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Abstract:  Many current therapies target G protein coupled receptors (GPCR), transporters, or 

ion channels. In addition to directly targeting these proteins, disrupting the protein-protein 

interactions that localize or regulate their function could enhance selectivity and provide unique 

pharmacologic actions. Regulators of G protein Signaling (RGS) proteins, especially RGS4, 

play significant roles in epilepsy and Parkinson’s disease. Thiadiazolidinone (TDZD) inhibitors 

of RGS4 are nanomolar potency blockers of the biochemical actions of RGS4 in vitro. Here we 

demonstrate substantial selectivity (8- to >5000-fold) of CCG-203769 for RGS4 over other 

RGS proteins. It is also 300-fold selective for RGS4 over GSK-3β, another target of this class 

of chemical scaffolds. It does not inhibit the cysteine protease papain at 100 µM. CCG-203769 

enhances Gαq-dependent cellular Ca++ signaling in an RGS4-dependent manner. TDZD 

inhibitors also enhance Gαi-dependent δ-OR inhibition of cAMP production in SH-SY-5Y cells 

which express endogenous receptors and RGS4. Importantly, CCG-203769 potentiates the 

known RGS4 mechanism of Gαi-dependent muscarinic bradycardia in vivo. Furthermore, it 

reverses raclopride-induced akinesia and bradykinesia in mice, a model of some aspects of 

the movement disorder in Parkinson’s disease. A broad assessment of compound effects 

revealed minimal off-target effects at concentrations necessary for cellular RGS4 inhibition. 

These results expand our understanding of the mechanism and specificity of TDZD RGS 

inhibitors and support the potential for therapeutic targeting of RGS proteins in Parkinson’s 

disease and other neural disorders. 
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Introduction: G protein-coupled receptors (GPCRs) remain key drug targets for therapeutic 

use(1-3). The recent crystal structures of numerous GPCRs have improved the ability to develop 

subtype-selective ligands(4, 5). Also, allosteric modulators of GPCRs have provided new 

degrees of control of signaling with the potential for more refined therapeutic agents(2, 6). In 

some cases, however, a single GPCR may mediate both desired and unwanted actions. This 

is especially true for agonists (e.g. clondine and adenosine) active in the central nervous 

system (CNS) where side effects are major limitations to use. It would be highly advantageous 

to have a mechanism to improve the selectivity of existing GPCR ligands. The downstream 

actions of GPCRs are modulated by the family of Regulator of G protein Signaling proteins 

(RGS proteins). Many of the 20 members of this family are abundantly expressed in the brain(7-

13). Consequently, they have been proposed as intriguing CNS drug targets(7-13). RGS proteins 

act intracellularly by speeding the deactivation of Gαi and Gαq family G proteins. Inhibition of 

RGS proteins would thus be expected to potentiate the actions of GPCR agonists. 

Furthermore, the differential tissue distribution of RGS proteins could provide a novel way to 

selectively enhance GPCR agonist action in a tissue-specific or neuron-subtype specific 

manner. 

RGS4, in particular, assembles in a complex with A1 adenosine receptors and has been 

proposed to suppress the anticonvulsant action of adenosine(14). Suppression of RGS4 also 

mediates long-term depression by dopamine through D2 receptors in medium spiny neurons 

(15) and RGS4 knockout mice have reduced impairment in 6-OHDA mouse models(15). 

Furthermore, loss of RGS4 appears to suppress abnormal involuntary movements in mice 

which represents a model for DOPA-induced dyskinesias(16). According to the recent model(15), 
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a key action of dopamine is to suppress RGS4 function. Thus, direct, chemical inhibition of the 

hyperactive RGS4 would eliminate the need for dopamine and could provide a novel 

dopamine-independent approach to Parkinson’s disease. Consequently, therapeutic targeting 

of RGS4 could be of great interest.  

It has been challenging to effectively disrupt RGS4/Gα and other protein-protein 

interactions, especially in the CNS, but progress is being made(17-19). Indeed, the emerging 

consensus in the field is that effective inhibitors of protein-protein interactions (iPPIs) may not 

meet the “standard” pharmaceutical criteria for drug-like molecules(20, 21). In spite of this, 

numerous compounds with MW > 500(20-22) and several covalent protein modifiers(23, 24) are 

now in clinical trials. We recently described a series of nanomolar-potency TDZD inhibitors of 

RGS proteins(25, 26) that can disrupt RGS4 binding to Gα subunits in HEK-293 cells. As is seen 

for some other potent iPPIs, they covalently modify cysteine residues in RGS proteins(25) but, 

surprisingly, they have high specificity for RGS4 vs. other cysteine-dependent proteins such as 

some kinases and cysteine proteases.   

In this study, we assess the specificity of TDZD RGS4 inhibitors and demonstrate 

cellular activity on RGS4 actions on Gαq-mediated cellular Ca++ signaling and delta-opioid 

regulation of adenylyl cyclase. Furthermore, CCG-203769 shows in vivo activity on muscarinic 

control of heart rate as well as in reversing raclopride-induced Parkinson’s-like effects. These 

results represent the first demonstration of in vivo effects of TDZD RGS4 inhibitors and 

implicate a potential role in Parkinson’s disease and other neuropsychiatric disorders.  
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Results and Discussion: 

Identifying selective small molecule inhibitors of protein-protein interactions with activity 

in the central nervous system remains a key challenge to the expansion of the current 

therapeutic repertoire beyond receptors, transporters, and kinases. Our previously described 

RGS4 inhibitor CCG-203769 blocks the RGS4-Gαo protein-protein interaction in vitro with an 

IC50 value of 17 nM in the Flow Cytometry Protein Interaction Assay (FCPIA, Figure 1A). More 

importantly, it also displays dramatic selectivity for RGS4 over other RGS proteins (Table 1). 

The closely related RGS8 is very weakly inhibited (IC50 >60 µM) providing >4500-fold 

selectivity for RGS4 (Figure 1A, Table 1). This difference is greater than that seen for our 

earlier TDZD inhibitor, CCG-50014, which was only ~350-fold selective for RGS4 over 

RGS8(25, 26). CCG-203769 inhibits RGS19 with an IC50 of 140 nM (8-fold selective for RGS4) 

and 6 µM for RGS16 (350-fold). As with previously reported RGS4 inhibitors, CCG-203769 

does not inhibit RGS7, which lacks cysteines in the RGS domain (Table 1).  

In addition to inhibiting RGS4/Gα binding, CCG-203769 also blocks the GTPase 

accelerating protein (GAP) activity of RGS4. In single-turnover and steady-state GTPase 

experiments with Gαo and Gαi1, the rate of GTP hydrolysis is strongly stimulated by RGS4 and 

this effect is inhibited by CCG-203769 with an IC50 < 1 µM (Figure. 1B, C). As previously shown 

for the related TDZD compound CCG-50014(25), our new compound is irreversible in non-

reducing buffers (Figure 1D). This, as well as the complete lack of effect on RGS7, is 

consistent with CCG-203769 having the same thiol-modification mechanism as CCG-50014(25). 

Beyond RGS protein specificity, CCG-203769 is highly selective for RGS4 vs other 

thiol-dependent proteins. To assess effects on a protein with a catalytic cysteine residue, we 
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tested CCG-203769 for inhibition of the cysteine protease papain. The general thiol-reactive 

reagent iodoacetamide strongly inhibited papain-mediated hydrolysis of the fluorescent casein 

substrate at 30 µM. CCG-203769 at the same concentration had no effect on the protease 

activity of papain (Figure 1E). Related TDZD compounds are inhibitors of glycogen synthase 

kinase 3β(27-29). Indeed, they are currently being evaluated in clinical trials for depression and 

Alzheimer’s disease based on this proposed mechanism. Using a radiometric assay, we show 

that CCG-203769 inhibits GSK-3β with an IC50 value of 5 µM (Figure 1F). This represents 300-

fold selectivity of our compound for RGS4 vs. GSK-3β.   

 The nanomolar potency on RGS4 in vitro translates to respectable cellular activity. We 

first examined the RGS4/Gαo interaction in HEK293 cells. RGS4 is typically present in the 

cytoplasm but translocates to the membrane when co-expressed with a Gα subunit as 

demonstrated previously(25). Similar to prior results with CCG-50014(25), CCG-203769 also 

reverses the Gαo-induced membrane translocation of GFP-tagged RGS4 (Figure 2). This 

demonstrates inhibition of the RGS4-Gαo interaction in cells. The functional consequences of 

CCG-203769 were further investigated using a controlled system where induced expression of 

RGS4 suppresses Gαq-mediated Ca++ signaling activated by the M3 muscarinic receptor. 

Doxycycline treatment induces RGS4 expression (Figure S1A) reducing the Ca++ transient 

induced by 1 nM carbachol by 63% (Figures S1B&C & 3A). At concentrations of 1 and 3 µM, 

CCG-203769 has no effect on intracellular Ca++ responses to carbachol stimulation of the M3 

muscarinic receptor in the absence of RGS4. However, at the same concentrations, it partially 

reverses the RGS4-mediated muscarinic suppression. At higher concentrations, there may be 

an off-target effect as the compound appears to inhibit the Ca++ transient induced by 
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carbachol. This is similar to previously observed, though more dramatic, effects of CCG-50014 

to disrupt Ca++ handling in HEK cells(26).  

 We used SH-SY-5Y neuroblastoma cells to study endogenously expressed RGS and 

opioid receptors. Wang et al(30) had previously shown that RGS4 specifically regulates delta-

opioid receptor (DOP) signaling while having little to no effect on mu-opioid receptor (MOP) 

signaling. CCG-50014 significantly potentiates SNC-80 effects on cAMP accumulation through 

DOP (Figure 3C). Consistent with the previously determined specificity of RGS4, there was no 

significant effect of the compound on MOP-regulated cAMP levels though a trend toward 

potentiation of morphine activity was observed. It is not clear if this is due to effects on RGS4 

or on other RGS proteins in the SH-SY5Y cells to regulate the MOP signal transduction 

cascade. These cellular studies demonstrate that CCG-203769 can potentiate RGS4-regulated 

signaling pathways, regardless of whether they are Gαo or Gαq-mediated processes.  

  Although the TDZD inhibitors have cellular activity, specificity is always a key question 

regarding compounds with a covalent mechanism of action. As noted above, CCG-203769 has 

low potency against GSK-3β as well as producing no inhibition of the activity of the thiol-

protease papain at 30 µM. We also assessed off-target effects through broad activity profiling 

at the NIMH PDSP program (University of North Carolina, Chapel Hill)(31). The compound 

showed no activity at 10 µM against a series of receptors, transporters, etc (Table 2 and S1). 

CCG-203769 had modest activity to inhibit ligand binding in membrane preparations for a 

small subset of the tested systems (α2 adrenergic, D3 dopamine, and opioid receptors).  Using 

the Glowsensor assay (32, 33) for inhibition of cAMP in cells by these Gαi/o-coupled receptors, 

the TDZD compounds showed no agonist or antagonist activity at concentrations up to 10 µM 

in cells (Table 2).   
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A critical step toward translation of new therapeutics is the demonstration of in vivo 

activity as well as avoidance of off-target effects. RGS4 is expressed in the sino-atrial node 

where it functions to regulate heart rate. Accordingly, RGS4 knockout mice show enhanced 

carbachol-induced bradycardia(34). To determine whether this genetic disruption of RGS4 

function could be replicated pharmacologically, we tested CCG-203769 for effects on 

carbachol-mediated bradycardia in conscious, unrestrained rats. Carbachol (0.1 mg/kg, IP) 

produces a modest decrease in heart rate (Figure 4) compared to a saline vehicle control. 

CCG-203769 (10 mg/kg, IV) had no significant effect upon heart rate when given alone (Figure 

4). However, CCG-203769, administered immediately prior to carbachol, significantly 

potentiated the bradycardic effect (Figure 4, p<0.05, 2-way ANOVA).  

 Given the functional role of RGS4 in Parkinson’s disease models(15), we tested CCG-

203769 in a pharmacologic model of D2 antagonist-induced bradykinesia. Raclopride 

administration in rats causes increased hang time in the bar test (Figure 5A) which was rapidly 

reversed by doses of CCG-203769 ranging from 0.1-10 mg/kg. The lowest dose, 0.01 mg/kg 

had no effect while 0.1 mg/kg produced a sub-maximal effect. The higher doses, 1 and 10 

mg/kg produced equivalent effects. Similarly, the raclopride-induced paw drag in mice (as 

indicated by reduced numbers of steps), was reversed by 0.1-10 mg/kg CCG-203769 (Figure 

5B).  

In this report, we have characterized the first TDZD RGS inhibitor with physiological 

activity. CCG-203769, has nanomolar potency against RGS4 and RGS19 in vitro and is almost 

5000-fold selective for RGS4 over the closely related RGS8, making CCG-203769 the most 

selective RGS4 inhibitor identified to date. As expected, cellular activity is less potent with half-

maximal effects occurring in the 1-3 µM range in cells.  The inducible RGS4 system provided 
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us with strong evidence of actions on RGS4 rather than other mechanisms that could also 

result in potentiation of the M3 muscarinic signaling response (e.g. M3 muscarinic allosteric 

modulation or effects on cellular Ca++ handling).  There are, however, additional actions of 

CCG-203769 at higher concentrations that are not fully understood.  

Despite its cysteine-reactive mechanism of action, CCG-203769 selectively targets 

RGS4 over the known TDZD target GSK3β, the cysteine protease papain, and a large number 

of receptors and ion channels. The mechanism underlying the RGS selectivity of this 

compound over other cysteine-dependent processes has yet to be fully elucidated, however 

the available data allow for a potential explanation. We previously showed that the covalent 

modification of RGS4 was through opening of the thiadiazolidinone ring to form a disulfide 

bond with cysteine residues on the protein (25, 26). This reactivity would presumably provide a 

non-specific mechanism of action. However, dynamic modeling studies (35) indicate that the 

target cysteines on RGS4 are buried in a hydrophobic environment that is only transiently 

accessible to solvent. This suggests that the cysteines in RGS4 may be in a unique 

environment that facilities the high potency of CCG-203769. Also, in the reducing environment 

of the cell, the disulfide-bonded compound interaction is likely reversible, as shown in vitro with 

addition of reducing agents (25). Further studies are required to confirm these hypotheses.  

In this report, we show that a TDZD RGS4 inhibitor, despite a covalent mechanism of 

action, is very selective for RGS4 over other RGS proteins as well over other sulfhydryl-

dependent enzymes and a wide range of CNS receptors. Furthermore, it has in vivo activity on 

RGS4-dependent control of heart rate and produces beneficial effects in a D2 antagonist-

mediated akinesia and bradykinesia. In conjunction with the genetic evidence that RGS4 

knockout mice have reduced defects after 6-hydroxy dopamine injury (15), these results suggest 

Page 9 of 33

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

10 

 

that CCG-203769 and other related RGS4 inhibitors may have potential as novel 

antiparkinsonian therapies.  
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Materials and Methods: 
Sources: Compounds were obtained from sources previously reported for carbachol (36); 

doxycycline, [γ32P] GTP (25); forskolin, morphine, and SNC80 (30). Raclopride was purchased 

from Tocris Bioscience (Bristol, UK). CCG-203769 and CCG-50014 were synthesized as 

previously described (26). Fluo4 NW kits were obtained from (InVitrogen, Carlsbad, CA). RGS 

proteins and Gα subunits were expressed, purified, and labelled as previously described (37). 

GSK-3β was obtained from Sigma (catalog #G1663). HEK-293T cells expressing the M3 

muscarinic receptor and inducible RGS4 (M3-R4 cells) were described previously (38).  

RGS/Gα binding studies: The binding of biotinylated RGS proteins to fluorescently labeled Gαo 

and the reversibility of RGS4 inhibitor compound actions were measured by Flow Cytometry 

Protein Interaction Assay (FCPIA) as previously described(37, 39, 40). 

Single-turnover GAP assay: Single turnover GTPase acceleration experiments were performed 

as previously described using purified his6-tagged Gαo
(25). 

Steady-state GAP assay: Steady-state hydrolysis of unlabeled GTP was measured using 

malachite green in a receptor-independent assay utilizing a mutant Gαi1 (R178M, A326S)(38, 41). 

These mutations facilitate the release of GDP from the enzyme making the GTP hydrolysis 

step rate-limiting(41). GTP hydrolysis was measured by mixing 6 µM mutant Gαi with 300 µM 

GTP in 100 µL in 96-well plates in the presence or absence of 200 nM RGS4 and CCG-

203769 or DMSO (vehicle control). All assay components were diluted in a buffer comprising 

50 mM HEPES at pH 7.4, 100 mM NaCl, 0.01% Lubrol, 5 mM MgCl, and 10 µg/mL BSA. The 

reaction was allowed to proceed for 2 hours at room temperature and then was quenched with 

60 µL of an HCl/malachite green dye solution. Immediately after addition of malachite green, 

10 µL of 32% w/v sodium citrate was added as a colorimetric stabilizer, followed by incubation 

at room temperature for 20 minutes.  Released inorganic phosphate was measured as an 
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increase in absorbance (A630) from the complex of phosphate with malachite green(42).  

Background control samples lacking Gα were used to determine the rate of non-enzymatic 

GTP hydrolysis which was subtracted.   

Papain inhibition: Experiments were performed using fluorescein-isothiocyante-labeled casein 

as the fluorescent substrate as previously described(25).  

GSK-3β inhibition: Purified GSK-3β (0.5 U, Sigma G1663) was incubated with the indicated 

concentration of compound for 15 minutes at room temperature. Substrate peptide (300 nM, 

Enzo #BML-P151) was added along with 1 mM [γ-32P] ATP. After a 15 minute incubation at 

30°C, the reaction was quenched by addition of 4 ml of 1% phosphoric acid. The amount of 

phosphorylated peptide was determined by filtration on P81 phosphocellulose filters which 

were washed three times with 4 ml of 1% phosphoric acid to remove unincorporated 

radioactivity. Incorporated radionuclide was quantified by liquid scintillation counting.  

Opioid inhibition of cellular cAMP: SH-SY5Y cells were grown in DMEM containing 10% fetal 

bovine serum and Penicillin (100 units/ml)-Streptomycin (100 µg/ml) under 5% CO2 at 37°C. 

Cells were plated into 24-well plates to reach ~ 90% confluency on the day of assay and 

washed once with fresh serum-free medium. Medium was replaced with 1 mM IBMX (3-

isobutyl-1-methylxanthine) in serum-free medium for 15 minutes at 37°C, and then changed to  

medium containing 1 mM IBMX, 30 µM forskolin, and 100 nM of either morphine or SNC80 

with or without test compound for 5 min at 37 °C. Reactions were stopped by replacing the 

medium with ice-cold 3% perchloric acid and samples were kept at 4 °C for at least 30 

minutes. An aliquot (0.4 ml) from each sample was removed, neutralized with 0.08 ml of 2.5 M 

KHCO3, vortexed, and centrifuged at 15,000 x g for 1 minute to pellet the precipitates. 

Accumulated cAMP in a 10-15 µl aliquot of the supernatant from each sample was measured 
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by radioimmunoassay following the manufacturer’s instructions (cAMP radioimmunoassay kit, 

GE Healthcare, Piscataway, NJ). Data are from four separate experiments, each carried out in 

duplicate and calculated as percent inhibition. The basal cAMP accumulation with forskolin 

alone with or without CCG-50014 did not differ. 

Calcium signaling transients: The M3-R4 cell line with regulated expression of RGS4(38)  was 

based upon the HEK-293 Flp-In T-REx cell line (InVitrogen, Carlsbad, CA). It stably expresses 

the muscarinic M3 receptor and has human RGS4 (stabilized C2S mutant, C-terminal HA 

tagged) expression under doxycycline control. Cells were maintained in DMEM supplemented 

with 10% fetal bovine serum and Penicillin (100 units/ml)-Streptomycin (100 µg/ml) under 5% 

CO2 at 37°C. For experiments, cells were split into 96-well black, clear bottom, poly-D-lysine 

coated microtiter plates (Nunc, Cat. # 152037) at a density of 20,000 cells/well in DMEM 

containing 10% fetal bovine serum and Penicillin (100 units/ml)-Streptomycin (100 µg/ml). 

RGS4 expression was induced by supplementing the medium with 1 µg/mL doxycycline for 24-

48 hours before experimentation. Cells were loaded with Fluo-4 No-Wash dye (InVitrogen, 

Carlsbad, CA) in loading buffer for 30 minutes at 37°C. Compounds were then added and 

incubated for 30 minutes at room temperature prior to carbachol stimulation. Plates were 

transferred to a FlexStation 3 plate reader (Molecular Devices, Sunnyvale, CA) and carbachol 

(1 nM final) was injected into the wells and the fluorescence intensity was measured as a 

function of time. Peak fluorescence intensity was calculated from a 120 second kinetic 

measurement as a percent increase above the initial fluorescence during the pre-injection 

period. 

RGS4 membrane localization: Assays were performed as previously described (25). Briefly, 

HEK-293T were cells grown to 80-90% confluency in 6-well dishes in DMEM supplemented 
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with 10% fetal bovine serum and Penicillin (100 units/ml)-Streptomycin (100 µg/ml) under 5% 

CO2 at 37°C. RGS and Gαo were transiently co-transfected (250 ng of a plasmid encoding full-

length human RGS4 with a C-terminal GFP fusion RGS4pDEST47 and 250 ng of pcDNA3.1 or 

pcDNA3.1 encoding wild-type human Gαo). Transfected cells were split onto poly-D-lysine 

coated glass coverslips and cultured for 24-48 hours before live cell imaging. Images were 

acquired on an Olympus Fluoview 500 confocal microcope with a 60 x 1.40 numerical aperture 

oil objective. Images were obtained by taking a series of stacks every 0.5 µm through the cell 

and combined into a composite image. The light source for the fluorescence studies was a 488 

nm laser with a 505-525 nm bandpass filter. Images were quantified using NIH ImageJ 

software version 1.43r. 

Activity Profiling of CCG-203769: Detailed assay protocols for primary and secondary 

radioligand binding studies as well as functional cell-based assays can be found on the PDSP 

website: http://pdsp.med.unc.edu/. 

Carbachol-induced bradycardia: These studies were reviewed and approved by the University 

Committee on Use and Care of Animals at the University of Michigan. Under ketamine (90 

mg/kg, i.p.) and xylazine (10 mg/kg, i.p.) anesthesia, rats were implanted with indwelling 

venous catheters (Micro-Renathane tubing, Braintree Scientific Inc., Braintree, MA, USA) and 

telemetric BP and ECG transmitters (Model C50-PXT, Data Sciences, Transoma Medical, Inc., 

St. Paul, MN, USA) at the same time under aseptic conditions. Venous catheters were inserted 

3 cm into the right or left jugular vein and sutured to the vein and to the surrounding tissue at 

3-4 points to secure catheter placement. The remaining tubing (approximately 9-12 cm) was 

threaded subcutaneously to a dorsal incision and held in place by suture to musculature 

directly below the incision. Telemeters were implanted subcutaneously in the rat and secured 
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to the abdominal wall. The catheter extending from the base of the transmitter was placed 3 

cm into the left femoral artery. Electrodes from the bottom of the transmitter were threaded 

subcutaneously and one was sutured to the muscle above the xiphoid process and the other 

was sutured to the right of the clavicle. All rats were singly housed and allowed at least 7 days 

to recover before testing. 

 The telemetry system consisted of battery-operated transmitters and receivers (Data 

Sciences, TransomaMedical, St. Paul, MN, USA). Mean arterial pressure (MAP) and heart rate 

(beats per min, bpm) were acquired using Dataquest A.R.T. 3.01, collected every 10 sec and 

then averaged over 1 minute periods. A rat’s home cage was placed in the receiver at least 

one hour prior to testing to allow for habituation. CCG-203769 is an oil and was solublized in 

sterile saline by vigorous vortexing. All compounds were administered in vivo in a volume of 1 

ml/kg by routes of administration indicated above. After habituation, rats received CCG-203769 

or saline (by i.v. infusion through the indwelling venous catheter over 30 sec) while freely 

moving in their homecage. One minute later, saline or 0.1 mg/kg carbachol (i.p.) was 

administered. Before and after i.v. infusions, catheters were flushed with approximately 0.5 ml 

of heparinized saline (50 U/ml) to check catheter patency and flush treatments from dead 

space in catheter. Following all experiments, rats were euthanized by i.v. pentobarbital (150 

mg/kg) to ensure catheter patency. Statistical significance was evaluated by 2-way ANOVA 

with a significance cut-off of 0.05. 

Raclopride-induced movement suppression:  These experimental protocols were approved by 

the Italian Ministry of Health (license n. 171/2010-B) and Ethical Committee of the University of 

Ferrara Young male (20-25 g; 8-9 weeks) C57BL/6J mice, were purchased from Harlan Italy 

(S. Pietro al Natisone, Italy) and were housed with free access to food and water with a 12-h 
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light/dark cycle with lights on between 07:00 and 19:00. Prior to pharmacological testing, mice 

were handled for 1 week by the same operator to reduce stress, and trained daily for a week 

on the behavioral tests until their motor performance became reproducible. On the day of 

experiment drugs were administered systemically (i.p.); CCG-203769 was administered 30 min 

after raclopride. 

 Motor activity was evaluated by means of different behavioral tests (bar and drag) 

specific for different motor abilities, as previously described(43, 44). The different tests are useful 

to evaluate motor functions under static or dynamic conditions. Akinesia appears as an 

abnormal absence or poverty of movements, that is associated with loss of the ability to move 

the forepaw when placed on blocks (bar test). Bradykinesia is slowness of movement with 

difficulties of adjusting in response to backwards dragging (drag test). The tests were repeated 

in a fixed sequence (bar and drag test) before (control session) and after (30 minutes) 

raclopride injection, then 20 and 90 minutes after CCG-203769 injection.  

The bar test or catalepsy test(45), measures the ability of the animal to respond to an 

externally imposed static posture. Each mouse was placed gently on a table and the right and 

left forepaws were placed alternately on blocks of increasing heights (1.5, 3 and 6 cm). The 

immobility time (in seconds) on the blocks was recorded (cut-off time 20 seconds per step, 60 

seconds maximum). Time was recorded as total time spent on the blocks. The drag test is a 

modification of the “wheelbarrow” test(46). Each mouse was gently lifted by the tail (allowing the 

forepaws on the table) and dragged backwards at a constant speed (about 20 cm/sec) for a 

fixed distance (100 cm). The number of touches made by each forepaw was counted by two 

separate observers (mean between the two forepaws).  
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 Data are expressed as means ± SEM of n determinations per group. Statistical analysis 

was performed using one-way repeated measures (RM) ANOVA followed by the Newman-

Keuls test. P values <0.05 were considered to be statistically significant. Both raclopride and 

CCG-203769 were freshly dissolved in the vehicle just prior to use. 
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Figure Legends 

Figure 1. Biochemical characterization of RGS inhibitors. A) CCG-203769 inhibits RGS4 and 

RGS8 binding to Gαo in FCPIA in a concentration-dependent manner. Inset: chemical structure 

of CCG-203769. See Table 1 for IC50 values. CCG-203769 inhibits the RGS-mediated 

acceleration of GTPase activity by both B) Gαo in single-turnover and C) Gαi1 in steady-state 

GTPase assays. D) CCG-203769 irreversibly inhibits RGS4 binding to Gαo in non-reducing 

buffers. RGS4-coated beads were treated with 0.5 µM CCG-203769, extensively washed, and 

then probed for Gαo binding. E) CCG-203769 (30 µM) does not inhibit the cysteine protease 

papain. The positive control compound, iodoacetamide (30 µM) did effectively inhibit papain 

activity (see Methods for details). F) CCG-203769 inhibits GSK-3β with an IC50 value of 5 µM. 

Data are presented as the mean±SEM from at least three independent experiments. * p<0.05, 

****p<0.0001 

 

Figure 2: CCG-203769 inhibits the Gαo-dependent membrane translocation of RGS4 in 

HEK293T cells. RGS4-GFP generally has a diffuse cytosolic protein expression pattern, 

however, co-expression with Gαo induces a translocation of the RGS to the cell membrane(25). 

A/C) Treatment with DMSO does not modulate the RGS4 membrane localization, while B/D) 

treatment with CCG-203769 (100 µM) reverses the membrane translocation of the RGS4. 

Representative data shown from at least three independent experiments with 3-5 cells imaged 

per experiment. Line scans (C & D) were quantified from a single line perpendicular to the long 

axis of the cell in pre (Media) & post (DMSO or CCG-203769) treatment images. Pixel intensity 

was obtained using the NIH ImageJ software version 1.43r.   
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Figure 3. TDZD RGS4 inhibitors block RGS function in living cells. A) RGS4 induction by 

doxycycline suppresses the Gαq-mediated calcium transient invoked by activation of the M3 

muscarinic receptor. CCG-203769 (3 µM) reverses the effect of RGS4. B) Quantification of the 

data shown in A, showing that CCG-203769 significantly inhibits the RGS4 modulation M3 

signaling at 1 and 3 µM. Data are presented as the mean ± SEM of three independent 

experiments. C) δ-opioid receptor signaling in SH-SY5Y neuroblastoma cells is potentiated by 

the TDZD RGS4 inhibitor. The endogenous δ and µ receptors in SH-SY5Y cells are regulated 

by endogenous RGS proteins. CCG-50014 (100 µM) significantly potentiates the cAMP 

inhibition produced by the δ opioid receptor agonist SNC-80, while only modestly potentiating 

actions of the µ-opioid receptor agonist morphine. Data are presented as the mean ± SEM of 

three independent experiments.*p<0.05; **p<0.01 

 

Figure 4. CCG-203769 potentiates the cardiovascular effects of carbachol in conscious rats. 

Blood pressure and heart rate of adult Sprauge-Dawley rats were monitored via indwelling 

cardiac transponders. Rats were given CCG-203769 (10mg/kg, i.v.) or saline immediately 

before administration of saline or carbachol (0.1mg/kg, i.p.). CCG-203769 has no effect on 

heart rate when administered alone, however it significantly potentiates (p<0.05, 2-way 

ANOVA) the effect of carbachol (0.1mg/kg). N=6 per condition.  

 

Figure 5. AntiParkinson’s effects of RGS4 inhibitors. Mice were treated with raclopride (1 

mg/kg i.p.) after baseline assessment in the bar and drag tests (as described in Materials and 

Methods). A) Akinesia and B) bradykinesia were assessed 30 minutes after raclopride then 

mice received either DMSO or CCG-203769 at the indicated doses (i.p.). Behavior was 
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assessed 20 or 90 minutes after DMSO or CCG-203769. Values are mean +/- SEM with 

differences from baseline indicated by ** (p < 0.01) and differences from Raclopride + DMSO 

indicated by ## (p < 0.01).  
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Tables 

 

Table 1. Selectivity of CCG-203769. The binding of RGS proteins to Gαo was measured using 

FCPIA. CCG-203769 inhibited RGS/Gαo binding in an RGS-selective manner. Functional data 

for non-RGS activities are described in the text. Data are presented as mean from three 

independent experiments performed in duplicate. Fold-selectivity is presented as the ratio of 

the IC50 of CCG-203769 towards a given target versus its IC50 against RGS4.  

 

RGS Protein IC50 (µM) Fold Selectivity 

(RGS4) 

RGS4 0.017 1 

RGS19 

RGS16 

0.14 

6 

8.2 

350 

RGS8 79 4650 

RGS7 >100 >6000 

------------------- 

GSK3β 

Papain 

 

5.4 

>100 

 

320 

>6000 
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Table 2 Specificity analysis of CCG-203769. 

The compound was tested for activity in a wide variety of ligand binding or functional assays 

through the NIH PDSP laboratory. Targets for which activity was found in primary or secondary 

binding assays were then examined in cell-based functional studies. In the latter, assessment 

of both agonist and antagonist activity was done. Assay protocols are available on the PDSP 

web site (https://pdspdb.unc.edu).  

 Biochemical assays Cellular assays 

Target Primary 
Binding  

(% Inhibition 

@ 10 µM) 

Secondary 
Binding  

(IC50 nM) 

Agonist/Antagonist  
Potency 

(EC50/IC50 nM) 

5-HT1A,B,D,E;  
5-HT2A,B,C, 3, 5A, 

7 

β-AR1,2,3; 

α1-AR A, B, D 
D2, D4,  

H1-4; M1-5; 
Benzodiazepine;  

GABA-A;  
DAT, NET, SERT 

Sigma1,2 

 
 
 
 

<50% 

 
 
 
 

ND 

 
 
 
 

ND 

5-HT6 69 >10,000  ND 

α2A adrenergic  97 290 >10,000 

α2B adrenergic 93 2,290 >10,000 

α2C adrenergic 97 140 >10,000 

D1 dopamine 54 >10,000 ND 

D3 dopamine 84 1,530 >10,000 

D5 dopamine 67 >10,000 ND 

DOR 53 2,630 >10,000 

KOR 90 1,520 >10,000 

MOR 54 2,680 >10,000 

ND = Not determined. 
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Figure 1: Biochemical characterization of RGS inhibitors. A) CCG-203769 inhibits RGS4 and RGS8 binding to 
Gαo in FCPIA in a concentration-dependent manner. Inset: chemical structure of CCG-203769. See Table 1 
for IC50 values. CCG-203769 inhibits the RGS-mediated acceleration of GTPase activity by both B) Gαo in 

single-turnover and C) Gαi1 in steady-state GTPase assays. D) CCG-203769 irreversibly inhibits RGS4 
binding to Gαo in non-reducing buffers. RGS4-coated beads were treated with 0.5 µM CCG-203769, 

extensively washed, and then probed for Gαo binding. E) CCG-203769 (30 µM) does not inhibit the cysteine 
protease papain. The positive control compound, iodoacetamide (30 µM) did effectively inhibit papain 

activity (see Methods for details). F) CCG-203769 inhibits GSK-3β with an IC50 value of 5 µM. Data are 

presented as the mean±SEM from at least three independent experiments. * p<0.05, ****p<0.0001  
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Figure 2: CCG-203769 inhibits the Gαo-dependent membrane translocation of RGS4 in HEK293T cells. 
RGS4-GFP generally has a diffuse cytosolic protein expression pattern, however, co-expression with Gαo 

induces a translocation of the RGS to the cell membrane(25). A/C) Treatment with DMSO does not modulate 
the RGS4 membrane localization, while B/D) treatment with CCG-203769 (100 µM) reverses the membrane 
translocation of the RGS4. Representative data shown from at least three independent experiments with 3-5 
cells imaged per experiment. Line scans (C & D) were quantified from a single line perpendicular to the long 
axis of the cell in pre (Media) & post (DMSO or CCG-203769) treatment images. Pixel intensity was obtained 

using the NIH ImageJ software version 1.43r.  
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Figure 3. TDZD RGS4 inhibitors block RGS function in living cells. A) RGS4 induction by doxycycline 
suppresses the Gαq-mediated calcium transient invoked by activation of the M3 muscarinic receptor. CCG-
203769 (3 µM) reverses the effect of RGS4. B) Quantification of the data shown in A, showing that CCG-

203769 significantly inhibits the RGS4 modulation M3 signaling at 1 and 3 µM. Data are presented as the 

mean ± SEM of three independent experiments. C) δ-opioid receptor signaling in SH-SY5Y neuroblastoma 
cells is potentiated by the TDZD RGS4 inhibitor. The endogenous δ and µ receptors in SH-SY5Y cells are 

regulated by endogenous RGS proteins. CCG-50014 (100 µM) significantly potentiates the cAMP inhibition 
produced by the δ opioid receptor agonist SNC-80, while only modestly potentiating actions of the µ-opioid 

receptor agonist morphine. Data are presented as the mean ± SEM of three independent 
experiments.*p<0.05; **p<0.01  
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Figure 4. CCG-203769 potentiates the cardiovascular effects of carbachol in conscious rats. Blood pressure 
and heart rate of adult Sprauge-Dawley rats were monitored via indwelling cardiac transponders. Rats were 

given CCG-203769 (10mg/kg, i.v.) or saline immediately before administration of saline or carbachol 
(0.1mg/kg, i.p.). CCG-203769 has no effect on heart rate when administered alone, however it significantly 

potentiates (p<0.05, 2-way ANOVA) the effect of carbachol (0.1mg/kg). N=6 per condition.  
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Figure 5. AntiParkinson’s effects of RGS4 inhibitors. Mice were treated with raclopride (1 mg/kg i.p.) after 
baseline assessment in the bar and drag tests (as described in Materials and Methods). A) Akinesia and B) 
bradykinesia were assessed 30 minutes after raclopride then mice received either DMSO or CCG-203769 at 

the indicated doses (i.p.). Behavior was assessed 20 or 90 minutes after DMSO or CCG-203769. Values are 
mean +/- SEM with differences from baseline indicated by ** (p < 0.01) and differences from Raclopride + 

DMSO indicated by ## (p < 0.01).  
194x179mm (300 x 300 DPI)  

 

 

Page 33 of 33

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


