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A B S T R A C T   

The optimal management of a multi-generation energy system is one of the challenges that an ever-growing 
energy demand requires to deal with. To tackle this urgent issue, this paper presents a methodology to iden-
tify the optimal dispatching strategy for a multi-generation energy system. The so-called time-of-use rate is one of 
the main time-based demand response programs which allows shifting the critical loads from a time interval to 
another (e.g., shifting electricity use to lower-priced hours of a day when demand is lower). Thus, the time-of-use 
rate is adopted in this paper in order to add flexibility to the management of the multi-generation energy system 
and thus optimize the interaction between energy production and user demand. 

In this paper, the goal is the minimization of primary energy consumption or operating costs. Whatever the 
considered objective function, the goal can be achieved by simultaneously acting on two levels, i.e., optimization 
of the demand response program and identification of the most favorable management strategy of the multi- 
generation energy system. A mixed-integer linear programming algorithm is employed to identify the optimal 
strategy. The case study considers an entire year of operation with a time step of one hour, by means of a real- 
world load profile. The proposed methodology allows both saving primary energy (more than 1%) and reducing 
operating costs (more than 8%). The proposed methodology demonstrates that the implementation of a demand 
response program within the optimal strategy for energy dispatch allows both saving primary energy and 
reducing operating costs with respect to the baseline scenario (i.e., no load shifting). The reduction of both 
primary energy consumption and operational costs is higher in the scenario with higher load shifting (in this 
paper, 30% of the daily electrical energy peak).   

1. Introduction 

1.1. Problem statement 

Generating clean energy is one of the key targets of the goal of 
reducing CO2 emissions. Increasing energy production from renewable 
sources will lead nations to reduce their dependence from fossil fuels 
and primary energy consumption, as well as environmental impact. 
Despite the great potential of renewable energy production, its main 
issue is related to managing daily availability of renewable resources, 
and therefore their improved integration within a multi-generation en-
ergy system (MES) in the context of current energy transition scenario. 
For this reason, the optimal management of a MES is one of the chal-
lenges that an ever-growing energy demand requires to deal with [1]. 

MES represents an integrated energy system in which electric power, 
heating, cooling, fuels and transport interact with each other in order to 
achieve better technical, economic and environmental performance [2]. 

The increase of electrical, thermal and cooling energy demand 
clashes with the goal of saving primary energy and reducing greenhouse 
gas emissions, as targeted by many Countries (e.g., see the European 
Green Deal). However, in the framework of energy transition, the inte-
gration of renewable sources with fossil-fed energy systems is recom-
mended to chase the rapid decarbonization of the energy sector [3]. In 
fact, despite the rush to more sustainable green technologies, fossil fuels 
still produce the majority of present energy consumption [4]. 

A multi-generation energy system represents a viable solution in 
order to reduce primary energy consumption and greenhouse gas 
emissions derived from urban energy demand [5,6]. Moreover, MESs 
have the advantage of meeting several energy demands at the same time, 
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such as electric power, heating, cooling and domestic hot water [7]. The 
optimization of the energy flows within a MES allows to improve the 
interaction between the energy system and users [8]. Thus, an optimal 
management strategy must be identified to minimize primary energy 
consumption [9], environmental impact [10], as well as costs for the 
energy consumers. 

1.2. Literature review 

The literature survey reported in this Section first reviews state-of- 
the-art studies about the optimal management strategy of multi- 
energy systems by means of different approaches. Subsequently, the 
literature review focuses on DRP, which, so far, has been rarely inves-
tigated. Such a discussion represents the starting point of the analyses 

carried out in this paper, as highlighted in Section 1.3. 
Roldán-Blay et al. [11] proposed an iterative algorithm for optimally 

managing energy systems with the aim of cost minimization. In that 
study, eight different scenarios at different conditions of electricity 
tariffs, availability of renewable source and grid supply were taken into 
account. 

In order to meet heating and cooling demands, Shirazi et al. [12] 
presented the integration of the solar source within an energy system. In 
that work, the design optimization of solar heating and cooling system 
(SHC) configuration was addressed by coupling a transient system 
simulation program (TRNSYS) with a genetic algorithm (GA) developed 
in MATLAB®. 

In order to further investigate the integration of renewables for en-
ergy dispatching, Izadi et al. [13] employed a TRNSYS for simulating a 

Nomenclature 

AC absorption chiller 
AE alkaline electrolyzer 
ARR anaerobic reactor reforming 
ASHP air source heat pump 
BCHP biomass CHP 
BES battery energy storage 
CCHP combined cooling heat and power 
CES cooling energy storage 
CHP combined heat and power 
CPP critical peak pricing 
DG diesel generator 
DR demand response 
DRP demand response program 
DSM demand side management 
EC electric chiller 
EV electric vehicle 
FC fuel cell 
GSHP ground source heat pump 
H2S hydrogen storage 
HEP hybrid energy plant 
HP heat pump 
HPDR hybrid pricing DR 
HPT hydropower turbine 
IBDR incentive base DR 
MES multi-generation energy system 
MG Micro-grid 
MGT micro gas turbine 
MILP mixed-integer linear programming 
MINLP mixed integer non-linear programming 
NG natural gas 
NSGA non-dominated sorting genetic algorithm 
OC operating cost 
O&M operating and maintenance 
PEC primary energy consumption 
PV photovoltaic system 
RB rubbish burning power plant 
RHO Receding Horizon Optimization 
RTP realtime pricing 
SoC state of charge 
STES seasonal TES 
TES thermal energy storage 
WT wind turbine 

Symbols 
A area 
c coefficient 

COP coefficient of performance 
E energy 
EER energy efficiency ratio 
f conversion factor 
k time variable 
k1,2,3,4 coefficient of Eq. (26) and (28) 
N last time-step 
P power 
PEC primary energy consumption 
t time 
T temperature 
η efficiency 
λ penalty temperature coefficient 

Subscripts and superscripts 
AC absorption chiller 
ASHP air source heat pump 
BES battery energy storage 
BoS balance of system 
c cell 
ch charging 
CHP combined heat and power plant 
cool cooling 
disc discharging 
diss dissipation 
DRP demand response program 
el electrical 
EV electric vehicle 
fuel fuel 
grid national grid 
HP heat pump 
in entering 
k time variable 
load demand load 
M PV module 
nom nominal 
op optimal 
out outgoing 
peak load peak 
PV photovoltaic system 
ref referred to STP (standard condition) 
sent sent to the grid 
taken taken from the grid 
TES thermal energy storage 
t time 
th thermal 
Tot total  
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hybrid renewable energy system (HRES) composed of PV panels, vertical 
axis wind turbines, and hydrogen storage. In addition, a GA was used to 
solve the optimization problem and minimize costs, CO2 emissions and 
losses related to power supply. 

With the aim of proving the potential of an integrated energy system, 
Mayer et al. [14] employed an optimization method based on GA 
including life cycle costs and environmental impacts within the design of 
a hybrid renewable energy plant. 

As shown above, a genetic algorithm is commonly used in the liter-
ature to optimize integrated energy systems (e.g., hybrid energy plants 
optimal sizing [15] or optimal design of a 100 % renewable energy plant 
[16]). There are indeed many advantages in using metaheuristic algo-
rithms for solving operation management problems since they have 
proven to be robust and efficient. Despite the several advantages, there 
are some improvements that should be implemented, as for instance the 
ones related to premature convergence or setup of start options [17]. 

For this reason, Bahlawan et al. [18] proposed a new approach for 
both sizing and operation optimization of a hybrid energy plant (HEP) 
composed of solar thermal collector (STH), photovoltaic panel (PV), 
combined heat and power (CHP) system, ground source heat pump 
(GSHP), air source heat pump (ASHP), auxiliary boiler (AB) and hot 
water storage. Both optimization problems were dealt with by using a 
dynamic programming (DP) tool, thus demonstrating its superiority 
with respect to genetic algorithm (GA). 

Moghaddas-Tafreshi et al. [19] presented an optimization model 
based on particle swarm optimization (PSO) algorithm to schedule the 
components of a multiple energy carrier micro-grid by minimizing the 
operating costs with day-ahead forecasts. A micro-grid, comprising a 
micro-turbine, a fuel cell, a rubbish-burning power plant, a wind turbine 
generator system, a boiler, an anaerobic reactor-reformer system, an 
inverter, a rectifier, and some energy storage units, was simulated by 
means of the Monte Carlo method. 

Among the several optimization techniques, the Mixed Integer Linear 
Programming (MILP) has been widely employed in the iterative search 
of minima. This technique is indeed the most efficient method since it 
guarantees to find the global optimum, though it has the drawback of a 
longer computational time [20]. Murray et al. [21] proposed a model 
based on MILP algorithm with the aim of assessing the potential of long- 
term and short-term storage systems in three different scenarios that 
consider climate change from 2015 to 2030. Nicolosi et al. [22] used the 
MILP algorithm in order to minimize the costs, as well as NOx and CO2 
emissions of two different energy systems. The first energy system was 
composed of four Internal Combustion Generators (ICGs), while the 
second energy system was composed of three ICGs and a Micro Gas 
Turbine (MGT). The optimization algorithm was developed by using the 
PyCharm Integrated Development Environment available in the Python 
programming language. 

With the aim of decreasing primary energy consumption and 
reducing environmental impact, Manservigi et al. [23] simulated the 
optimal operation strategy for a micro-CHP system, by employing a 
dynamic programming algorithm (DP). The Investigated micro-CHP 
system included thermal and electrical energy storage systems with 
different sizes. DP is widely used as an effective approach to identify 
energy system optimal operating strategy thanks to its capability to 
solve non-linear optimization problems. For the purpose of solving the 
management problem of a complex hybrid energy plant by means of a 
DP-based approach, Bahlawan et al. [24] developed a methodology 
capable of handling customized energy, economic and hybrid objective 
functions. Recently, hybrid algorithms have become more attractive for 
improving the optimization strategy. Their advantage of combining 
different optimization methods can lead to better solutions and simu-
lation improvements [20,25]. The advantages of using hybrid intelligent 

algorithms mainly rely on efficient performance, the capacity to solve 
more complex problems and the higher speed of convergence. On the 
other side, the main disadvantages are related to the fact that they 
require more parameters to set and are much harder to code [25]. As an 
example of application of hybrid algorithms, Bahlawan et al. [5] 
addressed the simultaneous optimization of MES design and operation 
by employing surrogate modeling optimization (SMO) for MES design 
and DP for optimizing its operation. Compared to the PSO-DP algorithm, 
the SMO-DP hybrid algorithm proved to be computationally faster. 

In order to add flexibility to aggregate energy system management, a 
Demand Response Program (DRP) has been also investigated in the 
literature. DRPs enable the demand profile to avoid excessive use of 
electricity especially during peak hours, hence resulting in an economic 
advantage for the whole distribution system. DRPs are potentially 
powerful programs which lead electricity companies and costumers to-
ward the economic and environmental benefits [26]. In this manner, the 
electricity grid is more stressed when there is high demand for elec-
tricity. High demand for electricity requires a higher supply of elec-
tricity, which both stresses the grid and results in higher prices for all 
energy users [27]. Time of use (TOU) rate is one of the main time-based 
DRPs which allow shifting the critical loads from a time interval to 
another (e.g., by shifting electricity use to lower-priced hours of a day). 
Shifting some electricity usage to times when both demand and costs are 
lower allows to lower the bill and support a healthier environment. 

X. Wang et al. [28] simulated the demand response (DR) of a single- 
family residential home for four consecutive weekdays in summer, by 
exploiting the load shifting within one day. Day-ahead and real-time 
weather forecasting coupled with DRP were applied by using a 
receding horizon optimization strategy. 

Another example of load shifting is provided by Rakipour and Barati 
[29], who investigated the optimization of energy system operation by 
employing DRP by means of MILP algorithm. DRP was applied to a 
summer day, in a tropical region with high cooling demand. The load 
shifting was able to reduce both the electric power consumption of the 
energy system and its costs. With the aim of coupling both the design 
problem and energy demand shifting approach, Y. Zheng et al. [30] 
optimized the design of a biomass-integrated microgrid by employing 
DRP. In that work, the planning horizon was equal to four hours. Hourly 
load profiles of both a winter and a summer day were simulated by 
employing Monte Carlo method using sliding time windows of four 
hours. The time window was increased by one hour and the process was 
repeated for a one-day timeframe. 

The main feature that should characterize the optimal management 
strategy of a MES is the capability of meeting the different energy de-
mands. Thus, this topic has been also investigated in the literature in 
order to provide innovative solutions. Najafi-Ghalelou et al. [31] pre-
sented a technique targeted at the robust scheduling of a multi-carrier 
hub energy system for one day. With the aim of minimizing both 
global costs and CO2 emissions, a model based on time-of-use and real- 
time-pricing rates of DRPs was developed by means of a robust mixed 
integer linear programming and solved in the General Algebraic 
Modeling System platform. In order to cover a longer timeframe, Gaz-
ijahani and Saleh [32] considered four different daily load profiles that 
were used to characterize the typical demand of four seasons. In that 
study, DRP was coupled with an optimal design of a smart microgrid. 
Four different daily load profiles were used for each different season to 
mimic a yearly timeframe. 

1.3. Paper’s novel contribution 

From the literature survey documented and discussed above, it is 
evident that optimization techniques are necessary to identify the best 
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size combination, optimal scheduling and finely-tuned allocation of 
power generation of complex energy systems. In fact, Mohseni et al. [33] 
conducted an extensive review about stochastic energy optimization 
with DR by analyzing 252 publications. The review proved that 87 % of 
the papers addressed the short-term energy scheduling optimization 
problem, while 11 % of the analyzed papers presented a multi-objective 
optimization for energy system scheduling under uncertainty. Only 4 % 
of examined studies dealt with the optimal trade-offs between mini-
mizing costs and minimizing CO2 emissions. Thus, the literature survey 
presented in [33] clearly shows that, at present, there is a gap about the 
investigation of DRPs characterized by long-term optimization strategy. 
Moreover, several studies that deal with DRP take into account load 
profiles representative of a short period of time (e.g., a typical day of a 
season [28,29,34,35]) and replicate the results with the aim of simu-
lating an entire year [32,36,37]. Some authors addressed the problem of 
optimal allocation of renewable resources by considering DR combined 
with one energy technology or with the integration of only two different 
energy conversion systems (e.g., wind turbine [38]; storage and 
microgrid systems [39]; plug-in-electric vehicles [40]). 

The extensive literature survey presented above is summarized in 
Table A1 in Appendix 1 and is compared to the approach and analyses 
adopted in this paper, in order to highlight the novel contribution of this 
study. With the aim of filling the identified research gaps, this paper 
presents a methodology for the optimized management of a multi- 
generation energy system by employing the MILP algorithm and 
exploiting the DRP approach. 

Compared to artificial intelligent and hybrid intelligent algorithms, 
the MILP algorithm is simple to code, easy to implement and has higher 
precision in the search of global minimum; moreover, it is widely 
employed for managing the optimal allocation of energy generation or 
minimizing total costs of system planning (e.g., investment, operation 
and maintenance costs) [20,25]. 

In this paper the multi-energy system (MES) consists of photovoltaic 
system (PV), combined heat and power (CHP) system, air source heat 
pump (ASHP), absorption chiller (AC), battery energy storage (BES) and 
thermal energy storage (TES). The sizes of MES components are fixed. 
Thus, the goal of the optimization process is the identification of the 
optimal load allocation in order to meet user demand by employing two 
different objective functions (one at a time). The first objective function 
is defined with the aim of minimizing primary energy consumption, 
while the second objective function allows the minimization of the 
operating costs, by also including the cost of CO2 emissions. It is worth 
highlighting that an entire year of operation is investigated in this paper. 

Thus, the main novel contributions of this paper can be summarized 
as follows:  

• Unlike the studies available in the literature, the MES considered in 
this paper comprises seven different energy conversion systems, 
storages and distribution systems including power grid. The inte-
gration of both renewable and fossil-fuel sources is considered in 
order to investigate a feasible and realistic scenario in today’s 
context of the energy transition;  

• MES operation is optimized for one year, hour by hour;  
• Real-world load profiles over one year are considered, while similar 

studies available in the literature usually consider daily load profiles 
[32,34,35,36,37];  

• Both load shifting based on demand response and MES management 
strategy are simultaneously optimized in order to minimize primary 
energy consumption or operating costs.  

• The optimal management strategy is identified, by considering two 
scenarios which minimize MES primary energy consumption or MES 
operating costs. 

The paper is organized as follows: Section 2 presents the methodol-
ogy, illustrates the energy plant, the modelling approach, and problem 
formulation. Section 3 outlines the case of study. Section 4 discusses the 
results while the last section provides the conclusions. 

2. Methodology 

In this work, the optimal dispatch strategy for the multi-generation 
energy system (MES) is identified by considering a timeframe of one 
year and a time step of one hour. The energy technologies in the MES are 
modelled by means of power and efficiency curves. 

2.1. Grid-connected MES: components and modelling approach 

The scheme of the MES considered in this paper is shown in Fig. 1. 
The MES is composed of a photovoltaic system (PV), a combined heat 
and power (CHP) system, an air source heat pump (ASHP), an absorp-
tion chiller (AC), a battery energy storage (BES) and a thermal energy 
storage (TES). The heat pump is considered reversible, thus allowing the 
production of thermal energy in winter and cooling energy in summer. 
Moreover, it is assumed that electrical energy can be both delivered to 
and taken from the grid. Finally, it must be highlighted that a fraction of 
the available electrical energy can be employed to charge electric ve-
hicles (EVs). 

The electrical energy produced by the PV system is calculated by 
means of Eq. (1): 

EPV,el,k = Gk⋅APV ⋅ηPV,k⋅Δk (1) 

Fig. 1. Multi-generation energy system.  
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with G representing the solar irradiance expressed in [kW/m2]. The 
overall efficiency of the PV system is calculated according to Eq. (2) 
[41–43]: 

ηPV,k = ηBoS⋅ηM,ref ⋅[1 − λ⋅(Tc,k − Tref )] (2)  

where ηBoS represents the balance of system, ηM,ref represents the effi-
ciency of the PV module at standard conditions, λ a penalty temperature 
coefficient, Tc,k the effective operating temperature of the cell and Tref 
the operating temperature of the cell at standard conditions. 

The CHP system is based on an internal combustion engine which is 
fed with natural gas. Equations (3) and (4) express the electrical and 
thermal energy produced by the CHP system at the k-th time-step, 
respectively: 

ECHP,el,k = PCHP,el(Tk)⋅Δk (3)  

ECHP,th,k = PCHP,th,nom(Tk,PCHP,el)⋅Δk (4) 

As can be noted, the energy produced by the CHP system is corrected 
according to ambient temperature (Tk) and power de-rating (PCHP,el). 
The CHP system is able to modulate in the range from minimum (PCHP,el, 

min) power to nominal power (PCHP,el,nom). 
For the ASHP unit, the thermal/cooling energy production and 

electrical energy consumption are reported in Eq. (5) and Eq. (6), 
respectively: 

EASHP,th/cool,k =

{
PASHP,th(Tk)⋅Δk (winter)
PASHP,cool(Tk)⋅Δk(summer) (5)  

EASHP,el,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

EASHP,th(Tk)

COPASHP(Tk)
(winter)

EASHP,cool(Tk)

EERASHP(Tk)
(summer)

(6) 

As shown in Eq. (5) and Eq. (6), the produced energy and the effi-
ciency are corrected as a function of the ambient temperature Tk [44]. 

The AC unit considered in this work is a single-effect lithium-bro-
mide chiller [45]. The produced cooling energy and the thermal energy 
absorbed by the AC are calculated as shown in Eqs. (7) and (8): 

EAC,cool,k = PAC,cool⋅Δk (7)  

EAC,th,k =
EAC,cool,k

EERAC,K
(8) 

At the beginning of each time step, the thermal energy stored inside 
the TES is updated according to Eq. (9): 

ETES,th,k = (1 − ddiss) ⋅
(
ETES,th,k− 1 + ETES,th,in,k− 1 − ETES,th,out,k− 1

)
(9)  

where ETES,th,in,k-1 is the energy recovered from the CHP system, ETES,th, 

out,k-1 is the energy taken from the TES and ddiss a coefficient that takes 
into account the energy released to the environment. 

In this work, lithium-ion BESs are employed to store a fraction of the 
surplus electricity produced by the PV (if required). The stored energy is 
then used on a short-term basis to meet the electrical energy demand of 
the user and to charge the EVs. The stored electrical energy inside a BES 
after one cycle of charging/discharging is expressed as follows: 

EBES,el,k = EBES,el,k− 1 + ηBES,ch ⋅EBES,el,in,k− 1 −

(
EBES,el,out,k− 1

ηBES,disc

)

(10)  

where EBES,el,in,k-1 is the surplus energy from the PV which is stored in 
the BES, while EBES,el,out,k-1 is the electricity taken to meet the electrical 

energy demand. Finally, ηBES,ch and ηBES,disc are the charging and dis-
charging efficiencies, respectively. 

2.2. Problem formulation 

In this study, the optimal dispatch strategy is identified by means of 
MILP formulation and is solved in Matlab® environment by considering 
a timeframe (N) of one year and a time step of one hour (k). The optimal 
dispatch of the MES is solved as a single objective optimization problem 
by considering primary energy consumption (PEC) or operating costs 
(OC): 

PEC = min
∑N=8760

k=1
PECCHP,k +PECgrid,taken,k − PECgrid,sent,k (11)  

OC = min
∑N=8760

k=1
OCCHP,k +OCASHP,k +OCAC,k +OCgrid,taken,k − OCgrid,sent,k

(12) 

The PEC defined in Eq. (11) is the sum of the fuel energy consumed 
by the CHP system (PECCHP), the fuel energy related to the electrical 
energy taken from the grid (PECgrid,taken), and the fuel energy related to 
the electrical energy delivered to the grid (PECgrid,sent) [24]. 

Equation (12) expresses the OC of the MES throughout one year of 
operation. The term OCCHP stands for the operating costs of the CHP 
which comprise fuel cost, fixed and variable O&M costs and CO2 emis-
sion costs. The terms OCASHP and OCAC represent the fixed and variable 
O&M costs of the ASHP and AC, respectively. The terms OCgrid,taken and 
OCgrid,sent represent the cost of electricity of the Italian electricity market 
and the revenue from selling electricity to the Italian electricity market, 
respectively. 

The objective is thus the minimization of yearly primary energy 
consumption (Eq. (11)) or yearly operating costs (Eq. (12)). In the 
following, the constraints of the optimization problem are described. In 
particular, Eqs. (13) through (16) represent the constraints for electrical 
energy, electric vehicle charging, thermal energy and cooling energy, 
respectively. 

EPV,el→load,k +ECHP,el,k +EBES,el→load,k +Egrid→load,k = Eload,el,k (13)  

EBES,el→EV,k +Egrid→EV,k = EEV,el,k (14)  

ECHP,th→load,k +ETES,el→load,k +EASHP,th,k = Eload,th,k (15)  

EAC,cool,k +EASHP,cool,k = Eload,cool,k (16) 

These equations ensure the energy balance at any time step k. In Eq. 
(13), the sum of the electrical energy produced by the PV, CHP, BES and 
grid must be equal to user demand. As shown in Eq. (14), the EVs can 
only be charged by the batteries and the national grid. According to Eq. 
(15), user thermal energy demand is met by the thermal energy recov-
ered by the CHP, by the TES and the ASHP. Finally, Eq. (16) shows that 
cooling energy demand is met by the AC and ASHP. 

A demand response program (DRP) is usually adopted to reduce 
energy consumption and/or costs by modifying the load pattern (in this 
study, the load pattern is the electrical energy demand). Among the 
different DRPs, the time-of-use (TOU) rate of DRP is adopted in this work 
[26,31,46]. The TOU program consists of changing the load profile by 
shifting a certain percentage of the load, for example from peak hours to 
off-peak hours. Therefore, by including the TOU program, Eq. (13) can 
be reformulated as in Eq. (17): 

EPV,el→load,k +ECHP,el,k +EBES,el→load,k +Egrid→load,k = Eload,el,k +EDRP,el,k (17) 

In this manner, the electrical load becomes the base load (Eload,el) 
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adjusted by means of a variable load (EDRP,el). As reported in Eq. (18), 
the term EDRP,el represents the amount of load increase/decrease (in fact, 
it can be either positive or negative) that is obviously lower than the 
daily peak. 

− DRPmax • Eload,el,peak,day≤ EDRP,el,k ≤ DRPmax • Eload,el,peak,day (18) 

As expressed in Eq. (19), the balance of EDRP,el over one day must be 

null, since the DRP mechanism just consists of shifting the load within 
one day (namely, daily shifting). 
∑

day
EDRP,el,k = 0 (19) 

In summary, Eqs. (17), (18) and (19) represent the mathematical 
model adopted in this paper to reproduce the proposed demand response 
program. 

More constraints have to be imposed according to Eqs. (20), (21) and 
(22). The left hand-side of Eq. (20) ensures that the energy produced by 
the PV and split over the load, the BES and the grid cannot be higher 
than PV total production. Equation (21) limits the energy sent to the 
BES, while Eq. (22) limits the energy sent to the grid. 

EPV,el→load,k +EPV,el→BES,k +EPV,el→grid,k ≤ EPV,el,k (20)  

EPV,el→BES,k • Δk ≤ EBES,el,max (21)  

Eel,PV→grid,t ≤ Eel,PV,tot,t (22) 

The operating status of the CHP is tracked by the binary variable 
isON; Eqs. (23) and (24) relate the operating status of the CHP system to 
its power production. In fact, when the CHP is switched on (isON = 1), 
its energy production must be within its operating range, i.e. between 
ECHP,el,min,k and ECHP,el,max,k. 

The constraint in Eq. (25) relates the operating status of the CHP 
system to startup (start), i.e., start = 1 when the CHP system passes from 
“off” to “on”. The thermal energy production of the CHP system is also 
related to the operating status of the CHP system and its electrical en-
ergy production at the k-th time step as expressed in Eq. (26). Moreover, 
Eq. (27) ensures that the thermal energy produced by the CHP system 

Table 1 
Decision variables.   

Decision variable Type 

PV EPV,el→load continuous 
EPV,el→BES continuous 
EPV,el→grid continuous 

CHP ECHP,el continuous 
ECHP,th→load continuous 
ECHP,th→TES continuous 
ECHP,th→AC continuous 
isON binary 
start binary 

ASHP EASHP,th continuous 
EASHP,cool continuous 
isHeating binary 

AC EAC,cool continuous 
TES ETES,th→load continuous 

ETES,th→AC continuous 
SoCTES continuous 

BES EBES,el→load continuous 
EBES,el→EV continuous 
SoCBES continuous 

Grid Egrid→load continuous 
Egrid→EV continuous 

DRP EDRP,el continuous  

Fig. 2. Ambient temperature (a), solar irradiance (b), electricity price (c) and natural gas price (d).  
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and split over the load, the AC and the TES is not higher than the total 
thermal energy. Finally, Eq. (28) defines CHP primary energy con-
sumption as a function of the operating status, energy production, and 
startup. The term PECCHP,startup is defined equal to the fuel consumption 
required to run the CHP system for five minutes at nominal conditions 
[18,24]. 

ECHP,el,k ≤ isONk • ECHP,el,max,k (23)  

ECHP,el,k ≥ isONk • ECHP,el,min,k (24)  

isONk − isONk− 1 ≤ start k (25)  

ECHP,th,k = k1 • isONk + k2 • ECHP,el,k (26)  

ECHP,th→load,k +ECHP,th→AC,k +ECHP,th→TES,k ≤ ECHP,th,k (27)  

PECCHP,k = k3 • isONk + k4 • ECHP,el,k + startk • PECCHP,startup (28) 

Equations (29) and (30) ensure that the thermal and cooling energy 
production of the ASHP are limited by its maximum thermal and cooling 
energy production, respectively. Moreover, the binary variable is Heat-
ing defines whether the ASHP is used for heating or cooling. 

EASHP,th,k ≤ isHeatingk • EASHP,th,max,k (29)  

EASHP,cool,k ≤ (1 − isHeatingk)•EASHP,cool,max,k (30) 

Equation (31) relates TES state of charge to the thermal energy taken 
from the CHP system and the energy used to meet the user thermal 
energy demand and to activate the AC. 

SoCTES,k = SoCTES,k− 1 +ECHP,th→TES,k− 1 • Δk −
(
ETES,th→load,k− 1 +ETES,th→AC,k− 1

)

• Δk
(31) 

Equation (32) expresses BES state of charge by considering the inlet/ 

outlet energy flows, as well as its charging/discharging efficiency. 

SoCBES,k = SoCBES,k− 1 +EPV,el→BES,k− 1 • ηBES,ch • Δk −
( (

EBES,el→load,k− 1

+ EBES,el→EV,k− 1) /ηBES,disc

)
• Δk (32) 

Equation (33) defines the use of the electrical energy taken from the 
grid, which can be used to meet user electrical energy demand and/or to 
charge the EVs. 

Egrid→load,k +Egrid→EV,k ≤
(
Eload,el,k +EEV,k

)
(33) 

Finally, Table 1 summarizes the decision variables and their types 
(continuous or binary) for each energy conversion technology included 
in the MES. It must be highlighted that only the electrical load partici-
pates in the demand response program, since the load shifting strategy is 
referred to the daily peak of electric energy demand. The operation of 
the other technologies that compose the MES varies accordingly. 

3. Case study 

The case study considered in this work consists of an office building 
located in Milan (Italy). Fig. 2a and 2b show the ambient data (ambient 
temperature and total solar irradiance – one value per hour) of the 
considered site, calculated by using the Photovoltaic Geographical In-
formation System (PVGIS) [47]. Electricity and natural gas prices are 

Fig. 3. Electrical (a), heating (b), cooling (c) and EV (d) energy demands.  

Table 2 
Fixed and operating costs for CHP, ASHP and AC.  

Technology Fixed operating costs 
[€/(kW⋅year)] 

Variable operating 
costs [€/kWh] 

Reference 

CHP 9  0.007 [52,54,55] 
ASHP 3  0.0018 [52–54] 
AC 2  0.00028 [54,56]  
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taken from [48] and refer to the year 2019. The electricity price ac-
counts for the real profile of electricity price of the Italian market 
(Fig. 2c) in the range from 1€/MWh to 108€/MWh, while the cost of 
natural gas in the same year ranged from 0.10 €/Stdm3 to 0.28 €/Stdm3 

(Fig. 2d) [49]. This scenario is clearly not affected by the Covid-19 
pandemic or energy crisis characterizing the year 2022. The elec-
tricity, thermal, cooling and EV energy demand profiles presented in 
Fig. 3 are derived from real energy consumption data of a tertiary sector 
user [5]. Electrical energy demand for EV charging covers three hours a 
day on weekdays, while electrical, thermal and cooling demand cover 
the whole year. The heating period lasts from 15th October to 15th 
April, while the cooling period lasts from 15th June to 15th September. 
In addition, electricity demand peak during the summer is related to air 
conditioning required by utilities and is typically supplied by electrical 
chillers. 

The cost for CO2 emissions is also considered in this paper and is 
assumed equal to 22 €/tCO2 [5]. Such contribution is accounted for in 
the term OCCHP, according to Eq. (12). An emission factor equal to 
1.976⋅10-3 tCO2/Stdm3 was considered, by considering the emission 
factor for power, industry and civil sector reported in [50] for CHP 
systems fed with natural gas. 

Table 2 shows the fixed and variable operating costs of the CHP, 
ASHP and AC. Instead, the operating costs of PV, TES and BES are 
assumed null [23]. 

The sizes of the different MES components are summarized in 
Table 3. The sizes of the PV, CHP and BES were assumed in agreement 
with the report [51], with PV panels located on the roof of the building. 
The ASHP was sized by considering the peak of the thermal demand, the 
AC was sized according to the nominal thermal power of the CHP sys-
tem, and the TES was sized in agreement with the CHP system by 
considering that storage equivalent hours are equal to 2 kWh/kW, as 
demonstrated in [45]. With regard to the two types of storage systems, it 
has to be noted that the TES considered in this paper is a hot water 
thermal storage with a temperature difference between supply and re-
turn of 50 ◦C, while BESs are lithium-ion batteries with total capacity of 
270 kWh, according to the report [51]. 

4. Results and discussion 

This section presents the results of dispatch optimization obtained by 
minimizing primary energy consumption or operating costs. Fig. 4 Fig. 4. Flowchart of the proposed optimization approach.  

Table 3 
Sizes and nominal performance of MES components [51].  

Technology Size Value 

PV APV [m2] 5510 
CHP Pel,CHP,nom [kWe] 238  

ηel,CHP,nom [–] 0.386  
Pth,CHP,nom [kWth] 320  
ηth,CHP,nom [–] 0.513 

ASHP Pth,ASHP,nom [kWth] 8994  
COPASHP,nom [–] 3.26  
Pcool,ASHP,nom [kWc] 7825  
EERASHP,nom [–] 2.82 

AC Pcool,ABS,nom [kWc] 240  
EERABS,nom [–] 0.75 

TES ETES,max [kWh] 640 
BES EBES,max [kWh] 270  

Fig. 5. Production of electrical (a) and thermal energy (b) during one day – minimization of primary energy consumption.  
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shows the flowchart of the proposed optimization approach. 
With regard code and software issues, it has to be observed that the 

MILP algorithm is available in different programming languages and 
numeric computing environments such as MATLAB®. The MATLAB 
software employed in this work includes the MILP algorithm and allows 
its implementation in terms of definition of variables, linear equations, 
linear constraints and objective function, which is related to the opti-
mization target. For this reason, the coding effort was mainly related to 
(i) the simulation of the different technologies, (ii) the interaction of the 
energy fluxes from the different components and (iii) the definition of 

the objective function. For the simulations carried out in this paper, the 
average computational time required to solve the optimization problem 
was about two hours, by using a computer with an 8 cores 3.60 GHz CPU 
and 64 GB RAM. 

Three scenarios are investigated: (i) the baseline scenario in which 
the demand is met without load shifting; (ii) the DRP10 scenario in 
which load shifting is equal to 10 % of the daily electrical energy peak; 
(iii) the DRP30 scenario in which load shifting is equal to 30 % of the 
daily electrical energy peak. The value of 10 % represents the average of 
load shifting referred to daily electrical energy peaks in the TOU pro-
gram reported in the studies reviewed in [57]. Instead, the 30 % scenario 
represents a more challenging load shifting strategy. The interaction 
between all the energy conversion systems within MES is considered in 
order to meet the energy demand: PV, CHP, BES and grid meet electrical 
energy demand; CHP, ASHP and TES meet thermal energy demand; AC 
and ASHP meet cooling energy demand. 

4.1. Primary energy consumption 

This section presents the results of the simultaneous optimization of 
both load shifting and MES management by targeting primary energy 
consumption minimization. The generation mix of electrical and ther-
mal energy for the three scenarios is shown in Fig. 5 for a one-day time 
frame. The selected day is the one in which the electricity demand peak 
occurred. This figure shows that, by passing from the baseline scenario 
to the DRP30 scenario, the share of the CHP passes from 15 % to 25 %, 
while the share of the grid reduces from 67 % to 57 %. The energy 
production during one year is depicted in Figs. A1, A2 and A3 in Ap-
pendix 2, where the contribution of the different technologies to the 
electrical and thermal energy demand is shown. Fig. 6 shows the yearly 
contribution of MES components to the electrical, heating and cooling 
energy demands for the three considered scenarios. Fig. 6a proves a 
slight increase of the PV contribution by passing from the baseline to the 
DRP10 and DRP30 scenario, as well as the contribution of the CHP 

Fig. 6. Production of electricity a), heating b) and cooling energy c) – mini-
mization of primary energy consumption. 

Fig. 7. Electricity duration curve of the CHP system – minimization of primary 
energy consumption. 

Table 4 
Primary energy consumption and operating costs – minimization of primary 
energy consumption.   

Baseline DRP10 DRP30 

PEC [MWh/year] 5401 5361 5330 
(PECBaseline-PEC)/ PECBaseline [%]  0.74 1.32 
OC [k€] 357 346 326 
(OCBaseline-OC)/ OCBaseline [%]  2.93 8.72  
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system. Consequently, the grid contribution decreases by increasing 
load shifting. Fig. 6a also shows that the BES does not contribute to meet 
the electrical energy demand, because the dissipations related to BES 
charging/discharging (expressed by means of Eq. (10)) make their use 
not convenient in order to minimize PEC. With regard to heating 

production (in Fig. 6b), in all the scenarios, the ASHP contributes most 
and almost with the same rate. The thermal energy recovered by the 
CHP and used to meet the heating energy demand via the TES increases. 
This highlights the importance of storage technologies in DRPs. Finally, 
as shown in Fig. 6c, the contribution of ASHP and AC to cooling energy 

Fig. 8. Load shifting for a week in January – minimization of primary energy consumption.  

Fig. 9. Load shifting (DRP10 scenario and DPR30 scenario) – minimization of primary energy consumption.  
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production is not affected by load shifting. 
Fig. 7 reports the electricity duration curve of the CHP for the three 

scenarios. Compared to the baseline scenario, the CHP system works for 
a longer period (3033 h vs 2788 h) in the DRP10 scenario since, from the 
standpoint of energy consumption, it is more efficient to meet the 
electrical energy demand by means of the CHP system instead of taking 
electricity from the grid (see Fig. 6a). The average CHP efficiency in the 
baseline and DRP10 scenarios is almost the same and is equal to 
approximately 88 %. In the DRP30 scenario, the CHP system works 
longer (3483 h) and the CHP efficiency is about 80 %. However, despite 
this decrease of efficiency, the number of startups (155) is much lower 
than in the other scenarios (210 in the baseline scenario; 216 in the 
DRP10 scenario). Therefore, in the DRP30 scenario PEC is lower since 
the CHP system more frequently works at nominal conditions and the 
number of startups is lower. The lower CHP efficiency in the DRP30 
scenario is due to the higher unrecovered (and thus unexploited) ther-
mal energy. 

Table 4 shows the PEC and OC values for the three scenarios by only 
considering PEC minimization. As can be noted, the shifting of the 
electrical energy demand leads to a primary energy saving up to 1.32 %. 
Moreover, and most noticeably, the optimal dispatch strategy identified 
with the objective of minimizing primary energy consumption also al-
lows a reduction of operating costs up to 8.72 %. 

As an example, Fig. 8 shows the mechanism of load shifting for the 
DRP10 and DRP30 scenarios for a week in January from Sunday to 
Saturday. Since the energy demand refers to an office building, energy 
consumption is minimum on Saturday and Sunday. By increasing load 
shifting rate, the optimization algorithm correctly shifts the electrical 
energy demand from peak hours to off-peak hours. Load is shifted from a 
higher energy rate to lower one, in such a manner to lead users to 
consume energy during early morning (e.g., from 5 a.m. to 8 a.m.) or 
during late evening (e.g., from 8p.m. to 12 a.m.). It can be noted that a 
higher number of hours is affected by load shifting in DRP30 scenarios. 

For both scenarios DRP10 and DRP30, Fig. 9 shows the trend of the 
quantity EDRP,el, which represents the amount of load increase/decrease 
due to load shifting. During the weekends, the electrical load is constant 
and equal to minimum; thus, load shifting is not exploited. Instead, 

during the week, load shifting is equal to 10 % of daily peak in DRP10 
scenario (i.e., load shifting is fully exploited). In the DRP30 scenario, 
load shifting is also usually fully exploited, with the exception of 
approximately 10 % of all weekdays, in which the amount of load 
shifting ranges from 15 % to 30 %. 

4.2. Operating costs 

This section presents the results of the simultaneous optimization of 
both load shifting and MES management by targeting the minimization 
of operational costs. The generation mix of electrical and thermal energy 
for the three scenarios is shown in Fig. 10 for a one-day time frame. The 
selected day is the one in which the electricity demand peak occurred. 
This figure shows that, by passing from the baseline scenario to the 
DRP30 scenario, the share of the CHP passes from 15 % to 20 %, while 
the share of the grid reduces from 67 % to 62 %. The energy production 
during one year is depicted in Figs. A4, A5 and A6 in Appendix 2, where 
the contribution of the different technologies to the electrical and 
thermal energy demand is shown. Fig. 11 shows the yearly contribution 
of MES components to the electrical, heating and cooling energy for the 
three scenarios, in the case that operating costs are minimized. Fig. 11a 
show that grid contribution decreases with the increase of load shifting, 
i.e., from an economic point of view the electricity taken from the grid is 
more expensive. A difference with respect to the minimization of pri-
mary energy consumption (analyzed in Section 4.1) is that the contri-
bution of BES is not null. A non-negligible amount of electrical energy 
stored inside the BES meets a small fraction of electrical energy demand. 
As already observed in Section 4.1, the thermal energy recovered by the 
CHP system and stored in the TES increases with the increase of load 
shifting. Therefore, even with the purpose of minimizing costs, storage 
technologies (BES and TES) are fundamental to optimally manage the 
MES. Finally, in agreement with the comment made about Fig. 6c, the 
contribution of ASHP and AC to cooling energy production is not 
affected by load shifting. 

Fig. 12 reports the electricity duration curve of the CHP for the three 
scenarios. The CHP system works for 3700 h in the baseline scenario, 
4372 h in the DRP10 scenario and 3932 h in the DRP30 scenario. It is 

Fig. 10. Production of electrical (a) and thermal energy (b) during one day – minimization of operational costs.  
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evident that, to minimize costs, operating hours are considerably higher 
than in the case of PEC minimization. In other words, it is more cost- 
effective to meet the electrical energy demand by means of the CHP 
system instead of taking electricity from the grid, as shown in Fig. 11a. It 
can also be seen that the number of operating hours in the DPR10 sce-
nario is higher than in the DPR30 scenario. In fact, 

Fig. 12 clearly shows that, in the DPR10 scenario, the CHP system 
also works at part-load, while in the DPR30 scenario the CHP system 
almost always work at nominal load. 

In the DRP30 scenario, the startups are 341, while they are 380 in the 
DRP10 scenario and 279 in the baseline scenario. The lower the number 
of startups, the lower operating and maintenance costs. The CHP effi-
ciency in the baseline scenario is approximately 77 %, while it is 

approximately 75 % in the other two scenarios. Since in this analysis the 
objective is cost minimization, CHP efficiency values are lower than the 
corresponding values obtained by minimizing PEC. 

Table 5 shows the PEC and OC values for the three scenarios by only 
considering cost minimization. It should be noted that the values of PEC 
and OC reported in Table 5 for the baseline scenario differ from the 
corresponding values reported in Table 4 since, even though the energy 
demand profiles are the same (see Fig. 3), the MES management strategy 
identified by the optimization algorithm is different. In this case, the 
shifting of the electrical energy demand leads to a decrease of operating 
costs up to 8.70 %. Moreover, load shifting also allows a primary energy 
saving up to 1.67 %. It should be noted that primary energy saving in the 
DRP30 scenario is slightly higher than in the case of PEC minimization, 
while the reduction of operating costs is comparable. This result suggests 
that the optimization problem should be targeted at minimizing oper-
ating costs. 

Fig. 13 shows the mechanism of load shifting for DRP10 and DRP30 
scenarios for a week in January from Sunday to Saturday. As already 
observed in Section 4.1, by increasing load shifting rate, the optimiza-
tion algorithm suggests to shift the electrical energy demand from peak 
hours to off-peak hours. Even in this case, the optimization strategy 
indicates that energy consumption has to be shifted from a higher hourly 
energy rate to a lower one in order to minimize the OC. It results that it is 
more cost effective to decrease the consumption during day time and 
increase it during night time (e.g., from 8p.m. to 7 a.m.) in both DRP10 
and DRP30 scenarios. 

Fig. 14 shows the trend of the quantity EDRP,el, which represents the 
amount of load increase/decrease due to load shifting. During the 
weekends, the electrical load is constant and equal to minimum; thus, 
load shifting is not exploited, as already observed in Fig. 9. Instead, 
during the week, load shifting is equal to 10 % of daily peak in DRP10 
scenario (i.e., load shifting is fully exploited). In the DRP30 scenario, 
load shifting is in practice always fully exploited, with the exception of 
just 2 % of all weekdays, in which the amount of load shifting ranges 
from 15 % to 30 %. This means that load shifting is more effective for the 
minimization of MES operating costs than for PEC minimization. 

Fig. 11. Production of electricity a), heating b) and cooling energy c) – mini-
mization of operating costs. 

Fig. 12. Electricity duration curve of the CHP system – minimization of oper-
ating costs. 

Table 5 
Primary energy consumption and operating costs – minimization of operating 
costs.   

Baseline DRP10 DRP30 

PEC [MWh/year] 5480 5463 5388 
(PECBaseline-PEC)/ PECBaseline [%]  0.31 1.67 
OC [k€] 336 318 307 
(OCBaseline-OC)/ OCBaseline [%]  5.19 8.70  
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Fig. 13. Load shifting for a week in January – minimization of primary energy consumption.  

Fig. 14. Load shifting (DRP10 scenario and DPR30 scenario) – minimization of operational costs.  
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5. Conclusions 

In this work, the optimal dispatch problem of a multi-generation 
energy system was addressed by means of MILP formulation and 
solved by considering a time horizon of one year and a time step of one 
hour. The simultaneous optimization of both load shifting based on 
demand response and MES management strategy was investigated in 
order to minimize primary energy consumption or operating costs. The 
case study considered in this work consisted of an office building located 
in Milan (Italy), characterized by means of electrical, thermal, cooling 
and electric vehicle energy demand profiles derived from real-world 
energy consumption data of a tertiary sector user. 

The optimal strategy for energy dispatch was identified by consid-
ering a single objective optimization problem by minimizing the pri-
mary energy consumption or the operating costs. A demand response 
program was investigated by modifying the electrical load pattern. The 
time-of-use rate was adopted in order to change the load profile by 
shifting a fraction of the load within one day while keeping the same 
amount of daily electrical energy demand. Three different scenarios 
were investigated: (i) in the baseline scenario, the electrical energy de-
mand was met without load shifting; (ii) in the second scenario, load 
shifting up to 10 % of the daily electrical energy peak was considered; 
(iii) in the third scenario, load shifting was increased up to 30 %. 

The analyses carried out in this paper demonstrated that the imple-
mentation of a demand response program is effective to reduce both 
primary energy consumption and operating costs. Moreover, as ex-
pected, the higher the load shifting, the higher the benefit. However, as 
expected, there were some differences between the two cases aimed at 
minimizing primary energy consumption or operational costs. In fact, in 
the case that the goal is the minimization of primary energy consump-
tion, by passing from the baseline scenario to the DRP30 scenario, the 
CHP system works longer (3483 h), but with a lower CHP efficiency (80 
%), due to the higher unrecovered (and thus unexploited) thermal en-
ergy. However, despite this decrease of efficiency, the number of start-
ups (155) is much lower than in the other scenarios. Another relevant 
result is that load shifting is usually fully exploited, with the exception of 
10 % of weekdays in the DRP30 scenario. Otherwise, in the case that the 
goal is the minimization of operational costs, by passing from the 
baseline scenario to the DRP30 scenario, the CHP system works for 3932 
h in the DRP30 scenario, much longer than in the case of minimization of 
primary energy consumption. This finding also demonstrates that it is 
more cost-effective to meet the electrical energy demand by means of 
the CHP system instead of taking electricity from the grid. Moreover, it 
was found out that in the DRP30 scenario, the CHP efficiency in the 
DRP30 scenario is approximately 75 %, i.e., it is lower than in the case of 
minimization of primary energy consumption. Once again, load shifting 
is in practice always fully exploited, with the exception of just 2 % of 
weekdays in the DRP30 scenario. This means that load shifting is more 
effective for the minimization of MES operating costs than for PEC 
minimization. 

The key finding of this paper is that, whatever the minimization 
target (primary energy consumption or operating costs), both primary 
energy consumption and operating costs can be lowered by approxi-
mately 1 % and 8 % respectively in the DR30 scenario, compared to the 
case in which the load is not shifted. 

As a future work, the analysis of the interaction between energy 
production and user demand will be addressed by employing clustering 
techniques coupled with a hybrid objective function that takes into ac-
count the simultaneous minimization of primary energy consumption 
and operating costs. An optimal management strategy based on demand 
response program will also be investigated in order to optimally size the 

available storage systems. Since the uncertainty of renewable energy 
sources, as well as energy demands, may play an important role in the 
short-term and long-term planning of the system, the stochastic behavior 
of both RES and energy demand will be taken into account by the au-
thors in a future work. This limitation of the current study will be 
overcome in future research activities. An additional future work will be 
the comparison of MILP formulation to other optimization algorithms. 
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Appendix 1 

To highlight the novelty of this paper, this Appendix includes a 
synoptic Table which allows the direct comparison of this paper to 
already-available literature studies (ranked in ascending order in the 
bibliography). 

The comparison is made by addressing the considered objective 
function, optimization algorithm, optimization variables, technologies, 
energy demand, DRP presence and time frame of the analysis. 

As can be grasped, the main novelty is represented by the application 
of the demand response program over one entire year of operation for 
electrical, thermal and cooling energy demands, while the studies that 
investigate the potential benefits of DRP usually consider one or few 
days. Another feature that differentiates this paper from other literature 
studies is that this paper investigates both energy and cost minimization, 
while most studies consider just one optimization target. 

Appendix 2 

Figs. A1 through A6 show the energy production during one year, by 
highlighting the contribution of the different technologies to the elec-
trical and thermal energy demand. The negative values for the TES and 
the BES stand for the respective energy entering the storage, while the 
negative values for the PV production means that PV power is sent to 
grid. The contribution of the different technologies to the cooling energy 
demand is not reported since only ASHP and AC are involved (Fig. 6c 
and 11c). 
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Fig. A1. Production of electrical (a) and thermal (b) energy during one year (Baseline scenario; Minimization of primary energy consumption).  
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Fig. A2. Production of electrical (a) and thermal (b) energy during one year (DRP 10 scenario; Minimization of primary energy consumption).  
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Fig. A3. Production of electrical (a) and thermal (b) energy during one year (DRP 30 scenario; Minimization of primary energy consumption).  

H. Bahlawan et al.                                                                                                                                                                                                                              



Energy Conversion and Management: X 16 (2022) 100311

18

Fig. A4. Production of electrical (a) and thermal (b) energy during one year (Baseline scenario; Minimization of operational costs).  
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Fig. A5. Production of electrical (a) and thermal (b) energy during one year (DRP 10 scenario; Minimization of operational costs).  
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Fig. A6. Production of electrical (a) and thermal (b) energy during one year (DRP 30 scenario; Minimization of operational costs).  
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[14] Mayer MJ, Szilágyi A, Gróf G. Environmental and economic multi-objective 
optimization of a household level hybrid renewable energy system by genetic 
algorithm. Appl Energy 2020;269:115058. https://doi.org/10.1016/J. 
APENERGY.2020.115058. 

[15] Bahlawan H, Gambarotta A, Losi E, Manservigi L, Morini M, Spina PR, et al. Sizing 
and operation of a hybrid energy plant composed of industrial gas turbines, 
renewable energy systems and energy storage technologies. J Eng Gas Turbines 
Power 2021;143(061013):1–11. https://doi.org/10.1115/GT2020-16331. 

[16] Bahlawan H, Losi E, Manservigi L, Morini M, Pinelli M, Spina PR, Venturini M. 
Optimal design and energy management of a renewable energy plant with seasonal 
energy storage (2021), E3S Web of Conferences, 238, art. No. 02002, 2020 Applied 
Energy Symposium (ICAE), 100RES 2020, Pisa, 29 – 30 October 2020, doi: 
10.1051/e3sconf/202123802002. 

[17] Katoch S, Chauhan SS. Kumar V. A review on genetic algorithm: past, present, and 
future. Multimed Tools Appl 80, 8091–8126 (2021). 10.1007/s11042-020-10139-6 
A review on genetic algorithm: past, present, and future | SpringerLink. 

[18] Bahlawan H, Morini M, Pinelli M, Spina PR. Dynamic programming based 
methodology for the optimization of the sizing and operation of hybrid energy 
plants. Appl Therm Eng 2019;160:113967. https://doi.org/10.1016/J. 
APPLTHERMALENG.2019.113967. 

[19] Moghaddas-Tafreshi SM, Mohseni S, Karami ME, Kelly S. Optimal energy 
management of a grid-connected multiple energy carrier micro-grid. Appl Therm 
Eng 2019;152:796–806. https://doi.org/10.1016/J. 
APPLTHERMALENG.2019.02.113. 

[20] Abdmouleh Z, Gastli A, Ben-Brahim L, Haouari M, Al-Emadi NA. Review of 
optimization techniques applied for the integration of distributed generation from 
renewable energy sources. Renewable Energy 2017;113:266–80. https://doi.org/ 
10.1016/J.RENENE.2017.05.087. 

[21] Murray P, Orehounig K, Grosspietsch D, Carmeliet J. A comparison of storage 
systems in neighbourhood decentralized energy system applications from 2015 to 
2050. Appl Energy 2018;231:1285–306. https://doi.org/10.1016/J. 
APENERGY.2018.08.106. 

[22] Nicolosi FF, Alberizzi JC, Caligiuri C, Renzi M. Unit commitment optimization of a 
micro-grid with a MILP algorithm: Role of the emissions, bio-fuels and power 
generation technology. Energy Rep 2021;7:8639–51. https://doi.org/10.1016/J. 
EGYR.2021.04.020. 

[23] Manservigi, L., Cattozzo, M., Spina, P.R., Venturini, M., Bahlawan, H., 2020, 
“Optimal Management of the Energy Flows of Interconnected Residential Users”, 
Energies, 13 (6), 1507, pp. 1-21, 10.3390/en13061507. 

[24] Bahlawan H, Morini M, Pinelli M, Spina PR, Venturini M. Optimization of energy 
and economic scheduling of a hybrid energy plant by using a dynamic 
programming approach. Appl Therm Eng 2021;187:1–14. https://doi.org/ 
10.1016/j.applthermaleng.2021.116577. 

[25] Pesaran HA, Huy PD, Ramachandaramurthy VK. A review of the optimal allocation 
of distributed generation: Objectives, constraints, methods, and algorithms. Renew 
Sustain Energy Rev 2017;75:293–312. https://doi.org/10.1016/J. 
RSER.2016.10.071. 

[26] Nikmehr N, Wang L, Najafi-Ravadanegh S, Moradi-Moghadam S. Demand response 
enabled optimal energy management of networked microgrids for resilience 
enhancement. Oper Distributed Energy Resour Smart Distrib Networks 2018; 
49–74. https://doi.org/10.1016/B978-0-12-814891-4.00003-5. 

[27] EnergySage https://news.energysage.com/demand-response-programs-explained/. 
[28] Wang X, Palazoglu A, El-Farra NH. Operational optimization and demand response 

of hybrid renewable energy systems. Appl Energy 2015;143:324–35. https://doi. 
org/10.1016/J.APENERGY.2015.01.004. 

[29] Rakipour D, Barati H. Probabilistic optimization in operation of energy hub with 
participation of renewable energy resources and demand response. Energy 2019; 
173:384–99. https://doi.org/10.1016/J.ENERGY.2019.02.021. 

[30] Zheng Y, Jenkins BM, Kornbluth K, Kendall A, Træholt C. Optimization of a 
biomass-integrated renewable energy microgrid with demand side management 
under uncertainty. Appl Energy 2018;230:836–44. https://doi.org/10.1016/J. 
APENERGY.2018.09.015. 

[31] Najafi-Ghalelou A, Nojavan S, Zare K, Mohammadi-Ivatloo B. Robust scheduling of 
thermal, cooling and electrical hub energy system under market price uncertainty. 
Appl Therm Eng 2019;149:862–80. https://doi.org/10.1016/J. 
APPLTHERMALENG.2018.12.108. 

[32] Gazijahani FS, Salehi J. Reliability constrained two-stage optimization of multiple 
renewable-based microgrids incorporating critical energy peak pricing demand 

response program using robust optimization approach. Energy 2018;161: 
999–1015. https://doi.org/10.1016/J.ENERGY.2018.07.191. 

[33] Mohseni S, Brent AC, Kelly S, Browne WN. Demand response-integrated investment 
and operational planning of renewable and sustainable energy systems considering 
forecast uncertainties: A systematic review. Renew Sustain Energy Rev 2022;158: 
112095. https://doi.org/10.1016/J.RSER.2022.112095. 

[34] Monfared HJ, Ghasemi A, Loni A, Marzband M. A hybrid price-based demand 
response program for the residential micro-grid. Energy 2019;185:274–85. https:// 
doi.org/10.1016/J.ENERGY.2019.07.045. 

[35] Vishnupriyan J, Manoharan PS. Demand side management approach to rural 
electrification of different climate zones in Indian state of Tamil Nadu. Energy 
2017;138:799–815. https://doi.org/10.1016/J.ENERGY.2017.07.140. 

[36] Yang X, Chen Z, Huang X, Li R, Xu S, Yang C. Robust capacity optimization 
methods for integrated energy systems considering demand response and thermal 
comfort. Energy 2021;221:119727. https://doi.org/10.1016/J. 
ENERGY.2020.119727. 

[37] Salyani P, Abapour M, Zare K, Babri T. In: Nojavan S, Zare K, editors. Demand 
Response Application in Smart Grids. Cham: Springer; 2020. https://doi.org/ 
10.1007/978-3-030-31399-9_8. 

[38] Behboodi S, Chassin DP, Crawford C, Djilali N. Renewable resources portfolio 
optimization in the presence of demand response. Appl Energy 2016;162:139–48. 
https://doi.org/10.1016/J.APENERGY.2015.10.074. 

[39] Biazar M, Shahabi M, Barforoushi T. (2019). Expansion planning of energy storages 
in microgrid under uncertainties and demand response. Int Trans Electr Energy 
Syst. 10.1002/2050-7038.12110. 10.1002/2050-7038.12. 

[40] Rathore C, Roy R. Impact of wind uncertainty, plug-in-electric vehicles and 
demand response program on transmission network expansion planning. Int J 
Electr Power Energy Syst 2016;75:59–73. https://doi.org/10.1016/J. 
IJEPES.2015.07.040. 

[41] Evans DL, Florschuetz LW. Cost studies on terrestrial photovoltaic power systems 
with sunlight concentration. Sol Energy 1977;19(3):255–62. https://doi.org/ 
10.1016/0038-092X(77)90068-8. 

[42] Evans DL. Simplified method for predicting photovoltaic array output. Sol Energy 
1981;27(6):555–60. https://doi.org/10.1016/0038-092X(81)90051-7. 

[43] Bhandari B, Lee KT, Lee GY, et al. Optimization of hybrid renewable energy power 
systems: A review. Int J of Precis Eng and Manuf-Green Tech 2015;2:99–112. 
https://doi.org/10.1007/s40684-015-0013-z. 

[44] Ente Italiano di Normazione, UNI TS 11300 (2012) (In Italian). https://store.uni. 
com/search/ALL/1/UNI%2FTS%2011300 (in italian). 

[45] Barbieri ES, Dai YJ, Morini M, Pinelli M, Spina PR, Sun P, et al. Optimal sizing of a 
multi-source energy plant for power heat and cooling generation. Appl Therm Eng 
2014;71(2):736–50. https://doi.org/10.1016/J.APPLTHERMALENG.2013.11.022. 

[46] Bui V-H, Song N-O, Lee J-H, Kim H-M. Mathematical modeling of real-time 
scheduling for microgrid considering uncertainties of renewable energy sources. 
Int J Smart Home 2015;9(7):271–84. https://doi.org/10.14257/ijsh.2015.9.7.28. 

[47] https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical- 
information-system_en. 

[48] Gestore Mercati Energetici https://www.mercatoelettrico.org/It/download/ 
DatiStorici.aspx (in Italian). 

[49] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_ 
price_statistics. 

[50] https://www.isprambiente.gov.it/files2021/pubblicazioni/rapporti/nir2021_italy_ 
14apr_completo.pdf. 

[51] https://press.siemens.com/it/it/inevidenza/al-la-microrete-intelligente-di-casa- 
siemens (in Italian). 

[52] Danish Energy Agency. Technology Data – Energy Plants for Electricity and District 
heating generation. Report 2016. http://www.ens.dk/teknologikatalog. 

[53] Danish Energy Agency. Technology Data – Heating installations. Report 2017. 
http://www.ens.dk/teknologikatalog. 
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