coequal-
izers of reflexive pairs and they are preserved by the forgetful functor Ω : AlgM → M.

Proof. It follows by Proposition A.9 and uniqueness of coequalizers in AlgM. �
Appendix B. Braided (co)equalizers

Lemma B.1. Let M be a monoidal category. We have functors

BrM −→ BrM : (V, c) →
(
V, c−1) , f 
→ f

BrAlgM → BrAlgM : (A,m, u, c) →
(
A,m, u, c−1) , f 
→ f

Proof. It is straightforward. �
Lemma B.2. Let M be a monoidal category and let (V, cV ) be an object in BrM. Assume 
there is a morphism d : D → V in M and a morphism cD : D ⊗D → D ⊗D such that 
(d⊗ d) cD = cV (d⊗ d) and d ⊗ d ⊗ d is a monomorphism.

1) Assume that cD is an isomorphism. Then (D, cD) is an object in BrM and d
becomes a morphism in BrM from (D, cD) to (V, cV ).

2) Assume that d ⊗ d is a monomorphism. If (V, cV ) ∈ BrsM then (D, cD) ∈ BrsM.
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Proof. Using (d⊗ d) cD = cV (d⊗ d) and the quantum Yang–Baxter equation for cV one 
gets

(d⊗ d⊗ d) (cD ⊗D) (D ⊗ cD) (cD ⊗D) = (d⊗ d⊗ d) (D ⊗ cD) (cD ⊗D) (D ⊗ cD) .

Since d ⊗ d ⊗ d is a monomorphism we get that cD satisfies the quantum Yang–Baxter 
equation.

1) Since cD is an isomorphism it is clear that (D, cD) ∈ BrM and that d : (D, cD) →
(V, cV ) is a morphism in BrM.

2) Since (d⊗ d) c2D = c2V (d⊗ d) = d ⊗ d and d ⊗ d is a monomorphism we get 
c2D = IdD⊗D so that we can apply 1). �
Lemma B.3. Let M be a monoidal category and let H : BrM −→ M be the forgetful 
functor. Let (e0, e1) be a pair of morphisms in BrM such (He0, He1) is a coreflexive 
pair of morphisms in M. Assume that (He0, He1) has an equalizer which is preserved 
by the tensor products. Then (e0, e1) has an equalizer in BrM which is preserved by H. 
The same statement holds when we replace BrM by BrsM and H by the corresponding 
forgetful functor.

Proof. Let (e0, e1) from (V, cV ) to (W, cW ) a coreflexive pair of morphisms in BrM. 
We denote (He0, He1) by (e0, e1) to simplify the notation. By definition, there exists a 
morphism p : W → V in M such that p ◦ e0 = IdV = p ◦ e1. Consider the equalizer

D
d

V
e0

e1
W

By the dual version of Lemma A.8, we have the following equalizer

D ⊗D
d⊗d

V ⊗ V
e0⊗e0

e1⊗e1

W ⊗W

We have

(e0 ⊗ e0) cV (d⊗ d) = cW (e0 ⊗ e0) (d⊗ d) = cW (e1 ⊗ e1) (d⊗ d) = (e1 ⊗ e1) cV (d⊗ d) .

Hence there is a unique morphism cD : D⊗D → D⊗D such that (d⊗ d) cD = cV (d⊗ d).
Since 

(
V, c−1

V

)
and 

(
W, c−1

W

)
are also braided objects, and e0, e1 are also morphisms 

from 
(
V, c−1

V

)
to 

(
W, c−1

W

)
, as above we can construct a morphism γD : D ⊗ D →

D ⊗ D such that (d⊗ d) γD = c−1
V (d⊗ d). We have (d⊗ d) cDγD = cV (d⊗ d) γD =

cV c
−1
V (d⊗ d) = d ⊗ d and hence cDγD = IdD⊗D. Similarly γDcD = IdD⊗D. Thus cD is 

invertible. Since d ⊗d ⊗d = (d⊗ V ⊗ V ) (D ⊗ d⊗ V ) (D ⊗D ⊗ d) we have that d ⊗d ⊗d

is a monomorphism. Thus we can apply Lemma B.2 to get that (D, cD) is an object in 
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BrM and d : (D, cD) → (V, cV ) is a morphism in BrM. It is straightforward to check 
that

(D, cD) d (V, cV )
e0

e1
(W, cW )

is an equalizer in BrM. Consider now the case of BrsM so that (e0, e1) as above is a 
pair in BrsM. Since d is a monomorphism, by Remark 3.2, we get that (D, cD) ∈ BrsM
and d becomes a morphism in this category. Since BrsM is a full subcategory of BrM we 
have that IsBr : BrsM → BrM is full and faithful and hence it reflects equalizers (see [11, 
Proposition 2.9.9]) so that the above equalizer obtained in BrM is indeed an equalizer 
in BrsM. �
Lemma B.4. Let M be a monoidal category and let (W, cW ) be an object in BrM. Assume 
there is a morphism d : W → D in M and a morphism cD : D ⊗D → D ⊗D such that 
cD (d⊗ d) = (d⊗ d) cW and d ⊗ d ⊗ d is an epimorphism.

1) Assume that cD is an isomorphism. Then (D, cD) is an object in BrM and d
becomes a morphism in BrM from (W, cW ) to this object.

2) Assume that d ⊗ d is an epimorphism. If (V, cV ) ∈ BrsM then (D, cD) ∈ BrsM.

Proof. It is dual to Lemma B.2. �
Lemma B.5. Let M be a monoidal category and let H : BrM −→ M be the forgetful 
functor. Let (e0, e1) be a pair of morphisms in BrM such (He0, He1) is a reflexive pair 
of morphisms in M. Assume that (He0, He1) has a coequalizer which is preserved by the 
tensor products. Then (e0, e1) has a coequalizer in BrM which is preserved by H.

The same statement holds when we replace BrM by BrsM and H by the corresponding 
forgetful functor.

Proof. It is dual to Lemma B.3. �
Lemma B.6. Let M be a monoidal category. Assume that M has coequalizers and that 
the tensor products preserve them. Then the functor HAlg : BrAlgM → AlgM reflects 
coequalizers.

Proof. Let

(A, cA)
α

β
(B, cB)

p
(D, cD)

be a diagram of morphisms and objects in BrAlgM which is sent by HAlg to a coequalizer 
in AlgM. Since HAlg is faithful we have that pα = pβ as morphisms in BrAlgM. Let 
λ : (B, cB) → (E, cE) be a morphism in BrAlgM such that λα = λβ. Then HAlgλ ◦
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HAlgα = HAlgλ ◦ HAlgβ so that there is a unique algebra morphism λ′ : D → E such 
that λ′ ◦HAlgp = HAlgλ. We have

cE (Ωλ′ ⊗ Ωλ′) (ΩHAlgp⊗ ΩHAlgp) = cE (ΩHAlgλ⊗ ΩHAlgλ) = (ΩHAlgλ⊗ ΩHAlgλ) cB
= (Ωλ′ ⊗ Ωλ′) (ΩHAlgp⊗ ΩHAlgp) cB = (Ωλ′ ⊗ Ωλ′) cD (ΩHAlgp⊗ ΩHAlgp) .

By A.3, we have that (HAlgα,HAlgβ) has a coequalizer in AlgM which is a regular 
epimorphism in M. By the uniqueness of coequalizers in AlgM, we get that ΩHAlgp

is also regular epimorphism in M. By the assumption on the tensor products, we get 
that ΩHAlgp ⊗ ΩHAlgp is an epimorphism in M. Thus the computation above implies 
cE (Ωλ′ ⊗ Ωλ′) = (Ωλ′ ⊗ Ωλ′) cD so that there is a morphism λ′′ : (D, cD) → (E, cE)
in BrAlgM such that HAlgλ

′′ = λ′. Since HAlg is faithful we get λ′′ ◦ p = λ. Also the 
uniqueness follows by the fact that HAlg is faithful. �
Lemma B.7. Let M be a monoidal category. Let (e0, e1) : A → B be a pair of morphisms 
in BrAlgM such (ΩHAlge0,ΩHAlge1) is a reflexive pair of morphisms in M. Assume 
that M has coequalizers and that the tensor products preserve them. Then (e0, e1) has 
a coequalizer (C, p : B → C) in BrAlgM which is preserved both by the functor HAlg :
BrAlgM → AlgM and the functor ΩHAlg (in particular ΩHAlgp is a regular epimorphism 
in M in the sense of [11, Definition 4.3.1]).

The same statement holds when we replace BrAlgM by BrAlgsM and HAlg by the 
corresponding forgetful functor.

Proof. Let (A,mA, uA, cA) := A and let (B,mB , uB , cB) := B. By Proposition A.9, 
we have that (HAlge0, HAlge1) has a coequalizer ((C,mC , uC) , p : (B,mB , uB) →
(C,mC , uC)) in AlgM and it is preserved by Ω. Thus, we have the following coequalizer 
in M

A
e0

e1
B

p
C

where e0, e1 and p denotes the same morphisms regarded as morphisms in M (hence, by 
construction, p is a regular epimorphism in M). By Lemma A.8, we have the following 
coequalizer

A⊗A
e0⊗e0

e1⊗e1

B ⊗B
p⊗p

C ⊗ C

We have

(p⊗ p) cB (e0 ⊗ e0) = (p⊗ p) (e0 ⊗ e0) cA = (p⊗ p) (e1 ⊗ e1) cA = (p⊗ p) cB (e1 ⊗ e1)

so that there is a unique morphism cC : C ⊗ C → C ⊗ C such that
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cC (p⊗ p) = (p⊗ p) cB .

Now, by Lemma B.1, we have that e0, e1 :
(
A,mA, uA, c

−1
A

)
→

(
B,mB , uB , c

−1
B

)
are 

morphisms of braided objects. Hence the same argument we used above proves that 
there is a unique morphism c̃C : C ⊗C → C ⊗C such that c̃C (p⊗ p) = (p⊗ p) c−1

B . We 
have c̃CcC (p⊗ p) = c̃C (p⊗ p) cB = (p⊗ p) c−1

B cB = p ⊗ p and hence c̃CcC = IdC⊗C . 
Similarly cC c̃C = IdC⊗C so that cC is invertible. By Lemma B.4, (C, cC) is an object in 
BrM and p : (B, cB) → (C, cC) is a morphism in BrM. It is straightforward to check that 
(C,mC , uC , cC) is a braided algebra (whence p is a braided algebra morphism) and that 
((C,mC , uC , cC) , p : (B,mB , uB , cB) → (C,mC , uC , cC)) is the coequalizer of (e0, e1).

Consider now the case of BrAlgsM so that (e0, e1) as above is a pair in BrAlgsM. Since p
is an epimorphism, by Remark 3.2, we get that (C,mC , uC , cC) ∈ BrAlgsM and p becomes 
a morphism in this category. Since BrAlgsM is a full subcategory of BrAlgM we have 
that IsBrAlg : BrAlgsM → BrAlgM is full and faithful and hence it reflects coequalizers 
(dual to [11, Proposition 2.9.9]) so that the above coequalizer obtained in BrAlgM is 
indeed a coequalizer in BrAlgsM. �

Proposition B.8. Let M be a monoidal category such that the tensor products preserve co-
equalizers. Let (e0, e1) : A → B be a pair of morphisms in BrBialgM such (�Bre0,�Bre1)
has a coequalizer in BrAlgM which is preserved by the functor HAlg : BrAlgM → AlgM
and which is a regular epimorphism when regarded in M. Then (e0, e1) has a coequalizer 
in BrBialgM which is preserved by the functor �Br : BrBialgM → BrAlgM.

The same statement holds when we replace BrBialgM, BrAlgM and �Br by BrAlgsM, 
BrAlgsM and �s

Br respectively and we replace HAlg by the corresponding forgetful functor.

Proof. Let (A,mA, uA,ΔA, εA, cA) be the domain of e0 and let (B,mB , uB ,ΔB , εB , cB)
be its codomain. Now, the pair (�Bre0,�Bre1) has a coequalizer in BrAlgM, say

((C,mC , uC , cC) , p : (B,mB , uB , cB) → (C,mC , uC , cC)) ,

which is preserved by the functor HAlg : BrAlgM → AlgM and such that p is 
a regular epimorphism in M. Denote by e0, e1 and p the same morphisms re-
garded as morphisms in AlgM. By [6, Lemma 2.3], (A ⊗ A, mA⊗A, uA⊗A), ∈ AlgM, 
where mA⊗A := (mA ⊗mA) (A⊗ cA ⊗B) and uA⊗A := (uA ⊗ uA) Δ1. Similarly 
(C ⊗ C, mC⊗C , uC⊗C) ∈ AlgM. Since (B,mB , uB ,ΔB , εB , cB) is a braided bialgebra, 
we have that ΔB : (B,mB , uB) → (A ⊗ A, mA⊗A, uA⊗A) is an algebra map. Moreover, 
by Proposition [6, 3) of Proposition 2.2], we have that p ⊗p is a morphism in AlgM. Thus 
(p⊗ p)ΔB is an algebra map. Since HAlg : BrAlgM → AlgM preserves the coequalizer 
of (�Bre0,�Bre1) the first row in the following diagram is a coequalizer in AlgM.
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A

ΔA

e0

e1
B

ΔB

p
C

A⊗A
e0⊗e0

e1⊗e1

B ⊗B
p⊗p

C ⊗ C

Since the same diagram serially commutes, by the universal property of the coequal-
izer in AlgM, we get that there is a unique algebra morphism ΔC : (C,mC , uC) →
(C ⊗C, mC⊗C , uC⊗C) such that ΔCp = (p⊗ p)ΔB . Denote by ΔC the same morphism 
regarded as a morphism in M. Since p is an epimorphism in M, one easily checks that 
ΔC is coassociative using coassociativity of ΔB . Since the diagram

A

εA

e0

e1
B

εB

p
C

1

serially commutes, we get that there is a unique algebra morphism εC : (C,mC , uC) →
(1, m1, u1) such that εCp = εB . Denote by εC the same morphism regarded as a mor-
phism in M. Since p is an epimorphism in M, one easily checks that ΔC is counitary 
using counitarity of ΔB. Hence (C,ΔC , εC) is a coalgebra in M and p : (B,ΔB , εB) →
(C,ΔC , εC) is a coalgebra map.

Since p is a regular epimorphism in M we have p ⊗ p is an epimorphism too by the 
assumption on the tensor products. Using this fact, that (B,ΔB , εB , cB) is a braided 
coalgebra and that p is a coalgebra morphism compatible with the Yang–Baxter op-
erator, one easily checks that (C,ΔC , εC , cC) is a braided coalgebra too and hence p
a morphism of these braided coalgebras. Summing up p : (B,mB , uB ,ΔB , εB , cB) →
(C,mC , uC ,ΔC , εC , cC) is a morphism of braided bialgebras in M. Using the fact that p
is an epimorphism in M, one easily checks it is the searched coequalizer. The symmetric 
case can be treated analogously. �
Corollary B.9. Let M be a monoidal category. Let (e0, e1) be a pair of morphisms in 
BrBialgM such (Γe0,Γe1) is a reflexive pair of morphisms in M where Γ := ΩHAlg�Br :
BrBialgM → M denotes the forgetful functor. Assume that M has coequalizers and that 
the tensor products preserve them. Then (e0, e1) has a coequalizer in BrBialgM which is 
preserved by the functors �Br : BrBialgM → BrAlgM, HAlg�Br : BrBialgM → AlgM
and Γ, and which is a regular epimorphism when regarded in M.

The same statement holds when we replace BrBialgM, BrAlgM and �Br by BrAlgsM, 
BrAlgsM and �s

Br respectively and we replace HAlg by the corresponding forgetful functor.

Proof. The pair (�Bre0,�Bre1) fulfills the requirements of Lemma B.7 so that
(�Bre0,�Bre1) has a coequalizer in BrAlgM which is preserved by the functors HAlg :
BrAlgM → AlgM and ΩHAlg (and which is a regular epimorphism when regarded in 
M). Hence we can apply Proposition B.8 to conclude. �
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Lemma B.10. Let M and N be monoidal categories. Assume that both M and N have 
coequalizers and that the tensor products preserve them. Assume that there exists a 
monoidal functor (F, φ0, φ2) : M → N which preserves coequalizers. Then

1) AlgF : AlgM → AlgN preserves coequalizers.
2) BrBialgF : BrBialgM → BrBialgN preserves coequalizers of reflexive pairs of mor-

phisms. The same statement holds when we replace BrBialg by BrBialgs everywhere.

Proof. 1) In view of A.3, the coequalizer of the pair (α, β) of algebra morphisms
E → A is, as an object in M, the coequalizer (B, π : A → B) of (Λα,Λβ) in M and 
the algebra structure is the unique one making π an algebra morphism. Since F pre-
serves coequalizers, we get the coequalizer in N

F (A⊗ E ⊗A)
F (Λα)

F (Λβ)
FA

Fπ
FB

Note that, since AlgF is a functor, we have that FA, FB are algebras and Fπ is an 
algebra morphism.

Using the definition of Λα, the naturality of φ2, the equality mFA = FmA ◦ φ2 (A,A)
and the definition of ΛFα one proves that F (Λα) ◦ φ2 (A⊗E,A) ◦ (φ2 (A,E) ⊗ FA) =
ΛFα and similarly with β in place of α. Since φ2 (A⊗ E,A) ◦ (φ2 (A,E) ⊗ FA) is an 
isomorphism, we get the coequalizer

FA⊗ FE ⊗ FA
ΛFα

ΛFβ

FA
Fπ

FB .

By construction we get that (FB,Fπ) is the coequalizer of (ΛFα,ΛFβ) in N . Since, as 
observed, FA and FB are algebras and Fπ is an algebra morphism, we conclude that 
(FB,Fπ) is the coequalizer of (Fα, Fβ) in N (apply A.3 again).

2) Consider a coequalizer of a reflexive pair in BrBialgM

B
e0

e1
D

d
E (109)

If we apply the forgetful functor Γ := ΩHAlg�Br : BrBialgM → M to the pair, we get a 
reflexive pair in M. By Corollary B.9, (e0, e1) has a coequalizer in BrBialgM (different 
from (109), in principle) which is preserved by the functor HAlg�Br : BrBialgM →
AlgM. By uniqueness of coequalizers, we get that the coequalizer (109) is preserved by 
HAlg�Br and hence, by 1), it is preserved by (AlgF )HAlg�Br : BrBialgM → AlgN . 
Hence (FE,Fd) is the coequalizer of (Fe0, Fe1) in AlgN .

Note that (Fe0, Fe1) is a reflexive pair of morphisms in BrBialgN . By Corollary B.9, 
(Fe0, Fe1) has a coequalizer (E′, π : FD → E′) in BrBialgN which is preserved by the 
functor H ′

Alg�′
Br : BrBialgN → AlgN . By uniqueness of coequalizers in AlgN , there 
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is an algebra isomorphism ξ : E′ → FE such that ξ ◦ π = Fd. Since BrBialgF is a 
functor we have that FE is a braided bialgebra and Fd is a morphism in BrBialgN . 
Now, by construction π is a suitable coequalizer in N (which further inherits a proper 
braided bialgebra structure) so that, by assumption it is preserved by the tensor products. 
Hence both π and π⊗ π are epimorphisms in N . Using these properties one proves that 
ξ : E′ → FE is a morphism in BrBialgN .

Since ξ is invertible, we obtain that (FE,Fd) is the coequalizer of (Fe0, Fe1) in 
BrBialgN i.e. BrBialgF : BrBialgM → BrBialgN preserves coequalizers of reflexive pairs 
of morphisms. The symmetric case follows analogously once observed that F preserves 
symmetric objects, see 3.3. �
Proposition B.11. Let M be a monoidal category. Assume that M has a coequalizers and 
that the tensor products preserve them. Consider a right adjoint functor R : BrBialgM →
B into an arbitrary category B. Then the comparison functor R1 has a left adjoint L1

which is uniquely determined by the following properties.
1) For every object (B,μ) ∈ RLB, there is a morphism π (B,μ) : LB → L1 (B,μ) such 

that

ΓLRLB
ΓLμ

ΓεLB
ΓLB

Γπ(B,μ)
ΓL1 (B,μ) (110)

is a coequalizer in M, where Γ := ΩHAlg�Br : BrBialgM → M denotes the forgetful 
functor.

2) The bialgebra structure of ΓL1 (B,μ) is uniquely determined by the fact that 
Γπ (B,μ) is a morphism of braided bialgebras in M.

3) R is comparable.
4) The statements above still hold true when BrBialgsM replaces BrBialgM.

Proof. By Beck’s Theorem, it suffices to check that for every (B,μ) ∈ RLB the fork 
(Lμ, εLB) has a coequalizer in BrBialgM, where L denotes the left adjoint of R and 
ε : LR → IdBrBialgM the counit of the adjunction. Now Lμ ◦ LηB = IdLB = εLB ◦ LηB
where η : IdB → RL is the unit of the adjunction. Thus (Lμ, εLB) is a reflexive pair of 
morphisms in BrBialgM. Therefore (ΓLμ,ΓεLB) is a reflexive pair of morphisms in M. 
By Corollary B.9, the pair (Lμ, εLB) has a coequalizer in BrBialgM which is preserved 
both by the functors �Br : BrBialgM → BrAlgM, HAlg�Br : BrBialgM → AlgM and 
Γ := ΩHAlg�Br : BrBialgM → M. By construction the coequalizer of (Lμ, εLB) is 
(L1 (B,μ) , π (B,μ) : LB → L1 (B,μ)). Furthermore (110) is a coequalizer in M and the 
bialgebra structure of ΓL1 (B,μ) is uniquely determined by the fact that Γπ (B,μ) is a 
morphism of braided bialgebras in M. By Lemma 1.11, R is comparable.

The symmetric case follows analogously. �
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