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Abstract: (1) Background: In the development of new and more effective anticancer approaches,
combined treatments appear of great interest. Combination therapy could be of importance in the
management of glioblastoma (GBM), a lethal malignancy that accounts for 42% of cancer of the
central nervous system, with a median survival of 15 months. This study aimed to verify the activity
on a glioblastoma cancer cell line of one of the most active compounds of a novel series of tubulin
polymerization inhibitors based on the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold,
used in combination with a miRNA inhibitor molecule targeting the oncomiRNA miR-10b-5p. This
microRNA was selected in consideration of the role of miR-10b-5p on the onset and progression
of glioblastoma. (2) Methods: Apoptosis was analyzed by Annexin-V and Caspase 3/7 assays,
efficacy of the anti-miR-10b-5p was assessed by determining the miR-10b-5p content by RT-qPCR.
(3) Results: The results obtained show that a “combination therapy” performed by combining the
use of an anti-miR-10b-5p and a 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole derivative is an
encouraging strategy to boost the efficacy of anticancer therapies and at the same time to reduce side
effects.

Keywords: microRNA; anti-miR; miR-10b-5p; glioma; apoptosis; tubulin; 1-(3′,4′,5′-trimethoxyphenyl)-
2-aryl-1H-imidazole; combination therapy

1. Introduction

Glioblastoma (GBM) is a lethal malignant tumor accounting for 42% of the tumors of
the central nervous system, with the median survival being 15 months [1–4]. Currently,
there is no effective pharmacological treatment available, and the first-line drug used,
Temozolomide (TMZ), is, on average, able to prolong the life expectancy of treated patients
by only a few months [4]. Additionally, many forms of glioblastoma are or become resistant
to TMZ over time [4–6]. Therefore, there is an urgent need to find new drugs, therapeutic
approaches, and protocols (such as combined therapy) to develop anti-glioma therapies
more effective than those currently available, especially on TMZ-resistant tumors.

Combined treatment might be of great interest in order to develop effective ther-
apeutic protocols for glioblastoma [7–12]. In this respect, we have recently reported a
possible combined therapeutic approach for GBM based on the use of microRNA inhibitors
and anti-GBM molecules. For example, we have found that sulforaphane (SFN) and a
peptide-nucleic acid (PNA) targeting microRNA miR-15b-5p synergistically act by inducing
apoptosis of the glioblastoma U251 cells [13]. Therefore, the PNA-a15b might be proposed
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in “combo-therapy” associated with SFN. Overall, this study suggests the feasibility of
using combined treatments in which chemical bioactive agents directed against selected
tumor-associated pathways might be administered together with antisense biomolecules
targeting oncomiRNAs [14–19].

Targeting microRNAs is appealing, as these short non-coding RNA sequences act as
key gene regulators by repressing translation or causing the cleavage of the RNA transcripts
they target [20–22]. There is now a large consensus on the fact that the altered expression
of miRNAs may be involved in the pathogenesis of cancer [23–25]. In particular, those
miRNAs that are upregulated in cancer and cause down-regulation of target tumor sup-
pressor mRNAs are defined as “oncomiRNAs” and “metastamiRNAs” [25]. Concerning
GBM, a possible microRNA target is miR-10b-5p [26–31]. There is, in fact, strong evidence
that miR-10b-5p is overexpressed in malignant glioma and associated with tumor invasive
factors [26,27,29] and GBM aggressiveness [31]. Importantly, miR-10b-5p is not expressed
(or expressed at very low levels) in non-cancerous brain tissues [27]. In agreement with the
concept that miR-10b-5p represents a unique therapeutic target for GBM, El Fatimy et al.
reported a very interesting study based on the CRISPR-Cas9 gene editing [32]. The results
of this study were focused on the effects of miR-10b gene editing on growth of cultured
human glioma cells, tumor-initiating stem-like cells, and mouse GBM xenografts, as well
as the oncogene-induced transformation of normal astrocytes. Interestingly, miR-10b-5p
gene ablation was found to be lethal for glioma cell cultures and established intracranial tu-
mors [32]. In agreement with this information, miR-10b-5p has been selected as a molecular
target for pharmaceutical treatment based on the antagomiRNA approach [33–36].

A possible pathway to be targeted in combined therapy of GBM is that controlling
tubulin polymerization [37–39]. In this respect, Bordji et al., 2014 reported that several
studies have indicated aberrant levels of βIII-tubulin (βIII-t) in human GBM. βIII-t overex-
pression was linked to increasing malignancy in glial tumors and described to determine
the onset of resistance to chemotherapy [40]. Accordingly, tubulin polymerization has been
suggested as a biochemical target for chemotherapy of GBM [41–47].

In this respect, some of us have recently published a study focusing on the develop-
ment and characterization of a novel series of tubulin polymerization inhibitors based on
the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted
combretastatin A-4 (CA-4) analogs [48]. A chloro and ethoxy group at the meta- and para-
positions, respectively, produced the most active compound in the series (4o), with IC50
values of 0.4–3.8 nM against a panel of seven different cancer cell lines. Experiments
carried out in a syngeneic mouse model demonstrated high antitumor activity of 4o, which
significantly reduced the tumor mass [48].

The aim of the present study was to verify the activity of compound 4o on a glioma
cell line when used in combination with a commercial miRNA inhibitor molecule target-
ing the oncomiRNA miR-10b-5p (antimiR-10b-5p). The possible synergistic action of 4o
and antimiR-10b-5p was studied by evaluation of the effects on cell viability and apopto-
sis, as it is already known that tubulin polymerization inhibition, as well as miR-10b-5p
downregulation, are able to induce apoptosis in glioma cells [33,48,49].

2. Results
2.1. Effects of Compound 4o on U251 Cell Growth and Apoptosis

The chemical structure of 2-(3′-chloro-4′-ethoxyphenyl)-1-(3′,4′,5′-trimethoxyphenyl)-
1H-imidazole (4o) is shown in Figure 1A. Figure 1B shows the effects of 4o on cell pro-
liferation of U251 cells. After 72 h of cell culture employing the indicated experimental
conditions, the cell number/mL was determined. The data indicate that inhibition of
U251 cell growth by 4o reaches the maximum values when 0.5–2 µM concentrations of 4o
are used. This finding is in line with the experimental data reported by Romagnoli et al.,
indicating that 4o exert antiproliferative effects on different tumor cell lines, including
glioblastoma [48].
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Figure 1. Structure of compound 4o and its effects on U251 cell proliferation. (A). Structure of
compound 4o. (B). Effects of derivative 4o on U251 cell proliferation. U251 cells were cultured for
3 days in the absence or in the presence of the indicated concentrations of compound 4o. Results
represent the cell number/mL values (mean ± SD; n = 3). p < 0.05 (*, significant), p < 0.01 (**;
highly significant).

The compound 4o is also able to induce apoptosis of U251 cells, as depicted in Figure 2.
In fact, compound 4o at 0.25 µM concentration is sufficient for generating a sharp increase
in total apoptotic cells (in the case of late apoptosis, the % increases from 3.60% in control
untreated cells to 20.06% and 27.54%, in U251 cells cultured in the presence of 0.25 and
0.75 µM compound 4o, respectively). The 0.25 µM concentration of 4o was selected to limit
the expected side-effects of high dosages of 4o on treated cells. The analysis of the effects of
compound 4o administered at concentrations ranging from 50 nM to 2 µM is reported in
Supplementary Material (Figures S1 and S2), showing again a concentration-dependent
effect on induction of apoptosis.

Figure 2. Effects of compound 4o on apoptosis. The annexin V assay was performed on U251 cells
treated for 3 days in the presence of the indicated concentrations of 4o (A,B). (C). Vehicle treated
U251 cells. (D). Summary representing the mean increase of % of apoptotic cells ± SD (n = 4).
p < 0.01 (**; highly significant).

2.2. Effects of Anti-miR-10b-5p on U251 Apoptosis

The effects of antimiR-10b-5p on apoptosis are shown in Figure 3 and in Supplemen-
tary Material Figures S3 and S4. In Figure 3A–E, representative plots are shown, demon-
strating that the used anti-miR-10b-5p molecule induces apoptosis (Figure 3C–E), while
only minor effects of the vehicle (lipofectamine RNAiMAX) were appreciable (Figure 3B).
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Figure 3F shows the relationship between administered concentrations of anti-miR-10b-5p
and apoptosis. Interestingly, the increase of induced apoptosis is associated with a decrease
in the expression of miR-10b-5p following treatment with the anti-miRNA molecule, as
verified by the Pearson correlation test (p = 0.0007). The complete set of the results generat-
ing the summary data presented in Figure 3F is included in the Supplementary Material
Figures S3 and S4.

Figure 3. Effects of anti-miR-10b-5p on apoptosis. (A–E). Representative Annexin V assay plots
performed on untreated U251 cells (−)or cells cultured for 3 days in the presence of DMSO or the
indicated concentrations of anti-miR-10b-5p (C. 50 nM, D. 200 nM, E. 300 nM). The complete set
of data is presented in Supplementary Material Figures S3 and S4. (F). Summary representing the
increase of % of apoptotic cells (black dots) related to the decrease of miR-10b-5p following treatment
with the anti-miR-10b-5p molecule (grey dots), R squared values obtained by linear regression test
are presented on the plot.

The treatment with the anti-miR-10b-5p molecules is expected to have only limited
effects on “normal” brain cell lines and/or tissues, as this microRNA is not expressed
(or expressed at very low levels) in non-cancerous brain tissues [27,36,50]. While future
experiments analyzing the effects of the anti-miR-10b-5p on normal “healthy” brain cell
lines appear to be of relevance, we wanted to further analyze the specificity of the effects
on microRNAs by exploring the effects of the treatment on miRNAs demonstrated to
be onco-suppressor in brain cells, such as miR-101-3p [51], miR-424-5p [52], and miR-93-
5p [53]. These data are presented in Supplementary Materials Figure S5 and clearly indicate
that while inhibition of miR-10b-5p was as expected confirmed (fully in agreement with
Figure 3F), no inhibitory effects were found when miR-101-3p, miR-424-5p, and miR-93-5p
were considered, further supporting the hypothesis that the treatment is highly specific.

2.3. Effects of Compound 4o on miR-10b-5p Expression and Combined Effects with
Anti-miR-10b-5p Transfection

Figure 4 shows that compound 4o has only minor effects on the expression of miR-
10b. This experiment was conducted by exposing for 72 h human glioma U251 cells to
DMSO (the vehicle of 4o), lipofectamine RNAiMAX (the vehicle for antimiR-10b-5p), 4o,
antimiR-10b-5p, and a combination of 4o and antimiR-10b-5p (with the relative DMSO
+ lipofectamine control). After this period of cell culture, the cells were analyzed for
morphology (Figure 4A) and miR-10b-5p expression (Figure 4B). To this end, RNA was
isolated and miR-10b-5p sequences were quantified by RT-qPCR. Interestingly, no effects
on cell growth and morphology were appreciable in control untreated cells, as well as in
U251 cells cultured with the DMSO and lipofectamine RNAiMAX vehicles, even when
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they were used in combination. By contrast, alterations in morphology and cell growth
efficiency were observed following treatment with 4o, anti-miR-10b-5p, or the combined
treatment using these molecules (Figure 4A). This finding is fully in agreement with the
MTT assay included in Supplementary Material Figure S6.

Figure 4. Effects of compound 4o and antimiR-10b-5p on U251 morphology and expression of
miR-10b-5p. (A). Studies focusing on U251 morphology. (B). Effects on miR-10b-5p, analyzed by
RT-qPCR. Cells were either untreated (−) or treated as indicated for 3 days. In panel B, the results
represent miR-10b-5p expression with respect to relatives Lipofectamine and Lipofectamine plus
DMSO controls (mean ± SD; n = 3). p < 0.01 (**; highly significant).

Concerning the RT-qPCR data (Figure 4B), the antimiR-10b-5p causes strong inhibition
of miR-10b-5p expression. DMSO and lipofectamine were not effective, and compound 4o
did not change significantly miR-10b-5p expression. The combined treatment was the most
effective in inhibiting expression of miR-10b-5p.

2.4. Co-Treatment of U251 Cells with Compound 4o and AntimiR-10b-5p: Effects on Cell Cycle

We first analyzed the effects of compound 4o, antimiR-10b-5p, or the combined treat-
ment using these molecules on the distribution of the cell cycle. Since molecules exhibiting
effects on tubulin assembly might cause alteration of cell cycle parameters, leading to a
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preferential G2/M blockade, the effects of compounds 4o on cell cycle distribution were
analyzed using flow cytometric analysis and compared to those induced by the antimiR-
10b-5p and to those induced by the combined treatment. The cells were cultured for 72 h, as
indicated in Figure 5A. Compound 4b caused an accumulation of cells at the G2/M phase
of the cell cycle (from 27.95 ± 0.55% to 38.70 ± 1.91%), with a concomitant decrease in cells
in the G0/G1 phase (from 63.55 ± 0.35% to 44.75 ± 1.77%), confirming that compound 4o
impacts cell growth through cell cycle blockade (Figure 5A,B). On the contrary, the antimiR-
10b-5p has only minor effects on cell cycle, inducing a very low increase in the percentage
of G2/M-phase cells. Interestingly the combined treatment using compound 4o in the
presence of transfection with antimiR-10b-5p caused the highest level of accumulation of
the cells into the G2/M phase of the cell cycle (67.8 ± 4.24%, see Figure 5A,B). Further-
more, when we focused on sub-G1 cells, we found the highest values in the combined
treatment, suggesting focusing on induction of apoptosis, as sub-G1 peak is a hallmark of
apoptosis [54].

Figure 5. Effects of compound 4o and antimiR-10b-5p on cell cycle distribution. Representative plot
obtained from cell cycle analysis after 72 h treatment with compound 4o or antimir-10b-5p alone and
in combination (A) and summary of cells percentage distribution following treatment (B–E). Results
represent mean ± SD (n = 3). p < 0.05 (*, significant), p < 0.01 (**; highly significant).

2.5. Co-Treatment of U251 Cells with Compound 4o and AntimiR-10b-5p: Effects on Apoptosis

In order to test the potential induction of apoptosis and cell death of compound 4o
and antimiR-10b-5p administered individually and to verify a possible synergistic effect
when administered together, two different apoptosis detection kits were used, the Annexin
V assay (Figure 6) and the Caspase 3/7 assay (Figure 7). Figure 6 shows representative
Annexin V assay plots demonstrating the effects of 4o and antimiR-10b-5p administered
singularly or together. Both agents induced a low increase of Annexin-V positive cells in
comparison with the control after 3 days, but were very effective in inducing apoptotic
effects when used in combination. In fact, combined treatments with sub-optimal con-
centrations of 4o and antimiR-10b-5p (0.25 µM and 200 nM, respectively) lead to a sharp
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induction in apoptosis (24.77 ± 0.67%), a proportion which is much higher than the sum
of the effects of singularly added agents (14.12 ± 1.19%; indicated in Figure 6H by the
dotted line). It should be noted that the increase in the proportion of apoptotic cells was
particularly evident in the “late apoptotic” cell fraction.

Figure 6. Effects of compound 4o and antimiR-10b-5p on U251 apoptosis: Annexin V assay. Apoptosis
was assayed after 72 h culture. (A) Untreated control cells; (B) cells treated with DMSO; (C) cells
treated with 0.25 µM compound 4o; (D) cells treated with lipofectamine; (E) cells treated with 200 nM
antimiR-10b-5p; (F) cells treated with DMSO and lipofectamine; (G) cells treated with combined
administration of 0.25 µM compound 4o and 200 nM antimiR-10b-5p. (H) summary including results
representing % of apoptotic cells of U251 cultures treated as indicated. Results represent mean ± SD
(n = 3). The dotted line represents the sum of the values obtained with single administrations of the
compounds. p < 0.01 (**; highly significant).

The same conclusion derived from the experiments performed using the Annexin V
assay can be gathered on the basis of the Caspase-3/7 assay shown in Figure 7. In this
case, the induction of apoptosis obtained following combined treatments with sub-optimal
concentrations of 4o and antimiR-10b-5p was 40.75 ± 1.05%, a proportion which is much
higher than the sum of the effects of singularly added agents (16.81 ± 0.79%; indicated in
Figure 7H by the dotted line).

In order to obtain additional information sustaining an effect on apoptosis, we ana-
lyzed by RT-qPCR the effects of the treatments on the expression of Caspase-3 gene, which
plays a central role in the execution-phase of cell apoptosis [55]. As shown in Figure 8,
3-day treatment of the cells with compound 4o or antimR-10b-5p induces an increase of
Caspase-3 mRNA. The vehicles, alone or in combinations were ineffective. Interestingly the
highest effects on Caspase-3 mRNA induction were obtained in the combined treatment
with compound 4o plus antimR-10b-5p.
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Figure 7. Effects of compound 4o and antimiR-10b-5p on U251 apoptosis: Caspase 3/7 assay. Apop-
tosis was assayed after 72 h culture. (A) Untreated control cells; (B) cells treated with DMSO; (C) cells
treated with 0.25 µM compound 4o; (D) cells treated with lipofectamine; (E) cells treated with 200 nM
antimiR-10b-5p; (F) cells treated with DMSO and lipofectamine; (G) cells treated with combined
administration of 0.25 µM compound 4o and antimiR-10b-5p. (H) Summary including results rep-
resenting % of apoptotic cells of U251 cultures treated as indicated. Results represent mean ± SD
(n = 3). The dotted line represents the sum of the values obtained with single administrations of the
compounds. p < 0.01 (**; highly significant).

Figure 8. Effects of compound 4o and antimiR-10b-5p on Caspase-3 mRNA content in treated
U251 apoptosis (data normalized on GAPDH). Similar results were obtained using RPL13A and
β-actin sequences as internal controls (results shown in Supplementary Material, Figure S7). The
dotted line represents the sum of the values obtained with single administrations of the compounds.
p < 0.01 (**; highly significant), and p < 0.001 (***; highly significant).



Int. J. Mol. Sci. 2022, 23, 5991 9 of 15

3. Discussion

Glioblastoma (GBM) patients express high levels of miR-10b-5p, which exerts anti-
apoptosis effects and promotes malignant progression [26–30]. The involvement of miR-
10b-5p in GBM is supported by the work of Junior et al. [31], who described a high-
throughput analysis of the microRNA profile in adult and pediatric primary glioblastomas,
demonstrating the role of miR-10b-5p in the tumor aggressiveness. In their study, miR-10b-
5p was found to be to most overexpressed microRNAs. In addition, it should be underlined
that this microRNA is not expressed in normal brain tissues, normal tissues adjacent to
GBM, and a variety of “normal” brain cell lines [27,36,50].

Consistently, inhibition of miR-10b-5p reduced cell proliferation and colony formation
in the U251 GBM cell line, firmly establishing that this microRNA acts as an oncogenic
miRNA [33,56]. A recent study by Yang et al. confirmed the role of miR-10b-5p in the
development of gliomas and suggested that this microRNA could serve as a potential target
for the development of new glioma therapies [57]. Fully in agreement, Li et al., using a
wound healing and Transwell assays, demonstrated that a miR-10b-5p inhibitor reduced
the ability of glioma cells to migrate and invade [56], providing strong evidence that miR-
10b-5p inhibition may provide a novel bio-targeting approach for glioma/glioblastoma
personalized therapy.

On the other hand, compounds interfering with the microtubule-tubulin equilibrium in
glioblastoma cells demonstrated to retain very strong antiproliferative activity, suggesting
that compounds targeting tubulin are of great interest for the treatment of GBM [41,47,49].
For this reason, several clinical trials on GBM patients have been designed using tubulin
inhibitors such as patupilone (NCT00715013), 2-methoxyestradiol (Panzem: NCT00481455),
mebendazole (NCT02644291 and NCT01837862).

In this context, in a recent paper, some of us have described a novel series of tubulin
polymerization inhibitors based on the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole
scaffold [48]. The most active compound in the series (4o) exhibited antitumor properties,
both in vitro and in vivo [48].

The most important conclusion of the present study is that compound 4o, when used
in combination with a miRNA inhibitor molecule targeting the oncomiRNA miR-10b-5p
(antimiR-10b-5p), generates synergistic effects in inducing apoptosis, using the GBM U251
cell line as a model system.

It should be underlined that combined treatments appear of great interest in the de-
velopment of anticancer approaches [7–12], since they are expected to obtain the same
biological or therapeutic effect using lower concentrations of two or more drugs, thereby
limiting side effects [58]. Importantly, combined therapy might be of great importance in the
management of Glioblastoma (GBM), a lethal malignant tumor needing novel therapeutic
options. This is mainly due to the fact that, at present, there is no effective pharmacological
approach in the treatment of glioblastoma. The first-line drug currently used is Temo-
zolomide, but it is able to extend the life expectancy of patients with GBM by an average
of a few months, moreover, very often, this type of tumor is or becomes resistant to this
chemotherapeutic agent [4–6].

We have already published two studies on synergistic effects of miRNA inhibitors
on GBM cell lines when they are co-administered with anticancer agents [13,19]. In the
first study, a peptide-nucleic acid (PNA) targeting miR-221-3p was co-administered with
a tubulin inhibitor different from that employed in the present study [19]. In the second,
a PNA targeting miR-15b-5p was co-administered with sulforaphane [13]. The reason
behind studying different miRNA inhibitors combined with different anti-GBM agents
is due to the person-to-person variability of response to chemotherapy on the one hand
and of onco-miRNAs upregulation on the other. Therefore, one way to explore possible
personalized treatments of GBM is to validate several anti-GBM drugs in combination
with several anti-miRNA molecules. The reason for moving from the use of PNAs to the
use of DNA-analogues targeting miRNAs is related to the fact that, to our knowledge,
no anti-miRNA PNAs have reached clinical trials, while several DNA based anti-miRNA



Int. J. Mol. Sci. 2022, 23, 5991 10 of 15

molecules are currently under investigation in several clinical protocols on cancer patients.
For instance, the clinical trial NCT01849952 has been designed to test the hypothesis that
in primary glioma samples, mir-10b expression patterns will serve as a prognostic and
diagnostic marker. Furthermore, considering the critical function of antimiR-10b in blocking
established glioblastoma growth, the investigators planned to test in vitro the sensitivity of
individual primary tumors to antimiR-10b treatment.

In conclusion, our results support the concept that combined treatment of GBM cells
with molecules targeting specifically upregulated “oncomiRNA” (in this study, miR-10b-5p)
and anticancer agent (in this study, the antitubulin agent 4o) is a promising strategy in the
field of developing effective anti-GBM therapeutic approaches. This strategy may prove
of great interest in the personalized approach of precision anti-cancer medicine, since it is
well established a patient-to-patient variability in drug response and microRNA pattern.

4. Materials and Methods
4.1. Chemistry and Reagents

The name of the compound employed in the present study, 2-(3′-chloro-4′-ethoxyphenyl)-
1-(3′,4′,5′-trimethoxyphenyl)-1H-imidazole (4o), was maintained in agreement with the
published work by Romagnoli et al. [48] and resuspended in DMSO (see the chemical
structure in Figure 1A). The synthesis of 4o has been described in detail elsewhere [48].
For all cell cultures, RPMI medium supplemented with 10% FBS and 100 mg/mL strepto-
mycin and 100 IU/mL penicillin were employed. RPMI 1640 with L-Glutamine medium
(cat.no. FA30WL0500500) was purchased from Carlo Erba Reagents (Cornaredo, Mi-
lan, Italy), Trypsin-EDTA solution (cat.no. ECM0920D) from EuroClone (Pero, Milan,
Italy), streptomycin and penicillin (cat. no. 11074440001) from Sigma-Aldrich (St. Louis,
MA, USA) (Merck KGaA, Darmstadt, Germany), and FBS (cat.no. S1400) from Biow-
est (Nuaillé, France). For flow cytometry assays, Muse® Annexin-V & Dead Cell kit
(cat.no. MCH100105), Muse® Caspase-3/7 kit (cat.no. MCH100108) and Muse® Cell Cycle
kit (cat. no. MCH100106) were purchased from Luminex Corporation (Austin, TX, USA).
The commercial miRNA inhibitor molecule employed was acquired from Integrated DNA
Technologies (IDT, Castenaso, Italy) and specifically synthesized to have high binding effi-
ciency to the target miRNA and protection from endo/exonucleases thanks to 2′OMe and
ZEN modification. For antimiR transfection, Lipofectamine RNAiMAX (cat.no. 13778075)
and Opti-MEM serum free medium (cat.no. 31985070) were purchased from ThermoFisher
Scientific (Waltham, MA, USA), while DMSO (cat. no. D2650) used to resuspend compound
4o, TRI Reagent (cat. no T9424) used for RNA extraction and MTT powder (cat. no. M5655)
used for MTT assay were purchased from Sigma-Aldrich (Merck KGaA).

4.2. Cell Lines, Cell Growth Conditions, Antiproliferative Assay

The human glioma U251 cell line was employed [59]. For the antiproliferative test,
8 × 104 cells were seeded in a 12 well plate in a final volume of 500 µL of medium, after
4 h, the cells were treated with tested compounds. The cells were incubated for another
72 h at 37 ◦C in a humidified 5% CO2 atmosphere. Following 72 h of incubation, cells were
detached from the plate by trypsinization and counted using a BECKMAN COULTER® Z2
cell counter (Beckman, Pasadena, CA, USA). The IC50 value (50% inhibitory concentration)
is defined as the concentration of a compound that inhibited cell proliferation by 50% (43).
The IC50 values presented (± standard deviation) are average values derived from three
independent experiments.

4.3. Morphological Analysis

Following each singular and combined treatment, the cells were observed, and repre-
sentative images were acquired using a Nikon Eclipse 80i microscope (Nikon Corporation,
Tokyo, Japan) in order to observe whether any morphological changes occurred in the cells
following treatment.
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4.4. AntimiRNA Transfection

For antimiRNA transfection, Lipofectamine RNAiMAX was employed following the
manufacturer’s protocol. Briefly, 200 nM antimiR-10b-5p was diluted in 50 µL of serum-free
medium (Opti-MEM in this case), and then mixed and incubated 5 min at room temperature
with Lipofectamine RNAiMAX diluted in an equal volume of Opti-MEM. At the end of
the incubation, cells were treated following the same plating protocol described above. We
also added the same amount of Opti-MEM medium in every well of the plate, and we
introduced the appropriate vehicle controls for singular and combined treatment (DMSO
only, Lipofectamine only, or both).

4.5. RNA Extraction

Cells were detached by trypsinization (cat.no. 59428C), collected by centrifugation,
and lysed with Tri-Reagent (cat.no. 93289) according to the manufacturer’s instructions.
The isolated RNA was washed once with cold 75% ethanol and stored at −80 ◦C until
use. Obtained RNA was dried and dissolved in nuclease-free water before use [13,18] and
quantified using a SmartSpecTM Plus Spectrophotometer (Bio-Rad, Hercules, CA, USA)
before proceeding with reverse transcription reaction.

4.6. Quantitative Analyses of miRNAs

MicroRNA levels were assayed using TaqMan MicroRNA Reverse Transcription Kit
(cat.no. 43-665-96) with RT-qPCR and miRNA-specific primers and probes (listed in Table 1)
from Applied Biosystems. All samples were run in duplicate using TaqMan Universal PCR
Master Mix, no AmpErase UNG 2X (cat.no 4324018) and the CFX96 Touch Real-Time PCR
Detection System (BioRad, Hercules, CA, USA). For PCR reactions, the following protocol
was employed: 95 ◦C for 10 min, 95 ◦C for 15 s, followed by a step at 60 ◦C for 1 min
(last two steps repeated for 50 cycles). Data were collected and analyzed using Bio-Rad
CFX Manager Software (Bio-Rad, Hercules, CA, USA). The relative gene expression was
calculated using 2−∆∆Ct method, and data normalization was performed using U6 snRNA
and hsa-let-7c as reference [18,19].

Table 1. List of assays employed for miRNA detection.

miRNA Name Assay ID (Applied Biosystems by Thermo Fisher Scientific, Inc.,
Waltham, MA, USA)

hsa-miR-10b-5p 002218
hsa-U6 snRNA 001973

hsa-let-7c-5p 000379

4.7. Analysis of Caspase-3 mRNA by RT-qPCR

The expression of the Caspase-3 gene was verified by RT-qPCR, as described else-
where [13]. Total RNA was reverse transcribed using random hexamers and TaqMan
Reverse Transcription PCR Kit (Thermo Fischer Scientific). Primers and probes used for
Caspase-3 detection were purchased from IDT (Integrated DNA Technologies, Castenaso,
Italy). The relative mRNA content was calculated using the comparative cycle threshold
method and fold change was calculated as 2−∆∆CT. The internal reference sequences em-
ployed for normalization were GAPDH, RPL13a and β-actin (primers and probes purchased
from IDT).

4.8. Effects on the Cell Cycle

The cells were seeded and, after 4 to 5 h, treated with compound 4o and the anti-miR-
10b-5p individually and in combination. Following 72 h of incubation at 37 ◦C, the cells
were detached by trypsinization, washed once in PBS, and fixed with cold 70% EtOH. After
24 h of incubation at −20 ◦C, fixed cells were washed in PBS and resuspended in 200 µL
of Muse® Cell Cycle Reagent and incubated for 30 min at room temperature protected



Int. J. Mol. Sci. 2022, 23, 5991 12 of 15

from light. Finally, the cell suspension was transferred into a new tube and the samples
analyzed by flow cytometry using Guava® Muse® Cell Analyzer (Luminex Corp., Austin,
TX, USA) [19].

4.9. Cell Apoptosis Assays

Apoptosis assays were performed with Guava® Muse® Cell Analyzer instrument, and
its relative kits according to the instructions supplied by the manufacturer. After 72h of
treatment, supernatant was collected and cells were washed with sterile PBS, trypsinized,
and resuspended in RPMI medium supplemented with 10% FBS together with respective
supernatants. Finally, 100 µL of cell suspension were incubated with 100 µL Muse® Annexin
V & Dead Cell reagent at room temperature and protected from light for 20 min. Samples
were then analyzed using Guava® Muse® Cell Analyzer (Luminex Corp.) and data acquired
utilizing the Annexin V and Dead Cell Software Module (Luminex Corp.) [13,60]. For the
analysis of Caspase-3/7 activity following treatments, the Muse® Caspase-3/7 Kit was
employed. After the treatment, trypsinization was performed, and 50 µL of cell suspension
was incubated with 5 µL of caspase 3/7 reagent for 30 min (under strict protection from
light). After 25 min of incubation, 150 µL of 7-AAD working solution was added to each
tube and incubated for 5 min before reading the samples. Samples were then analyzed
using Guava® Muse® Cell Analyzer (Luminex Corp.) and data acquired utilizing the
Caspase-3/7 Software Module (Luminex Corp.) [19,60].

4.10. Statistics

Results are expressed as mean ± standard error of the mean (SEM). Comparisons
between groups were made by using paired Student’s t-test using Graph Pad Prism 9 soft-
ware or ANOVA followed by Dunnet multiple comparison test. Statistical significance
was defined with p < 0.05 (*, significant), p < 0.01 (**; highly significant), and p < 0.001 (***;
highly significant).
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