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ABSTRACT

The main objective of the present research activity is the study of geared transmission
system dynamics, which is basically represented by a system of nonlinear differential
equations. First of all, the different approaches to study the nonlinear dynamics of gears
are qualitatively presented. Afterwards, the realization of a lumped parameter model
is discussed by analyzing two different modeling strategies linked to two different
numerical resolution techniques.

The first modeling strategy is based on time integration techniques and enhances
the employment of a commercial software to speed-up the modeling set-up phase. The
proposed method rely on a block diagram technique and it is developed in Simcenter
AMESim, a commercial software widely used in industries. By starting from the
single gear pair model, detailed guidelines are given to construct any type of ordinary
transmission layout by connecting some pre-programmed devices between them. In
order to demonstrate the reliability of the approach, an experimental validation on
industrial use case is proposed with excellent outcomes.

The second modeling strategy rely on a frequency domain solution technique able
to capture unstable solution branches in multi-valued frequency response regions. In
particular, it proposes the Asymptotic Numerical Method combined to the Harmonic
Balance Method as a valuable approach to solve the nonlinear dynamics of gear pairs.
Thanks to a quadratic recast of the equation of motion, the Taylor and Fourier series can
be computed in a very efficient way and each step produces a continuous representation
of the solution branch making the continuation very robust. Effectiveness and reliability
of the method are proved by comparing the numerical outcomes with that obtained
from the Runge-Kutta time integration scheme. As a result, this technique provides for
excellent computational performance despite additional time is needed for the quadratic
recast of the equations system.

Once a detailed analysis on the modeling strategy has been conducted, rattle noise
and whine noise occurrence are investigated.

Regarding the rattle noise, the research activity has conducted to the introduction of
a new analytical parameter as a novelty to the current state of the art. A rattle index
formulation is retrieved by starting from the classical 6-DOFs equation system defining



the nonlinear dynamics of a gear pair. The proposed formulation may be applied to
single or multiple branch geartrain, both in idle or loaded condions. The reliability of
the analytical formulation is proved by numerical experiments which demonstrate the
capability of the proposed index to instantaneously describe the vibro-impacts events
related to any gear pair of the driveline. In addition its magnitude may be a measure
of the tooth impact severity and it is shown to be a proper indicator of the potential
presence of mutual interactions between different gear pairs pertaining to the same
driveline.

Finally, the investigation of whine noise occurrence addresses to an analytical
formulation able to forecast the main overall direction and magnitude of bearing
reaction forces on idler gear. By starting from the definition of meshing forces by
means of Fourier series development, idler gear bearing forces are obtained under the
hypothesis of quasi-static motion. This procedure demonstrates that the alternating
component of bearing forces on idler gear describes an elliptical trajectory as the prime
mover rotates over a pitch angle. The formulation directly links the bearing forces
elliptical trajectory with the gear spatial position, the meshing phase and the amplitude
of meshing forces. By properly setting the over-mentioned parameters one may be
able to control the magnitude and direction of the overall idler bearing reaction forces.
Numerical experiments were performed and the obtained results confirm the author
intuition.
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PREFACE

I graduated in Mechanical Engineering at the University of Ferrara in February
2019. During the last year of my Master’s degree, I took part to the Double
Degree exchange program with the Aix-Marseille Université where I received
an additional Master in Mechanical Physical Engineering. After graduation, I
worked as a research fellow at the University of Ferrara, Engineering Depart-
ment with the Mechanics and Vibration Research Group. During this period,
I worked on geartrain modeling based on a lumped parameter approach. In
November 2019 I started my PhD program with the same research group.

My research activity deals with tools development for dynamic analysis of
complex mechanical systems with a particular emphasis on power transmission.
During the first year of my PhD program, I developed an effective tool to
realize a nonlinear lumped parameter model of any ordinary transmission
layout. The project was conducted in Simcenter AMESim environment. The
tool has been used to study various driveline phenomena on real test case
proposed by different companies. In this regard, a numerical vibro-acoustic
methodology for the estimation of the overall vibratory and acoustic level
of a gearbox employed on agricultural equipment has been presented to an
international conference [1]:

[1] A. Gabrielli, E. Pizzolante, E. Soave, M. Battarra, C. Mazzeo, M. Tarabra, E. Fava, and E.
Mucchi. “A numerical model for NVH analysis of gearboxes employed on agricultural
equipment.” In: Proceedings of ISMA 2020 - International Conference on Noise and Vibration
Engineering. 2020.

During my second doctoral year, I kept working on geartrain dynamics by
focusing the attention on gear rattle noise. The research activity has led to the
introduction of a new parameter as a novelty to the current state of the art.
The results were published on a relevant journal paper [2]:

[2] Francesco Pizzolante, Mattia Battarra, Gianluca D’Elia, and Emiliano Mucchi. “A
rattle index formulation for single and multiple branch geartrains.” In: Mechanism and
Machine Theory 158 (2021).
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Beside the gear dynamics I have worked on a lumped parameter model to
describe the pressure dynamics of an axial piston pump. The numerical results
were correlated with the experimental outcomes obtaining an high quality tool
to forecast pressure ripple dynamics.

In addition, I focused on the study of friction condition in packaging indus-
trial machinery. Within the framework of BI-REX project, I worked with the
AETNA group in order to implement an algorithm able to analyze the wear
condition of an industrial shrinkwrapper machine with a view to predictive
maintenance.

In the first half of my third year, the main research activity has focused
on gear whine noise control. This study have conducted to an analytical
formulation able to forecast the main overall direction and magnitude of
bearing reaction forces on idler gear when the geartrain works under quasi-
static condition. The work has been published on a relevant journal [3] :

[3] Francesco Pizzolante, Mattia Battarra, and Emiliano Mucchi. “The role of gear layout
and meshing phase for whine noise reduction in ordinary geartrains.” In: Mechanism
and Machine Theory (2022).

During the last part of my PhD, I spent six months at the Laboratory of
Mechanics and Acoustic (LMA), a research unit of CNRS (Centre National de
Recherche Scientifique) based in Marseille (France), where the development
of new mathematical methods for engineering are coming to the fore. Under
the supervision of Professor Bruno Cochelin, I applied a frequency domain
numerical method for the resolution of nonlinear differential equations to the
complex problem of geared system dynamics. This abroad experience, gave
me the opportunity to deepen my knowledge on the resolution methods for
nonlinear dynamic systems. In fact, bifurcations and unstable regions are not
captured from resolution methods based on time integration scheme. The
outcomes of this activity have been detailed in a scientific paper which is
submitted for publication on a significant journal [4]:

[4] Francesco Pizzolante, Mattia Battarra, Emiliano Mucchi, and Bruno Cochelin. “A Taylor
series-based continuation method for solution of non linear dynamics of spur gears.”
In: Submitted to Mechanical System and Signal Processing (2022).

This brief summary of the activities I committed during this last three years,
leads me to express my appreciation and gratitude to all the people from
the Mechanical and Vibration research group. Firstly, I would like to address
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my sincere appreciation to my advisor, Professor Emiliano Mucchi, for the
scientific technical support and its wise advice. Moreover, my sincere gratitude
goes to Eng. Mattia Battarra, for the constant support, advice and lessons
he gave me through the entire course of the PhD. A special thanks to Eng.
Gianluca D’Elia, who made me passionate about engineering when I was a
student. Finally, I thank Professor Giorgio Dalpiaz for the precious time he
dedicated to me.
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INTRODUCTION

1.1 GEAR EXCITATION MECHANISM AND THEIR MODELING

Gears are essential elements in mechanical power transmission. Their dynamic
behavior involves a great variety of phenomena introducing non-linear vi-
brations and generating an undesired noise emission. A typical gear, under
operating conditions, is subjected to high dynamic forces which affect the
surrounding components such as shafts, bearings and the gearbox case. In this
regard, the time-depended bearing forces are transmitted to the gearbox case,
which coupled with the whole system assembly provokes an undesired noise
emission.

The vibration source in gear transmissions is originated by multiple factors.
First of all, geared systems dynamics is characterized by an internal excitation,
mainly caused by the static transmission error. In addition, a non-smooth
nonlinearity is introduced, caused by the backlash clearance. In ideal condi-
tions, the driveline motion must take place respecting the constancy of the
transmission ratio. If gears were perfect involutes, absolutely rigid and cor-
rectly spaced, the transmission of rotational motion would take place with
absolute regularity [5]. This means that a constant speed at the input shaft
would result in a constant speed at the output shaft. In this regard, no time-
varying forces would exist, hence, no vibrations would be generated. In real
systems, obviously, gears are characterized by manufacturing errors, which
may affect involute alignment deviations, involute form deviation, pitch errors,
misalignment and so on. In addition, depending on gear contact ratio, there
is a variable number of mating teeth in meshing area which are subjected
to elastic deflection. Furthermore, gears are mounted on shaft by means of
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rolling or journal bearing, which are featured by a certain compliance. With
particular reference to rolling bearings only, these latter have variable nonlinear
stiffness as a function of the local deformation of the rotating elements and
therefore of the radial position of the gear body. Under the static condition,
all the mentioned phenomena can be included in the definition of an overall
kinematic function known as the static transmission error [6]. The vibration
caused by the static transmission error lead to the emission of the so-called
whine noise [7], [8], [9]

To summarize, the internal excitation represent the primary excitation source
within geared power transmission. In addition, the presence of a certain
amount of backlash introduce a non-smooth nonlinear contribution to the
whole system dynamics. The presence of a backlash clearance is mandatory to
allow better lubrication, limit interference due to geometrical manufacturing
errors and reduce wear [6]. Despite these positive effects, it enhances torsional
vibrations by allowing tooth detachment to take place. The contact loss due to
the backlash clearance can be caused by the internal excitation, i.e. the static
transmission error. When vibro-impacts are excited by the internal excitation,
the geared system response function can be affected by instabilities regions and
bifurcations. In fact, the domains of unstable motions can be expressed as a
function of gear mesh damping and gear mesh stiffness excitation amplitudes,
retaining the gear geometrical parameters [5]. The vibro-impacts between tooth
flanks generate high dynamic forces leading to nonlinear vibrations and noise,
known as rattle noise [6]. In addition, these strong dynamic load can provoke
elevated tooth root and contact stresses, leading to a shorter gear fatigue live.

Tooth contact loss can also be caused from the external excitation source
in lightly loaded geartrains. The external excitation can be originated by
rotating mass unbalances, geometric eccentricities, and prime mover torque
fluctuations [6]. Rattle of lightly loaded gears is one of the major problems
facing the automotive sector, since cars transmission systems spend a lot of
time idling in very light load [5]. As a matter of fact, a very common scenario
is represented by the oscillating torque generated by the firing order of the
internal combustion engine. The torque fluctuation causes impacts between
the teeth of all the unloaded gears in manual transmission.

By taking into account all the elements briefly introduced, there is a clear
need of a detailed mathematical model able to describe the complex nonlinear
dynamic behavior of geared systems. The prediction of the dynamic forces
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magnitude and the displacements suffered by the gear body is a necessary
step for the design of quiet and reliable drivelines.

In the modeling of dynamic problems, a real engineering system is replaced
by a numerical-analytical model which approximates its behavior. With refer-
ence to any mechanical system, the equations that govern its dynamic motion
represent the physical-mathematical model. The use of numerical models and
simulations is nowadays an extremely important aspect in modern industries.
In fact, engineers use numerical-analytical models, supported by experimental
correlation, in order to cut back the number of physical prototypes and reduce
the quantity of performed experiments. In order to realize an effective and
reliable model, different approaches are available. In fact, depending on the
system under study, the choice of the modeling strategy constitutes a key point
for the correct representation of its features. Within this framework, the Finite
Element Modeling (FEM) represents the most accurate technique to describe
the three-dimensional behavior of any mechanical system. It allows the user
to properly account for an accurate representation of complex geometry and
consider its real distributed properties. The FEM analysis is a powerful tool
to study the dynamic response to a general time-varying load, it empower a
comprehensive view of the structural integrity of the components and their
assembly. By indicating the distribution of stresses and strains on the real
object domain, this method permits a detailed visualization of the weakest
point of a structure or system assembly. Despite these positive aspects, FEM
models are characterized by a large number of degrees of freedom and their
resolution requires an high computational effort. As a matter of fact, in cer-
tain application, a detailed FEM model may result very large for an efficient
computation.

Depending on the object of study, FEM analysis can lead to an onerous
computational effort which may result useless in practice. As an example let
consider a simple mechanical transmission composed by a single gear pair.
The realization of a FEM model can result very helpful for the determination
of critical stressed spatial domain and failure analysis, but the calculation
of dynamic forces transmitted to the gearbox case may be conducted by
employing more suitable simulation tools. In this context, lumped parameter
modeling represent an ever-increasing employed tool in modern industries for
its high computational efficiency. The lumped parameter approach consists
in the subdivision of the system into masses and inertias connected to each
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other by means of elastic and damping elements. The distributed physical
proprieties are replaced by lumped characteristics. This modeling technique
can be applied at the earliest stages of the design process, when only the
relevant design parameters are set and, therefore, several system configuration
can be tested before to complete the design specifications. Within geared system
dynamics, as proved in several scientific paper, lumped parameter modeling
provides an excellent agreement between numerical and experimental test
case.

In order to obtain a good correlation with real experiments, it is worth
underlining that during the pre-processing stage different system parameters
are still unknown. As an example, the calculation of bearing and meshing
stiffness is not a straightforward task. One may account for analytical methods
to compute bearing and tooth compliance both, unless this, different literature
experiments have proved that numerical techniques are more suited to be
used as they allow an excellent numerical-experimental correlation. In this
regard, FEM analysis provides the optimum results for the computation of
nonlinear bearing and meshing stiffness. As a matter of fact, the combination
of these modeling strategies give rise to a mathematical model which is able to
represent the real behavior of geared system with high fidelity. FEM analysis
may be used to compute the nonlinear static response of the system, while the
lumped parameter model allows the computation of its nonlinear dynamics in
a very efficient way. Once the pre-processing stage is completed, the mathemat-
ical formulation of lumped parameter models is relatively simple and it can
be easily implemented with coding software as Python, Matlab and Fortran.
Coding software provides for the maximum of versatility and offers a complete
customization of the system representation. Unless this, the lack of a graphical
user interface makes their use cumbersome, especially in industrial environ-
ment where the engineers have to face tight schedule. In those framework
where rapid and effective calculation tools are needed, lumped parameter
model are obtained by using commercial software. The latter are characterized
by an intuitive graphical user interface and are much more user friendly then
coding interfaces. One of the most used software in industries is Simcenter
AMESim (Advanced Modeling Environment for performing Simulation). It
allows the simulation of physical multi-domain systems, empowers the reso-
lution of linear and nonlinear systems by offering different time integration
techniques. In addition, it is provided by editable devices which makes the
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realization of a custom model a straightforward matter. This aspect can be very
useful in industrial frameworks, where engineers have to achieve the results in
the shortest time possible. Although commercial software are very intuitive
and easy to use, they usually employ a numerical computation method based
on time integration scheme. By dealing with nonlinear systems, one may be
interested in the study of unstable solution branches, bifurcation analysis
and multi-valued regions computation. These kind of analysis can result very
onerous by using time integration technique and, even if bifurcation points
may be clearly identified, the computation of unstable branches can not be
performed. In this regard, the application of frequency domain methods which
allow a complete nonlinear response function of a geared-rotor-bearing system
may be adopted.

The present manuscript addresses two main subject. The first one is the
investigation of numerical-analytical tools for the nonlinear dynamic analysis
of geared systems. The second one regards the analytical study of gear whine
noise and gear rattle noise occurrence. The analytical assumptions are provided
by a numerical assessment in order to demonstrate their effectiveness and
reliability.

1.2 OVERVIEW OF THE THESIS

On the basis of the various elements described in the previous section, the
manuscript points out different tasks. Firstly, the realization of a lumped
parameter model is discussed by analyzing two different modeling strategies
for different purpose. The first one, is based on time integration technique and
enhances the employment of commercial software to speed-up the modeling
set-up phase. The second modeling strategy rely on a frequency domain
solution technique able to describe the dynamic of those nonlinear systems
which present unstable solution branches and multi-valued regions. Once a
detailed analysis on the modeling strategy has been conducted, rattle noise
and whine noise occurrence are investigated. The studies on rattle noise have
conducted to the introduction of a new analytical parameter as a novelty to the
current state of the art. In a similar manner, the investigation of whine noise
occurrence addresses to an analytical formulation able to forecast the main
overall direction and magnitude of bearing reaction forces on idler gear. The
following is a brief overview of the chapters.



INTRODUCTION

Chapter 2 is devoted to the geartrain nonlinear dynamics modeling. In
particular, the nonlinear ordinary differential equations (ODE) governing the
motion of a single gear pair are established. All the relevant phenomena within
gear dynamics are deeply investigated and included in the equation of mo-
tion. The proposed modeling approach rely on a block diagram technique
and is realized by employing Simcenter AMESim commercial software. Based
on graphical software capabilities, the author propose detailed guidelines to
build a complete geartrain model by connecting some programmable devices
between them. This feature, make it possible the realization of a complete
customized model. In a first instance, a complete nonlinear lumped param-
eter model of a single gear pair is realized. This is achieved by manually
implementing the equation governing the motion of the system. Afterwards, a
particular methodology is developed to obtain a modular architecture which
offer the possibility to realize any kind of ordinary transmission layout. This
modeling technique offers a great advantage in the model setup phase. In
fact, once the model of a single gear pair is established, the realization of any
geartrain is made by connecting the pre-programmed element between them.
This approach allows the user to obtain a fully customized model and realize
a driveline lumped parameter model with easy simple step. Based on this
practical feature, the introduction of such tool in industrial environment may
represent a key point to speed up the model setup phase. By focusing on ODE
resolution methods, Simcenter AMESim solver is limited to the already built-in
numerical computation techniques. For instance, the system of differential
equations can be solved only with time integration techniques. Dealing with
nonlinear systems, unstable solution branches and bifurcations can appear
in the dynamic response. In this regard, the time integration techniques are
not suited to perform these kind of analysis. Although bifurcation location
can be clearly recognized, the computation of unstable branches can not be
performed. In order to get further insight on the issue, an additional modeling
strategy is developed in Chapter 3.

Chapter 3 is committed to the application of the Asymptotic Numerical
Method for the resolution of the nonlinear dynamics of a gear pair. Firstly, a
literature survey on the current methodologies is conducted. The Asymptotic
Numerical Method stands out from the existing methods as it is a purely
frequency domain method, characterized by an high efficiency in the com-
putation of high-order Taylor series. In detail, the chapter provides a brief
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explanation of the method itself and its effectiveness. In this regard, it is
shown how the adoption of a quadratic formalism to recast the equation
of motion is useful for the computation of high-order Taylor series. After-
wards, a single-degree-of-freedom nonlinear lumped parameter model of a
spur gear pair with time-varying meshing stiffness and backlash is recalled.
The equation of motion is recast in a quadratic form and implemented by
means of a Matlab interface software. Results computed with the Asymptotic
Numerical Method are compared with that obtained from the Runge-Kutta
time integration scheme, demonstrating an excellent agreement. Finally, the
complete model of a single gear pair is set. A comparison between the two
solution methods in terms of computational performance is conducted. This
methodology provide for a full nonlinear dynamic response of the geared
rotor bearing system, where the computation of unstable solution branches is
performed in very a short simulation time. Unless these positive aspects, the
set-up of a geartrain model can be very time consuming. As a matter of fact,
as the method needs a peculiar recast and dimensionless form of the initial
ODE system, the model set-up time is drastically increased. In addition the
user have to deal with coding interface, which may results less practical then
user interface commercial software. On the other hand, once the model has
been realized, the computational time is considerably reduced with respect to
the time integration techniques.

Chapter 4 deals with the investigation of rattle noise occurrence in multi-
mesh loaded geartrains. In detail, it proposes an analytical procedure for the
generalization of the rattle index in any type of ordinary transmission layouts,
single or multiple branch, both in idle and loaded conditions. In geartrain
design, the introduction of an analytical parameter able to identify the contact
loss occurrence may represents a powerful tool to detect rattle noise. By inves-
tigating the state of the art, it is clear that several studies have been focused on
the identification of the rattle noise by using mathematical models and analyti-
cal parameters. However, the investigation has been exclusively focused on idle
gear pairs, since this is an unavoidable working condition in multispeed gear-
boxes. Although the latter represents the most common situation, rattle noise
may also appear in other driveline applications. As an example, in geared en-
gine timing systems, the camshaft generate an oscillating torque at the output
shaft which can lead to vibro-impact between teeth. In this chapter, the authors
generalize the definition of the rattle index proposed by Sing et. al in [10] to
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any kind of ordinary transmission, single or multiple branch. The proposed
analytical parameter also includes the definition for loaded geartrains and it is
related to gear inertial torque, viscous torque and external torque. By starting
from the classical 6-DOFs equation system defining the nonlinear dynamics
of a gear pair, a recursive analytical formulation of the rotational dynamics
of gears is proposed. This mathematical expedient is adopted to deduce the
generalization of the rattle index definition for any meshing pair pertaining to
a multimesh geartrain. Firstly, the dissertation is conducted for a single branch,
unloaded geartrain. Then, the definition is extended to single branch, loaded
geartrain. In this regard, consideration on rattle index validity are made. In
particular, in order to avoid numerical problems and erroneous indication of
rattle occurrence some guideline are presented. Finally, the dissertation is ap-
plied to multiple branch, loaded geartrain. After the analytical formulation has
been obtained, numerical experiments are conducted. Several geartrain layout
are investigated by employing the AMESim modeling strategy described in
Chapter 2. In this regard, single and multiple branch geartrains lumped param-
eter models were realized, both in idle and loaded conditions. The simulation
results demonstrate the accuracy of the outlined parameter. The rattle index
will remain under a certain threshold when gears are in contact on the drive
side; on the other hand, when teeth detachment takes place it will respond
with a peak, overcoming threshold value. The proposed analytical parameter
instantaneously describes the vibro-impacts events related to any gear pair of
the driveline. For instance, one may be able identify the exact meshing pair
who undergoes rattling events. In addition, the introduced parameter may lead
to a quantitative estimation of vibro-impact severity. Numerical assessment
have been performed by using different oscillating torque amplitudes. The
results proved that as the oscillating torque amplitude increases, the impact
between teeth become more severe.

In Chapter 5, gear whine noise occurrence is investigated. In particular, the
chapter proposes an analytical formulation able to forecast the main overall
direction and magnitude of bearing reaction forces on idler gear when the
geartrain works under quasi-static condition. Firstly, a literature survey is
conducted in order to identify the main phenomena linked to whine noise
emission. The primary excitation source of this kind of noise is represented
by the time-varying mesh stiffness and the static transmission error. In this
regard, the time-varying meshing forces are transferred to the bearing housing



1.2 OVERVIEW OF THE THESIS

and the vibration is transmitted along the entire system assembly. For instance,
a detailed investigation of bearing forces transmission mechanism is an essen-
tial step to understand the relationship between system design parameters
and noise emission. This study allowed the authors to obtain a mathematical
relationship between the overall magnitude and direction of idler gear bear-
ing reaction forces and some generic geartrain design parameters. In detail,
the analytical formulation describes the trajectory drawn by the oscillating
components of bearing forces on idler gear in multi-mesh geartrains when
the latter work under quasi-static condition. By starting from the definition
of meshing forces by means of Fourier series development, idler gear bearing
forces are obtained under the hypothesis of quasi-static motion. This procedure
demonstrates that the alternating component of bearing forces on idler gear
describes an elliptical trajectory as the prime mover rotates over a pitch angle.
This formulation directly links the bearing forces elliptical trajectory with
the gear spatial position, the meshing phase and the amplitude of meshing
forces. By properly setting the over-mentioned parameters one may be able
to control the magnitude and direction of the overall idler bearing reaction
forces. Finally, numerical experiments are carried out to investigate if the
proposed analytical dissertation is suitable in dynamic conditions, when the
internal excitation frequency is close to one system eigenvalue. In order to
tulfill this purpose, a lumped parameter model is set and numerical analyses
are conducted at various shaft rotational speeds. The model is realized by
employing the AMESim modeling strategy described in Chapter 2. Numerical
experiments were extremely useful to understand the ellipse modification
when the dynamic effects become relevant. The obtained results confirm that
under the hypothesis of quasi-static motion the analytical dissertation is an
effective and reliable tool to forecast the main overall direction of pulsating
bearing forces. Unless this, not all the parameters governing the ellipse can be
set to a specific value. The gears spatial position and the phase shift between
two consecutive meshing can be chosen during the gear design concept phase,
on the other hand, estimating the amplitude of meshing forces is not a direct
matter. In fact, the latter represent the limit of the analytical dissertation. The
meshing force magnitude can be controlled by adopting gear micro-geometry
modification but it can not be determined unequivocally without solving the
gear equation of motion, as it is the result of internal excitation.
Chapter 6 is dedicated to conluding remarks.
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The Chapter is devoted to gear dynamics modeling. In particular, a nonlinear dynamic
model of a single gear pair is established. The model accounts for time-varying mesh
stiffness, backlash and lubricant squeeze force when vibro-impacts occur. In addition a
nonlinear contribution of load-depended bearing and meshing stiffness is considered.
The proposed modeling strategy rely a block diagram technique and it is realized in
Simcenter AMESim, a commercial software widely used in industries. By starting
from the single gear pair model, detailed guidelines are given to construct any type of
ordinary transmission layout by connecting some pre-programmed devices between
them. Finally an experimental validation on industrial use case is proposed in order to
demonstrate the reliability of the dynamic model.

2.1 INTRODUCTION

Geared transmission systems are fundamental elements in powertrain applica-
tions. As depicted in the previous chapter, they act as self-excited mechanism
as a results of static transmission error and time-varying mesh stiffness. In
addition their dynamic behavior is strongly affected by a non-smooth non
linearity due to the backlash clearance. Beside the contact non linearity, the
meshing and bearing stiffness may be characterized by a nonlinear dependence
on the applied load. As geartrains work under multiple load conditions, this
aspect may lead to an additional complication in the realization of a dynamic
model capable to forecast the forces acting on the gearbox case.

Apart from the elastic effects, an other important role is played by the
lubricant. In fact, it is responsible for the forces and torque acting on gear
teeth and body when contact loss occurs. Based on these assumption, the
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realization of a complete model which account for all the described phenomena
represent an essential instrument to investigate geartrain dynamics. The very
tirst proposed dynamic models were essentially linear, as reviewed by Ozguven
and Houser [11], however, the non-linear behaviour of the geared systems
suddenly came out in several experimental analyses [12, 13, 14]. One of the
tirst non-linear mathematical models was introduced by Kahraman and Singh,
who formerly defined a single-degree-of-freedom torsional model considering
backlash clearance [15]. Later, the same authors proposed a three-degrees-
of-freedom model assuming bearings and shaft compliance [16]. Finally, the
model was replaced with a three-degrees-of-freedom nonlinear model, taking
into account time-varying mesh stiffness, backlash and bearing clearance. The
last model developed by Kahraman and Singh constitutes an effective and
reliable tool to predict nonlinear dynamics of a gear pair. As a matter of fact,
it allows to highlight the interaction between the internal excitation and the
contact non linearity [6].

Within this framework, the variation of mesh stiffness and the static trans-
mission error, represent the main cause of vibration and noise in geared system
applications. Different experimental studies ([17], [18], [19], [20], [21]) have
clearly demonstrated that mesh stiffness fluctuation as well as backlash clear-
ance must be included in spur gear pair modeling as it acts as a self-excitation
mechanism. Based on this assumption, the mesh stiffness computation is con-
sidered a crucial phase during the pre-processing modeling stage. In this
regard, experimental and numerical-analytical methods have been investigated
in literature in order to evaluate meshing stiffness. Experimental methods
require a dedicated test-rig and are based on transmission error measurements.
According to the literature review proposed in [22], the meshing stiffness calcu-
lation methods can be divided into three main categories: analytical methods,
pure finite element method and hybrid methods. By focusing on the analytical
methods, Kuang and Yang [23] proposed an analytical formula based on the
angular position, the contact ratio and the average stiffness of the gear pair.
A similar procedure has been proposed by Cai and Hayashi [24]. In [25], the
authors developed an analytical method to consider varying-load condition.
Despite the analytical approach gives reasonable results in a low computational
time, they lead to qualitative outcomes, useful in a first stage of the dynamic
analysis. On the other hand, pure finite element analysis give an accurate
description of the meshing stiffness, accounting for both tooth deflections and
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gear body compliance. Based on nonlinear finite element analyses, different
authors proposed various methodologies [26], [27], [28], [29], [30], [31]. One of
the most efficient approach is based on the work of Cooley et. al in [30], where
the mesh stiffness is calculated as the results of the relative difference between
gear rotation. This methodology can be applied for various mean torque load
giving the meshing stiffness value in varying-load condition. These kind of
methods are characterized by an high computational effort, as they need very
refined mesh in the contact area. As a matter of fact, hybrid methods [32], [33],
[34] have been developed to speed-up the finite element analysis. The overall
gear deformation is divided into two different terms: a linear global defor-
mation term and local contact nonlinear deformation term. By adopting this
expedient, one may be able to compute the nonlinear local contact deformation
term by means of analytical formulation in order to lighten the finite element
analysis computation.

Besides gear mesh stiffness, rolling bearings elements cover an important
role in vibrations transmission as they provides for the dynamic coupling with
the gearbox case. Based on this assumption, a large amount of literature on
their static and dynamic behavior is available. In order to describe the real
motion of a geared-rotor-bearing system, an accurate description of radial
stiffness represent a crucial input parameter. Radial stiffness is not a constant
value, on the contrary its magnitude has a nonlinear relation with respect to
the applied load and the position of rolling elements. In fact, as underlined in
[35], many authors focus their attention on the estimation of radial stiffness by
means of experimental, analytical, and numerical approaches. Experimental
approaches are based on direct displacement measurements [36] and indirect
methods as modal analysis [37]. Analytical ones may be derived from Hertz
contact theory [38, 39, 40] or obtained empirically as [41, 42]. The most effective
and reliable numerical approach counts on finite elements modeling. As for
meshing stiffness computation, radial stiffness estimation by means of finite
element analysis, may represent a large computational effort. In this regard,
many authors proposed various approach in order to simplify the problem.
The most common techniques consists in take advantage of symmetries [43, 44,
45, 46, 47, 48, 49, 50], remove the unloaded roller elements [43] and consider
an equivalent 2D problem [43, 51, 52].

Bearing and meshing stiffness dependence from the applied load, is a
fundamental quantity in the modeling of a geared system. Apart from stiffness
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determination, it is worth to underline that gearboxes work under lubricated
conditions. Hence, another cardinal role is played by the lubricant. In fact,
during the contact loss, it is the only element that can attenuate fluctuation
and impacts between teeth [53]. When teeth detachment occurs, the elastic
force due to meshing is zero. On the other hand, an oil squeeze effect between
the approaching tooth flanks may act as as a nonlinear spring-damper system
[54, 55]. The modeling of the lubricant role in rattle conditions has been the
primary subjects of numerous studies [56, 57, 58, 59].

On the basis of the proposed literature survey, an effective dynamic model of
a geared system may include all the introduced elements. In the present chapter
a nonlinear lumped parameter model of a geared system is presented. The
model accounts for backlash non linearity, time-varying and load-depended
mesh stiffness, load-depended bearing stiffness and squeeze force due to
lubricant between the approaching teeth. It is realized by means of Simcenter
AMESim, a commercial software based on a block diagram technique. By
taking advantage of graphical user interface, detailed guidelines are given to
realize a complete geartrain model. Firstly, the nonlinear lumped parameter
model of a single gear pair is realized. The equations governing the motion
of the system are implemented manually by means of editable block devices.
Then, a modular architecture is built. This expedient allows to define any kind
of ordinary transmission layout by connecting some pre-programmed elements
between them. In addition, this procedure permits a full customization of the
dynamic model as it is implemented by the user. This approach gives a great
advantage in terms of time schedule, in fact it speeds up the model setup
phase as a complete driveline can be modeled with easy simple operations. In
those framework where engineers have to face tight schedule, the introduction
of such architecture may represent a relevant tool to expedite the model setup
phase.

The chapter is structured as follows. Firstly, the analytic model of a single
gear pair is recalled. Afterwards, the AMESim modeling strategy is deeply
explained. The realization of the dynamic model is shown step by step. Finally
a numerical assessment on industrial use case is depicted.

2.2 NONLINEAR MODELING OF A SPUR GEAR PAIR

A discrete model of a gear pair is shown in Figure 1. Three degrees of freedom
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Gear 2

Figure 1: Lumped parameter model of a gear pair, xy, is the backlash clearance, ky
and cy, represent the bearing stiffness and damping, respectively.

are associated to each gear, namely 0;, x;, y;. 6; is the rotation around z axis,
according to the reference frame, it is positive in counterclockwise direction,
while x; and y; are the radial displacement in x and y directions. The motion
of gear pair is described by the following 6-DOFs equation system:

161 + &J161 + Ryfm = Te,
J202 + &J262 + Rofm = Te,
myxy 4+ &myxy + il + ) =0
myxXy + Gmyx) + i + 12 =0
miy + &myyy + R + 1 =0
moYs + Gmoy, + i 4+ g2 =0

(1)

where J;, m;, R; denote polar mass moment of inertia, mass, and the base
radius of gear 1, respectively. & is the Rayleigh’s damping mass proportionality
coefficient. T, is the external torque applied to gear i. f' and f}! are the
bearing reaction forces, respectively in x and y directions. f,,, represents the
gear mesh force along the line of action, that is modeled by taking into account
backlash non-linearity as defined in [15]. f5i and fii denote the components
of gear mesh force in x and y directions. The Rayleigh’s damping model
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was adopted, i.e. C = &M + BK, and for the sake of clarity, damping terms
proportional to stiffness are included in f;, definition as described in Eq. 2.

;

ki (t) [(Xr —%p/2) + BXT] if Xy > xp/2

fm(t) = 0 if —xp/2 <xr < Xp/2 (2)

( km(t) [(XT +xp/2) + BXT] if Xy < —xp/2

where ki, (t) denotes the time-varying gear mesh stiffness, x, the dynamic
transmission error and x;, the backlash clearance. f3 represents the Rayleigh’s
damping mass proportionality coefficient. The definition of the dynamic trans-
mission error depends on which side of the tooth is actually in mesh at each
time instant. When contact is occurring on the tooth working flank, transmis-
sion error X, is defined on the Direct Line of Action

xr = R107 + R202 —x9sin® —yjcosP + xsind +yzcosd (3)

where ¢ is the angle between y axis and the Direct Line of Action. This condition
satisfies the inequality x, > x1,/2. On the other hand, when contact takes place
on the tooth back flank, i.e. when x, < —xy,/2, x; is defined on the Back-side
Line of Action:

xr = —R107 — R20; — xysiny +yjcosy + xzsiny —yacosy (4)

where ¥ is the angle between y axis and the Back-side Line of Action. The
time-varying mesh stiffness is a periodic function

2.2.1  Squeeze force

When contact loss occurs, the meshing and proportional viscous force are zero.
On the other hand, if tooth profiles are approaching, the lubricant trapped
between teeth gives rise to an additional viscous force. The damping coefficient
in this case is given by the formulation proposed in [60] :

Csqueeze = ]27THJE[Req/(2h)]3/2 (5)
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where p is the lubricant dynamic viscosity, t is tooth thickness, h is the
instantaneous meatus height computed along the line of action and Req is
the equivalent radius of the approaching surfaces. It is calculated as 1/R¢q =
1/r1m + 1/72m, where 11, and 1., are the mean curvature radii of the tooth
profile. The squeeze force along the line of action is:

quueeze XrD.LA if ol <xp/2 A XT]:.)LA >0
FSqueeze(t) = (6)
quueeze XrgrA if xe] <xp/2 A Xrppa < 0

where x;,, and x,;,, denote the time derivative of dynamic transmission
error along the Direct Line of Action and Back-side Line of Action respectively.
With reference to eq. 5 the meatus height is defined as follow:

el Af x| > 107°
h = (7)
1076 if |x, <107

2.3 THE BLOCK DIAGRAM MODELING STRATEGY

Simcenter Amesim (Advanced Modeling Environment for performing Sim-
ulation) is an advanced software based on an intuitive graphical interface.
It allows the simulation of physical multi-domain systems. Steady state and
transient simulations are performed by solving the nonlinear time-depended
analytical equations that describe the system mechanical, thermal, electrical or
hydraulic behavior. The realization of complex engineering systems is made
thanks to the use of different Libraries. Each Library is characterized by a
physical domain and contains various devices, namely sub-models, which are
based on an input/output functioning. In this regard, a complete engineering
system is realized by connecting different sub-models together. Each device
is pre-programmed to execute a particular expression based on the inputs, to
compute the outputs. Besides the existing programmed tools, thanks to the
use of the elements pertaining Signal, Control Library, the user can program
a specific device able to realize a custom expression based on input signals.
In detail, the input variables can be combined between them or with constant
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parameters. This aspect makes the user able to consider any feature inside
the model. As a matter of fact, different authors combined AMESim fully
editable devices with already programmed sub-models in order to realize full
customized models [61, 62].

In this section, the authors combines elements belonging to 1D Mechanical
and Signal, Control libraries to build a complete 2D nonlinear model of a spur
gear pair. This choice has been made in order to realize a complete dynamical
model were all the main features within gear dynamics are considered. Once
the model of a spur gear pair is well established, a modular architecture is built
in order to realize any type of ordinary transmission layout, single or multiple
branch by connecting the gear pair models between them. This procedure
allows the user to realize any kind of driveline with easy simple step, making
the modeling of a geartrain a straightforward task. Moreover, the choice of a
modular architecture, constitutes a manner to study the interaction between
the geartrain and any kind of device whose dynamics is linked to the driveline
one. The AMESim environment provides for the dynamical coupling among all
the elements linked to the transmission system as electrical motor, combustion
engines or hydraulic pumps.

2.3.1  The gear pair model

The nonlinear model introduced in the previous section is implemented by
means of sub-models pertaining to the Signal, Control Library. The Signal,
Control Library contains editable block components and makes it possible
to construct block diagram models. For instance, the equation of motion are
written manually by using the described sub-models. The gear characteristics
and the other constant parameters are set by means of the Global Parameters
interface. The Global parameter tab allow the user to define constant parame-
ters and combine them together. The gear mass and inertia are represented by
a planar rigid body sub-model pertaining to 2D Mechanical Library. Figure
2 depicts the entire spur gear pair AMESim model. At first sight the model
seem to be very intricate, a detailed focus on each module will clarify its
working principle. Basically, the gear pair model sketch can be divided into
six relevant part: the Planar Body Module, the Equation Block Module, the
Contact Module, the Meshing Stiffness Module, the Bearing Stiffness Module
and the Squeeze Force Module. Moreover, there is an additional module useful
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Planar Body Module Kinematic Module

Meshing Stiffness Module

Squeeze Force
Module
Bearing Stiffness
Module

Contact Module

Equations Block
Module

Figure 2: Block diagram of a single gear pair model

to define kinematic characteristics of the gear pair motion, i.e. the Kinematic
Module. The Planar Body Module is the only module which contains 1D Me-
chanical and 2D Mechanical sub-models, in all the other modules only Signal,
Control sub-models are employed. By focusing on the Planar Body Module,
figure 3, the gear bodies are represented by the green devices, denoted as
"Gear 1" and "Gear 2" in the sketch. These sub-models, represent a planar
rigid body in a generic reference frame Oxy. The planar body takes as input
variables the forces and torque provided by the junctions at ports and gives as
output the displacements, velocities and accelerations suffered by the body. In
this regard, an additional device is needed in order to handle the input/output
quantities separately. The 2D-1D converter, is a connector that enables 1D
mechanical components to be connected to 2D mechanical bodies. In particular,
it allows the extraction of displacements and velocities along x and y direction,
as well as the rotation and angular speed. In the same manner the forces and
torque are transferred from the 1D mechanical ports to the planar rigid body.
The coordinates and velocities of the gear body are monitored by means of
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sensor devices as shown in figure 3. This is an important step of the model
realization as the displacements and velocities represent the input quantities
for the Equations Block Module. In detail, these signals are channeled by
means of wireless devices to a specific sub-model, the dynamic multiplexer.
It combines the variables of its multiple input ports into a single output port.
The number of input ports is dynamic because it is set by the user when the
icon is selected. Afterwards, all the variable are conveyed to a single wireless
device. This expedient permits to group all the variable in a single channel and
then duplicate it for various purpose. The wireless transmitter device contains
twelve signals which correspond to displacements and velocities along x and
y direction, as well as the rotation and angular speed for each gear. The Planar
Body Module provides for the application of dynamic forces to the gear body
and monitor all the degrees of freedom of the system. Coordinates and veloci-
ties of each gear body are then transferred to the different modules in order
to accomplish several tasks. The Equation Block Module, figure 4, represent

Planar Body Module
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Figure 3: Planar Body Module: it is devoted to the monitoring of displacement and
velocities and to the application of forces for each gear

the most important part of the model as it provides for the implementation

of the equations of motion. The coordinate and velocities coming from the
Planar Body Module are combined with bearing and meshing stiffness signals
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in order to implement the system of equation 1. The equations are written by
means of DYNFUNCoo sub-models, figure 5. The latter are widely used in

‘ To Contact Module “1 T ‘ From Contact Module ‘

Forces for Gear 1, x direction

———————— : Fxyp

B To Planar

,,,,,,,,,,,, j >——~ Body

Module

Bearing and meshing Lo BT
stiffness signals

Equation Block : -
Module NS nee e = A/

Figure 4: Equation Block Module: provides for the implementation of the equations of
motion

the present model as they allow the output to be expressed as a combination
of multiple input variables and constant parameters. As depicted in figure 4,
the forces contribution is expressed for each gear and direction. In addition,
the overall force/torque is further divided in three different part: the viscous
contribution, the bearing contribution and the meshing contribution, see figure
5. As the proportional damping model is adopted, the viscous contribution
accounts only for the viscous force due to the rotating inertia or translating
mass. The bearing and meshing contribution includes for both elastic force
and proportional viscous force. As it can be noticed from figure 5, the meshing
contribution, is defined by means of two separated devices. As underlined in
the previous section, the definition of the meshing force depends on which
side of the tooth the contact occurs. In geared transmission system, the Direct
Line of Action is recognized by the prime mover rotation direction which is
assigned in relation to the system layout. In this regard, when modeling a
geartrain, the position of Direct Line of Action is known a-priori. Based on this
assumption, a user-defined parameter works as discriminant to select the line
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of action to be considered as direct. This operation is made by two logic blocks
linked to the meshing force definition sub-model. Successively, viscous and
bearing contribution are sent to the Planar Body Module while meshing forces
signals are transmitted to the Contact Module. The definition of dynamic
transmission error is the basis of the Contact Module, figure 6. As for meshing

Forces for Gear 1, x direction

o Lo |

| Viscous contribution

|
| -l F
| Bearing contribution I N [’] Nan o B
o[ A O i
2 SIE |3
| Meshing contribution I —
i X
=l = i ] —?D—
|
v
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sub-models

Figure 5: Detail of Equation Block Module

forces contribution, dynamic transmission error is defined by employing eq.
3 and 4 both. This assignment is performed by the x; writer, see figure 6,
which encompasses the logic operation to select the correct Direct Line of Action.
After the computation of dynamic transmission error, the signal is sent to the
logic blocks which determine the tooth side of contact by applying eq. 2. This
operation is done for each gear and each direction. Once the meshing force
has been selected, it is sent to the Equation Block Module which provides for
the sum between viscous, bearing and meshing contribution. Let focus the
attention now on meshing stiffness module, figure 7. As highlighted in the
previous section, meshing stiffness is a periodic function whose periodicity is
assigned by the gear mesh. In addition, it is characterized by a load-depended
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Contact Module

‘ From Equation Block Module | ‘ To Equation Block Module ‘

Figure 6: Contact Module: it provides for the selection of the correct line of action and
tghe detection of free flight motion

non linearity, therefore, its value depends on the overall relative compression
between teeth. In order to represent this feature, the meshing stiffness map is
inserted by means of a dynamic 2D interpolation table. Then, the sub-model
extracts the correct value depending on two input variables: the dynamic trans-
mission error and the kinematic position of prime mover. In particular, the
kinematics of prime mover rotation is computed by the Kinematic Module. The
angular displacement is then converted into a sawtooth waveform clock signal
by simple mathematical operations. The clock signal represents a rotation over
a pitch angle. This is done in order to select the appropriate meshing stiffness
over a pitch angle rotation. When back contact occurs, the corresponding phase
of meshing stiffness is consequently chosen. For instance, an additional 2D
interpolation table is employed to opportunely consider the gear mesh back
contact phase. As for the gear mesh force definition, a user-defined parameter
works as discriminant to select the mesh stiffness to be used. This operation is
made by the logic block depicted in figure 7. The Bearing Stiffness Module,
tigure 8, provides for the selection of bearing stiffness. In particular the nonlin-
ear stiffness is defined by means of a 1D interpolation table. This sub-model
takes as input variables the displacement along each direction, and gives as
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Figure 7: Meshing Stiffness Module: it selects the meshing stiffness to be used at each
time step

output the bearing stiffness to be used. The squeeze force module, figure 9
is responsible for the squeeze viscous force computation when two teeth are
approaching. Time derivative of dynamic transmission error along Direct Line
of Action and Back-side Line of Action are computed in a similar manner as for
dynamic transmission error definition. Successively, these signals are sent to
the squeeze writer devices which execute the operations depicted in eq. 5, 6,
7. The squeeze force signal is then added to viscous, bearing and meshing
contribution provided by Equations Block Module. The modeling strategy
used to describe the nonlinear dynamics of a single gear pair can be easily
extended to an arbitrary number of gears.

2.3.2  The geartrain model

By starting from the model shown in figure 2, it is worth noticing that the non
linear dynamic computation modules are suited to work by taking as input
variables the displacements and velocities from the gear bodies and giving
as output the forces exchanged between them. In addition, the kinematic
position of prime mover is needed for the correct selection of meshing stiffness.
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Bearing Stiffness
MOd u Ie Gear 1, x direction

Gear 1, y direction

+ Gear 2, x direction

Gear 2, y direction

Figure 8: Bearing Stiffness Module: it selects the bearing stiffness to be used at each
time step

In this regard the Meshing and Bearing Stiffness Modules, Equation Block
Module, Contact Module and Squeeze Force Module can be collected in a
black box in order to handle a unique device which performs the nonlinear
dynamic computation of the system. In order to accomplish this task, the
Simcenter AMESim software is provided of an appropriate facility, i.e. the
Supercomponent Facility. The Supercomponent (SC) realization allows the
user to organize a model from a functional point of view, especially when its
usage is spreading. In particular, the user can manually choose the sub-models
to be included in the SC and then create ports to make it communicate with
other devices. By focusing on the complete model depicted in figure 2, one
may select the devices to be included in the SC facility. Figure 10 depicts the
same model shown in figure 2 where the different modules are included into a
unique black box denoted as SCy;. By adopting this expedient, the user can
simplify the visual appearance of the whole numerical model.

To summarize, the described procedure has led to the definition of a black
box, the SCy;, able to describe the nonlinear motion of a single gear pair. Based
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To Equation Block Module

Squeeze Force 5
Module : A

Figure 9: Squeeze Force Module: it provides for the implementation of the lubricant
squeeze force between the approaching teeth

on this assumption, this tool can be used to model additional meshing in a
multi mesh geartrain. By focusing on figure 2, the same architecture of meshing
1-2 can be reproduced to define meshing 2-3. In order to accomplish this task,
one may adopt the same modeling strategy as for meshing 1-2, providing
the adjustment of some technical features. In fact, the model of a single gear
pair accounts for bearing and viscous contribution on gear 1 and gear 2 both,
when adding a third gear to the driveline only meshing contribution for gear 2
may be considered. As a matter of fact, the modeling of meshing 2-3 would
present the same architecture as for meshing 1-2, providing the deletion of
viscous and bearing contribution from the Equation Block Module and Bearing
Stiffness Module. As a final step, the Equation Block Module and Bearing
stiffness Module would be re-programmed as shown in figure 11 and 12
respectively. This procedure will lead to the generation of a different device,
the SCp;3, able to define the nonlinear dynamics within the meshing 2-3. The
final geartrain model is depicted in figure 13. It is worth to underline that
the "Gear 2" receive forces from "Gear 1" and "Gear 3" both, allowing the
dynamic coupling of the whole system. The supercomponent SC,3 can be used
to model any additional gear in ordinary transmissions. In fact, providing the
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Figure 10: Gear pair block diagram complete model. The present figure depicts the
same sistem in fig. 2 where the different modules have been collected into
a unique black box, the SCy,

selection of correct gear parameters, it can be employed as a general device
describing the nonlinear dynamic behavior of a generic meshing. For instance
the SC33 can be renamed as SC,,_;, as it computes the dynamic response of
a generic meshing n — 1/n. The proposed modeling strategy is a powerful
tool to realize any kind of ordinary transmission layout. In fact by employing
SCy2 and SC,_;,, the realization of a complete transmission system is made
by connecting the supercomponents between them. This approach can be
very useful in industrial environment were the model time setup represent
an important aspect. In addition, the graphical user interface permits an user-
friendly management of the model realization. Once the SCy; and SC,,_;,, are
established the realization of a geartrain may become a straightforward task.
The next section provides a numerical experimental correlation on industrial
use case.
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Figure 11: Equation block for an additional gear. It is worth noticing how the viscous
and bearing contribution for the previous mesh are erased.

2.4 NUMERICAL ASSESSMENT

In this section a numerical experimental correlation on industrial use case is
proposed. Unfortunately, obliged by confidentiality term, the author cannot
give any kind of information of the real system specifications. The purpose of
this section is to give proof of the accuracy of the model. The system under
study is a timing geared system composed of 17 spur gears. The experimental
setup is composed of the driveline with a dedicated test rig designed to
reproduce the actual working condition. The geared-rotor-bearing system is
accelerated in a certain speed range and torsional oscillations for different
gears are monitored by means of optical encoders. The geartrain is subjected
to a low mean value oscillating torque at its output, while it is driven by an
electrical motor. The same system is then reproduced in Simcenter AMESim
environment. The test rig is modeled by employing sub-models pertaining to
1D Mechanical and Powertrain Libraries. The geartrain is then constructed
by following the methodology described in the previous section. The gear
mesh stiffness is calculated by employing the method described by Cooley
et al. in [30]. The methodology is applied for various mean torque load, in
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Figure 12: Bearing Stiffness Module for an additional gear. It is worth noticing how
the bearing stiffness for the previous gear is erased.

order obtain the stiffness value in varying-load conditions. In the same manner,
the load-depended bearing stiffness is computed by means of finite element
analysis as depicted in [35]. Damping proportionality coefficients are set on
the basis of the author experience. Results are computed by employing a time
integration technique based on Runge Kutta method of order 4 and a fixed
time step integrator of 10~’s.

The numerical validation is made by matching the combustion engine or-
ders amplitude in terms of angular displacement. In order to accomplish the
confidentiality terms, the amplitude and frequency of the acquired signals are
both normalized. Figure 14 shows a generic engine order N and its multiple
2N. The comparison is made for nine gears pertaining to the driveline. The
experimental outcomes show an excellent agreement with numerical forecasts
demonstrating the effectiveness and reliability of the model. As it may be
clearly recognized from figure 14, the 2N order amplitude raises considerably
by moving from Gear 1 to Gear 9 up to exceed the N order trend. The first
gear is closer to the electric motor, while the ninth one is next to the output
shaft. The oscillating torque on the lightly loaded transmission provokes vibro-
impacts between gear teeth. This dynamic phenomenon occurring during the
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Figure 13: Geartrain model composed by three gears.

experimental test represent an important element captured by the numerical
model. In fact, bifurcations appears in the neighborhood of 0.82 normalized
frequency. By focusing on Gear 8 and Gear 9 diagrams in figure 14, it is
clear the presence of a jump phenomenon, hence, the existence of an unstable
solution branch. In particular, by approaching a resonance frequency range,
the system dynamics undergoes through an unstable region, characterized
by multiple solutions for the same frequency range. For instance, the system
would assume a different stable behavior depending on the initial working
condition. In fact, figure 14 depicts the dynamic behavior of the geared system
when it is accelerated in a certain speed range. The numerical model approxi-
mates the real behavior of the transmission system with high fidelity, catching
the main nonlinear dynamics phenomena.

In geared transmission systems, their dynamic motion during an increasing
velocity condition may be different from the one in deceleration. In order
to obtain a complete response function and get the exact position of the
bifurcation points, the dynamic motion of the system must be investigated
during run up and run down velocity regime. In this regard, run down
simulation is performed and results are compared in figure 15. As it may be
noticed from figure 15, the jump phenomenon is still present but its location
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is changed. This aspect indicates the frequency range which is affected from
the multi-valued solution. It is worth to underline that not all the gears are
affected from the same instability regions wideness. In fact by focusing the
attention on Gear 8 diagram in figure 15, it is possible to notice that the
unstable region lasts through the normalized frequency range 0.72 —0.81. On
the other hand, Gear 4 present a wider frequency range: 0.61 — 0.83. Unless
the run down simulation goes beyond the main purpose of model validation,
it was extremely useful to locate the exact position of bifurcation points and
the wideness of unstable regions. This aspect is also related to varying load
condition. The load depended stiffness may have a significant role in unstable
regions determination and the location of the jump phenomenon.

Numerically speaking, to obtain a complete response dynamic function by
using Runge Kutta time integration scheme, several simulation may be per-
formed in each working condition. This aspect makes the study of a nonlinear
system a very onerous task from a computational point of view. In fact, in
order to get a complete scenario of the possible solution for a generic nonlinear
system, more suitable numerical techniques may be used. This aspect is deep
investigated in the next Chapter. Beside these negative effects, the proposed
solution permits an excellent approximation of the system dynamics for a
single working condition.

2.5 CONCLUDING REMARKS

The present Chapter proposes a block diagram approach as an effective tool to
realize geared transmission system models. By taking advantage from graph-
ical software capabilities, the author gives detailed guidelines to realize any
kind of ordinary transmission layout. Firstly, the nonlinear lumped parameter
model of a single gear pair is established. The model accounts for backlash
non linearity, time-varying and load depended meshing stiffness, load de-
pended bearing stiffness and lubricant squeeze force when teeth detachment
occurs. Once the model of a single gear pair is established, a modular archi-
tecture is developed in order to construct any geartrain by connecting the
pre-programmed element between them. This methodology enhances the use
of a modular architecture. In fact, the introduction of such tool in industrial
environment may represent a key point to speed up the model setup phase.
The model was realized with Simcenter AMESim commercial software. By fo-
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cusing on numerical resolution methods, the software is limited to the already
implemented numerical computation techniques. For instance, the system of
differential equations can be solved only with time integration techniques. This
may represent the main limit of the proposed approach. In fact, by studying
nonlinear systems, one may be interested in the investigation of unstable re-
gions and bifurcation tracking. Time integration techniques are not suited to
perform these kind of analysis as the stable solution of a generic nonlinear
system is strongly related to its initial conditions as depicted in the previous
section. In this regard, an additional modeling strategy is investigated in the
next Chapter.
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Figure 14: Generic engine order N (blue lines) and its multiple 2N (orange lines). Ex-

perimental results are represented by solid lines while numerical outcomes
are depicted by dotted lines.
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A TAYLOR SERIES-BASED CONTINUATION METHOD FOR
SOLUTION OF NON LINEAR DYNAMICS OF SPUR GEARS

The Chapter proposes the Asymptotic Numerical Method (ANM) combined to the
Harmonic Balance Method (HBM) as a valuable approach to solve the nonlinear
dynamics of gear pairs. The ANM is a continuation method based on high-order Taylor
series expansion of the computed solution branch. The HBM is a periodic solution
representation method based on high-order Fourier series. Thanks to a quadratic recast
of the equation of motion, the Taylor and Fourier series can be computed in a very
efficient way and each step produces a continuous representation of the solution branch
making the continuation very robust. By employing this method, the periodic solutions
may be easily expressed with respect to both the shaft rotation frequency and the gear
mesh frequency as the adoption of a high number of harmonics has negligible effects
on the computational burden. Effectiveness and reliability of the method are proved
by comparing the numerical results with that obtained from the Runge-Kutta time
integration scheme. Afterwards, a comparison in terms of computational efficiency
is performed. Finally, some considerations are drawn in order to highlights the main
differences between the two methods within gear dynamics computation.

3.1 INTRODUCTION

The mathematical model describing the geared rotor-bearing system dynamics
is constituted by a system of ordinary differential equations characterized by
a non smooth nonlinearity. In fact, the backlash-induced torsional vibrations
may lead to vibro-impacts, generating unstable regions and bifurcations in
the dynamic system response. For this reason, many authors focused on gear
modeling in order to conduct stability analysis and bifurcations tracking. In the
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work presented by Kahraman et al. [6], gear pair dynamics was computed by
using two solution methods in order to highlight the main differences between
them. The first one is a numerical method, consisting in time integration
techniques based on Runge-Kutta scheme. On the other hand, an analytical
approximate solution by using the Harmonic Balance Method is proposed. The
authors gave evidence that results obtained from time integration techniques
in multi-valued region are strongly related to system initial condition. Besides
this aspect, the analytical approximate solution constructed with the Harmonic
Balance Method is capable to find all stable solution branches. Parker et al.
[63] proposed a nonlinear model of a spur gear pair providing comparison
between numerical and experimental results. The authors used a combined
surface integral /finite element solution method detailed in [64]. Later, Eritenel
and Parker [65] realized a three dimensional nonlinear model of a gear pair.
They examine the dynamic response of the system taking into account the
partial contact loss and three dimensional dynamic displacements. They proved
the effectiveness of the model by comparing the numerical results obtained
from numerical integration with experimental outcomes. Very recently Wang
and Parker [66] gather an analytical solution for resonances and parametric
instabilities of a planetary gear set with a general phase. By starting from the
resonance suppression rules [67] and modal proprieties [68] they obtained a
closed-form amplitude-frequency relation. Theodossiades and Natsiavas [69]
introduced a new analytical method to compute periodic motion of a gearpair
system and their stability. This methodology combines features of piecewise
linear systems involving constant coefficients [70] with perturbation methods
considering time-varying coefficients [71].

Different authors investigate the stable and unstable regions of a geared
system dynamic response by using continuation methods. Carbonelli et al.
[72] combined the finite difference scheme in time domain with an arc-length
continuation method to compute the periodic steady state response. Shin and
Palazzolo [73] proposed a novel approach to model and analyze the non linear
dynamic behavior of geared rotor system supported by journal bearing. Their
method allows to compute coexisting, steady-state, autonomous and non-
autonomous responses utilizing multiple shooting method and continuation
algorithms. Wei et al. [74] used the interval harmonic balance method to solve
the nonlinear dynamic problem of gears considering parametric uncertainty.
The method was combined with pseudo-arc length continuation with the
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Chebyshev inclusion function. Al-shyyab and Kahraman [75], [76] studied the
nonlinear dynamic response of a multi-mesh gear system using a multi-term
harmonic balance method coupled with discrete Fourier Transforms and a
Parametric Continuation scheme. Hilali et al. [77] proposed an implicit high
order algorithm based on the coupling of the Asymptotic Numerical Methods
(Cochelin et al. [78]) and the implicit Newmark scheme. Mélot et al. [79]
examined the effect of gear topology discontinuities on the nonlinear dynamic
response of a gear pair. The equation of motion was solved by using the
Harmonic Balance Method coupled with alternating frequency-time methods
and an arc-length continuation procedure. Besides gear dynamics, similar
methods have been applied in literature for the representation of periodic
solution of different kind of dynamic systems. They can be time domain
methods as shooting [80, 81] and piecewise polynomial orthogonal collocation
[82], alternating frequency-time method [83, 84], mixed time and frequency
methods [85] and purely frequency domain method with the full harmonic
balance [86, 87].

The proposed literature survey demonstrates the wide interest on the so-
lution of the gear dynamics by using continuation methods, as they allow
to compute the nonlinear normal modes of geared systems. Usually, all of
these methods are based on a predictor corrector procedure where the solution
points of the analyzed branch are predicted from a previous solution step.
Afterwards a corrector is applied to verify that the corrected solution actually
pertains to the solution branch. This is a key common aspect since it makes
the continuation of periodic solutions very onerous from a computational
point of view. This critical issue does not allow the user to consider an high
number of harmonics to approximate the behavior of the dynamic system.
This aspect becomes particularly relevant in geared system dynamics as the
carrying frequency of the external excitation is usually given by the first or-
ders of the driving shaft rotation frequency. On the other hand, the internal
excitation provided by the mesh stiffness and the static transmission error
produce harmonics given by the driving shaft rotation frequency times the
tooth number and its integer multiples. As a consequence, only high-order
methods may be capable to solve the gear dynamics including both internal
and external excitation.

In this Chapter the author proposes the solution of the gear pair dynamics
by using the Asymptotic Numerical Method combined with the Harmonic
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Balance Method. According to his best knowledge, this is the first time that
these methods are combined together to solve the complex problem of gear
dynamics. The HBM is a frequency domain method which allows to obtain
an algebraic system by starting from ordinary differential system of equations.
The classical HBM is very simple in its principle, on the other hand when the
nonlinearities are strong and a large number of harmonics is required, it can be
cumbersome or even impracticable [88]. Cochelin and Vergez [89], give proof
that thanks to a quadratic recast of the initial system of equation the HBM can
be applied with high efficiency accounting for an high number of harmonics.
Once the system of algebraic equations is retrieved, the ANM continuation
method is applied. The ANM was firstly described by Cochelin et al [90, 91]
and it is based on high-order Taylor series expansion of the computed solution
branch. Differently from the other continuation methods, most of the time this
procedure does not require a correction step as it can be seen as an high-order
predictor. Each step produces a continuous representation of the solution
branch making the continuation very robust. This aspect allows the user to
consider a very high number of harmonics to represent the behavior of the
dynamic system. The continuation of periodic solution can be easily expressed
with respect to both the shaft rotation frequency and the gear mesh frequency.
As a matter of fact, this method provides the chance to study the effect of high
frequency internal excitation in combination with a low frequency external
torque. In order to compute the high-order Taylor and Fourier series coefficients
of the solution branch in an efficient way, the key point is to adopt a quadratic
formalism recasting the system of equations of motion. In fact, as depicted
in [92] and [93], the quadratic recast is a part of the method itself for its
generality and its performance. By recasting the dynamic system in a quadratic
form, the computation of Taylor and Fourier series can be automatized. As a
matter of fact, the variety of dynamic systems that may be studied within this
procedure are limited only by the necessity of a quadratic expression of the
equations. Within this framework, a continuation software was realized [94],
able to implement the Asymptotic Numerical Method method by starting from
a system of equations where all the nonlinearities are expressed in a quadratic
form.

The Chapter is structured as follows. In the following section the elements of
the theory on Asymptotic Numerical Method and Harmonic Balance Method
are briefly recalled. In Section 3 the nonlinear lumped parameter model of a
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spur gear pair with time-varying meshing stiffness and backlash is presented.
The system of ordinary differential equation governing the gear dynamics
is recast in a quadratic form. The procedure is firstly carry out on a purely
torsional model. Afterwards, the same operations are executed on the classical
4 DOFs system, taking into account bearing and shaft compliance. Section 4 is
devoted to numerical assessment. Firstly, by using the continuation software
Manlab, the periodic solution of the geared system dynamic response are com-
puted. Then, results are compared with that obtained from a well-known time
integration technique, i.e. Runge-Kutta scheme. The comparison is performed
for the purely torsional model and 4 DOFs model both. In addition, a compar-
isons in term of computational efficiency have been performed between the
Asymptotic Numerical Method and the Runge-Kutta time integration scheme.
Afterwards some considerations are drawn to highlights the main differences
between the two methods within gear dynamics computation. Eventually, last
section is devoted to concluding remarks.

3.2 THE ASYMPTOTIC NUMERICAL METHOD AND THE QUADRATIC FOR-
MALISM

In this section a brief recall of the Asymptotic Numerical Method is presented.
The key approach is the quadratic formalism. In fact, by recasting the system of
equation in a quadratic form, it is possible to apply in an efficient and general
way the Asymptotic Numerical Method. The main idea behind the quadratic
recast consists in the introduction of auxiliary variables. The quadratic recast
leads to a system of equation where all the nonlinearities are expressed by
means of only quadratic terms. Suppose that the original system is in the form

r(x) =0 (8)

where vector x contains all the main variables of the system.
In order to achieve the quadratic reformulation, it is needed to introduce a
new system of equations, where the definition of auxiliary variables x, appears:

Ta(X,%xq) =0 9)
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The system which results from eq. 8 and 9 is called the full system of equations:

re(xs) = [Tm("” ] with x; = [" ] (10)

where 1, (xf) represents the main system in eq. 8 recast quadratically by using
auxiliary variables x4. Once the system has been recast in a quadratic form, it
can be written by using a constant operator c, a linear operator | and a bilinear
operator (:

Te(xf) = ¢+ Ux¢) + qxs, xf) (11)

It is worth to underline that for the purpose on the current work, the system of
equations 8 only involves sum, product and roots operators. By dealing with
systems where transcendental functions appear, the quadratic recast is still
achievable as explained in [92].

3.2.1  Taylor series based continuation method

Once the quadratic formalism has been recalled the main idea behind continu-
ation methods is briefly defined. Consider the algebraic system of equation:

r(x,A\) =0 (12)

where x € IR" is the vector of unknown, A € R is a parameter of interest
and v : R" x R — IR" is an analytical function of x and A. Let U = (x,A)
be the vector of all the unknows to simplify the notation. The main goal of
continuation consists in the computation of solution branches in the space
(x,A) where the system of equations 12 is satisfied. By starting from a known
solution point Uy = (xp,Ao) the solution branch is continued by searching
for other solution from the starting point. The concept of continuation is
theoretically justified by a well known mathematical theorem, i.e. the implicit
function theorem. It states that, if the Jacobian matrix of r at the point U, is
invertible, the solution branch in the neighborhood of the starting point U,
exists and it is unique and regular. Consider U; as a tangent vector at Uy, the
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solution branch around U = Uy is computed by using a Taylor series with
respect to the pseudo arc-length parameter, a = Uj (U — U):

U(a) = Uy + al; + a®Uy + a®Us + ... + aNUy (13)

This Taylor series expansion is the base of Asymptotic Numerical Method.
Once the eq.12 is recast quadratically, it is written in the form of eq. 10. Then
the variable x; are developed in Taylor series and introduced in the quadratic
equations. Afterwards the terms of the same order with respect to a are
collected and equated to zero, leading to the following system of equations:

Order 0: ¢+ L(xo) + q(x0,x0) =0
Order 1: 1(x1) + q(xo,x1) + q(x1,%0) =0
Order 2 : 1(x2) + q(x0,x2) + q(x2,%0) + q(x1,%1) =0 (14)

Order p: Lxp) + q(x0,%p) + q(xp, %0) + X 5_1 (a(xi,Xp—i)) =0
More detail about the computation of the series are given in [92]. It is worth
noticing that thanks to the quadratic recast the computation of Taylor series
13 can be automatized as shown by the system of equations 14. The quadratic
recast is part of the method itself as it allows the resolution of a large class of
nonlinear dynamic systems.

3.2.2 The Harmonic Balance Method for ODE

In this Chapter the Asymptotic Numerical Method is used to compute the
periodic solution of ordinary differential equations (ODE). The procedure
described in the last subsection can be applied to an algebraic system of
equations. By starting from a classical ODE system, the key point is to obtain
an algebraic system by applying the well known Harmonic Balance Method.
Given an ODE system:

y ="~(t,y,A) (15)
where y is an unknown function of the time, A is a parameter of interest and f
is an analytic function, the variable y can be expressed as a truncated Fourier

series:
H

y(t) =yo+ Z (Ye, cos(kwt) +ys, sin(kwt)) (16)
k=1
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where yj is the variable mean value, while y., and ys, are the amplitude
related to the k —th harmonic of the cosine and sine respectively. The Harmonic
Balance Method working principle is to introduce eq. 16 in eq. 15 and balancing
the 2H + 1 harmonic terms. This procedure leads to an algebraic system of
2H + 1 equation where the unknowns are yo, yc, and ys, . It is worth to
underline that if eq. 15 has been recast in a quadratic form, the algebraic
system obtained after the application of Harmonic Balance Method is already
quadratic. It means that its periodic solutions can be continued with the
Asymptotic Numerical Method as explained in 3.2.1

3.3 NONLINEAR DYNAMIC MODEL

In this section the nonlinear lumped parameter model of a single gear pair
is recalled. The equation governing the motion of the system is rewritten
in a dimensionless form. After the non-dimensionalization procedure the
equation is recast in a quadratic form in order to be solved with the Asymptotic
Numerical Method as explained in the previous section. The procedure is
firstly executed on a purely torsional model. Afterwards, the same operations
are carried out on the classical 4 DOFs system, taking into account bearing
and shaft compliance. For the sake of clearness, differently from the model
introduced in the previous Chapter, the load varying mesh and bearing stiffness
as well as the squeeze force are not considered here. In addition, in order to
simplify the quadratic recast a constant damping coefficient is adopted.

3.3.1  Gear pair purely torsional model

In this subsection the nonlinear lumped parameter model of a single degree of
freedom gear pair is recalled. Figure 16 shows the schematic representation
of the dynamic system. Gears are mounted on rigid shafts and bearings.
One degree of freedom is assigned to each gear, namely 0;. The gear mesh is
described by a backlash clearance xy, a time-varying mesh stiffness ki, = ki (t)
and a viscous damping cp,.

Before analyzing the nonlinear system dynamics, a focus on linearized
equations is needed. In fact the two degrees of freedom may be combined
to ob’%ain a single degree of freedom system, as a rigid motion occurs when
0, = ¢, 61.
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Gear 1 ~

Figure 16: Torsional lumped parameter model of a gear pair

The motion of the system is described by the system of equations:

{ 1161+ CmR1 (R101 —Rz03) + knnoR1 (R107 — Ry03) = Tel (i)

J202 — cmR2(R1671 — R262) — kmoR2(R101 — R20;) = —Tez
where k0 is the mean value of meshing stiffness, J; represents the inertia, R;
is the base radius and Te; is the external torque applied to gear i, withi =1, 2.
In order to focus the attention on the internal excitation, external torques on
each gear are set as constant terms. Eq. 1 and 2 of system 17 may be reduced to

one single equation in terms of x;, which is defined as dynamic transmission
error [15].

Xr = R107 — R0, (18)
By replacing eq. 18 into system 17 and combining the two equations together,

one may obtain:

MegXr + CmXr + KmoXr = Fe (19)
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Where meq = represents the equivalent gear pair mass, and F, =

N B
R7/J1+R5/]2

Te]E;;}]i;ezl/?j/ 12 is the average force transmitted through the mating teeth.
1/)1TR2

In order to represent the nonlinear features, time varying meshing stiffness
and backlash clearance are inserted into the model. Gear teeth contact loss is
modeled by a nonlinear non-analytic function fy;(t). It can be defined as a
piecewise linear function:

( [(%r —xp/2)] if X > xp/2

fr(t) = 0 i Ixel < xp/2 (20)

[(%r +xp/2)]  if %X < —Xp/2
The equation of motion is now reformulated as:
MegXy + CmXy + km(t)fu(t) = Fe (21)

Once the contact function has been defined, a non-dimensionalization pro-
cedure is applied to eq. 21. The starting point is the introduction of the
dimensionless time, i.e. T = wnt where wy, is the eigenvalue of the eq. 19 and

its value is wn = \/kmo/Megq.

MeqW2X: 4 CrnWn Xy + Ko (7)1 (1) = Fe (22)

At this point two more steps are necessaries for the fulfillment of the dimen-
sionless procedure. First a new variable is introduced, x = X:ﬁ, then eq. 22 is
divided by the mean value of meshing stiffness k.

X+ 20x + km(T) () =F (23)
kmO

Where F = % is the dimensionless average force between teeth, parameter
moxb/2

(= Zmi?wn represents the modal damping factor and f/,(t) can be expressed
as follows:
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(([(x—=1)]  if x>1

if x| <1 (24)

L (x+1)]  if x<—1

In order to perform a full quadratic recast, a regularization technique is applied

to the non-smooth nonlinearity to obtain an analytical function. Eq. 24 can be
smoothed by the irrational equation:

!

nl(T)%<X+%(\/(X—1)2+4ﬂ2—\/(X+1)2+4ﬂ2)) (25)

The parameter 1 represents the smoothing factor. Figure 17 shows a comparison

between the nonlinear contact function computed with eq. 24 and eq. 25 for
different value of n.

0.5 T T T
Non-Analytic
n=0.1
— — —n=>5e3 .
————— n=1le-3 Ny
Ry
— [P
= Or e S R 7
e
Ve
A
0.5 I I 1 I I
1.5 1 0.5 0 0.5 1 1.5
X

Figure 17: Nonlinear contact function. The curve related to n = le — 3 is almost
overlapped with the non analytical definition

Once the contact function has been smoothed the final form of the equation
of motion yields to:

k
X+ 20x +

1:1“(;) (w% <\/(x_1)2+4n2—\/(x+1)2+4n2>) =F (26)
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which now has a suitable form for the quadratic recast of the system. Meshing
stiffness is a periodic function whose angular pulsation is Q, = zQ),, where
Q) is the shaft rotational velocity and z is the number of teeth of the considered
gear. As a matter of fact, it may be expressed by means of a truncated Fourier
series:

H o) 0
Km (T) = Kmo + Z Kme, €OS (k—m’t) + Kms, sin (k—m’t) (27)
k=1 Wn Wn

Kme, and kps, are the amplitude of the k — th harmonic of meshing stiffness
related to cosine and sine respectively.

In order to make the continuation for the computation of periodic solution
by using the Asymptotic Numerical Method, the equation must be written in a
quadratic form as depicted in section 3.2. The only expression which is not in
a quadratic form is the smoothed function. Auxiliary variable are introduced:

2 (v _1)2 2
= vg] = (x 1)2—|—4n2 (28)

The time varying mesh stiffness represents the internal excitation of the system
and it is considered as an external variable whose periodicity is assigned.
Equation 28, together with Egs. 26 and 27, leads to the equation system in its
final form:

y=x
Y+20y +v(x+3(vi—v2)) =F
Kme Kms 1
=g v=T U e cos (kgaa) 4 2 sin (kG (29)

V%: (x—1)2+4n2
Vi = (x+1)? +4n?

3.3.2  Gear pair complete lumped parameter model

In this subsection the dynamic model of a gear pair with compliant bearings
is established. Figure 18 shows a schematic representation of the system
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Figure 18: Lumped parameter model of a gear pair with compliant bearing

layout. Gears are mounted on compliant bearings whose stiffness yields ky,
and damping coefficient c,. Two degrees of freedom are assigned to each gear,
namely 0; and x;. The gear mesh is described by a backlash clearance xy, a
time-varying mesh stiffness k;, = ki (t) and a viscous damping c,. In order to
analyze the effects of internal excitation on system dynamics, the prime mover
is connected to the frame by means of a torsional spring, whose stiffness value
is k¢ and its damping coefficient is c;. The equation of motion of the gear pair
yields to:

I
o

miX] + cpX1 + kpX1 — cmXr — K () fry ()
J1 07 +c107 + k01 + RicmXr + Rikm (t) i (t) =0
myX2 + cpX2 + kpX2 + cmXr + ki () fri(t) =0
J262 — RacmXr — Rokn (1) frt (1) = —Tez

(30)

where f,,1(t) has been defined in eq. 20 and x; is the dynamic transmission
error:
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Xr = R1071 —R202 + %2 — x1 (31)

As the single-degree-of-freedom model, a non-dimensionalization procedure
is applied to system of equation 30. This procedure is slightly different from
that related to one DOF system. The system in figure posses four DOFs, i.e.
four eigenvalues and eigenvectors are computed. After the modal analysis
on linearized system the last eigenvalue, namely w4, is used to obtain the
dimensionless time. Afterwards the two variables are introduced: x; = ﬁ

and ¥; = Xgﬁ. The introduction of the latter allows the expression of a dimen-
sionless transmission error, namely X, = Rj91 — Ry92 + X2 — X1. At this point
the nonlinear contact function can be reformulated as in eq. 24 providing the
substitution of x with x;. The latter is then smoothed in the same manner
adopting the irrational equation:

= (et 5 (Vo =12 ant = ooz ) ) 62)

Now, by introducing the dimensionless time, replacing x;, ¥; and eq. 32 into
system of equation 30 the final dimensionless form of the equation of motion
is:

4
m’w““x + Spntyy Kby, emnay I (1) = 0
I1wn CtWn k men ; km('f) _
R 01 T Rykomo 01 +R1kt 201 e X+ T fulT) =0 (33)
2wn4X + wan4X2+ ﬂ)( _|_ men4XT+ . (O)f/ ( ) 0
Ian Cm Wh Kkm (T) _ Te
lemg 2_ km04Xr_ Kmo nl(T) o _XTbknfoRz
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The system 33 can now be recast in a quadratic form by introducing the
auxiliary variables defined in eq. 28 where the variable x is replaced by x;. The
final system in quadratic form is :

.

X1 = X1
2
MW - ChbWn4 CmW®n4g _ 1 — =
km(;l Vi TR E Vxy T k 0X1 m; Xr —Vk(Xr + 3(Va1 —va2)) =0
:f}]
]1('0714 + Ctw n4v + ki ,8 +Cm n4 +V( + = (V v ))_O
RiKmo 0 RiKmo Y91 Rikmo Xr K\ Xr al = Va2l)) =
—Xz
2
maWig,,- CbWn4 Ky CmWn4 ., 1 _ _
—_— kmc;l Vx, T kmg Vy, T+ Koo X2 + km(;L Xr +vi(Xr + Z(Val va2)) =0
vy, =2
]Zw,zl4 - CmWng 1 _ Te2
Rykmo V92 Kmo Xr vk(Xr‘l‘ (Va1 —va2)) = P kmoRa

=R —Rad +x2—x1
=1+ Zk : mck cos (kaT> + msk sin (k%—:*r)
%11 = (Xr — ]) +4Tl
a1 = (xr + 1)2 +41?

(34)

3.4 NUMERICAL ASSESSMENT

In this section numerical experiments are performed. Firstly the nonlinear
dynamics of the described models is computed with the Asymptotic Numerical
Method by using Manlab software. The same lumped parameter models are
established in AMESim environment by following the procedure described in
Chapter 2 and their dynamics is computed with a fixed time step integrator
based on a 4th order Runge-Kutta method. Finally, the results coming from
the two solution methods are compared for the purely torsional model and
the 4 DOFs model both. In addition, a comparisons in term of computational
performance is conducted and some considerations are drawn on the use of
the Asymptotic Numerical Method to represents the gear vibration in radial
direction. The continuation is performed with respect to the dimensionless
frequency ?U—:, considering 400 harmonics, i.e. 8 harmonics of gear mesh
frequency as the prime mover has 50 teeth. The lumped parameter model has
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been constructed by employing the gear data used by Melot et al. in [79]. Gear
characteristics are shown in Tab. 1. Gear mesh stiffness has been approximated
by using 8 harmonics. Figure 19 shows a comparison between the meshing
stiffness calculated by Melot et al. [79] and the approximation derived from an
eight-term truncated Fourier series. By focusing the attention on the purely
torsional model, Figure 20 depicts the root mean square value (RMS) of the
transmission error at different shaft speed rotation, Qs = Qy,/z;.

%108 Fourier series approximation
T T T

[N} %)
oo w o

g
o

Meshing stiffness [N/m]

Angular pitch [rad]

Figure 19: Meshing stiffness calculated by Melot et al. [79] (solid line) and its approxi-
mation derived from an eight-term truncated Fourier series (dotted line)

The results show a stable behavior when teeth are always in contact up to
4700 rpm, where the first bifurcation appears. In fact, by observing the results
obtained with Runge-Kutta technique, the presence of a jump phenomenon is
clearly recognized. On the other hand, the results obtained with Asymptotic
Numerical Method shows the existence of an unstable branch. As a matter of
fact in the speed range 4800-5800 rpm contact loss occurs. The stable regime of
vibro-impact lasts up to 5800 rpm. Figure 21 shows the time domain evolution
signal in different frequency range: under the resonance, along the stable
vibro-impacts branch and over the resonance. It is worth noticing how the two
solution methods are in agreement.

Once the method has been established and validated for the single degree-of-
freedom system, the same procedure is executed for a gear pair with compliant
shaft and bearings. Results related to the RMS of the 4 DOFs system transmis-
sion error are shown in figure 22. As for the single-degree-of-freedom system,
one may recognize the presence of the jump phenomenon. Time integration
techniques allow the computation of stable solution branches and bifurcations
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x10°
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0 2000 4000 6000 8000 10000 12000
Shaft Speed [RPM]

Figure 20: Root mean square of transmission error computed with the Runge-Kutta
time integration scheme (diamond line) and Asymptotic Numerical Method
(dotted line)

location. On the contrary, the Asymptotic Numerical Methods execute the
computation of the unstable branch solution points, which are not captured by
the Runge Kutta integration scheme. While time domain signals are compared
in figure 23, 24, 25. In particular, figure 23 depicts the transmission error com-
parison at different rotational speed, while figure 24 and 25 show the radial
displacement of gear 1 and 2 respectively. It is worth noticing how the results
are in agreement at low speed as well as at high shaft rotational speed. As a
matter of fact, the number of harmonics chosen for the representation of the
dynamic model, allows to capture high frequency phenomena as depicted by
the numerical signals. The computational time ratio, on a standard workstation,
of Runge Kutta time integration scheme over Asymptotic Numerical Method
is 95:1. In addition it may be underlined that the choice of an high number
of harmonics to approximate the dynamics of the system, drastically affects
the ANM computational performance. Nonetheless, it is 95 times faster than
Runge Kutta time integration scheme, providing for excellent computational
performance. Moreover, the ANM allows a continuous representation of the
dynamic system response. By observing figures 20 and 22, each point obtained
from the Runge Kutta method is chosen by the user, which perform the steady
state simulation at a certain shaft speed. No information of dynamic system
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Parameters Gear 1 Gear 2
Mass [kg] 1.11 1.11
Mass moment of inertia [kgm?] 0.0015 0.0015
Module [mm] 3

Number of teeth 50 50
Pressure angle [deg] 20

kp bearing stiffness [N/m] 2e+8 2e+8
cm meshing damping coefficient [kg/s] 950

cp bearing damping coefficient [kg/s] 300

k¢ torsional stiffness [Nm/rad] 1000

¢t torsional damping coefficient [kg/s] 0.1

Table 1: Design parameters

response can be gained between a solution point and another. On the other
hand, the ANM provide for the extraction of the harmonic response in the
whole frequency range. It must be underlined that the Asymptotic Numerical
Method allows the user to obtain a better computational performance as the
results are computed in frequency domain. Thanks to the quadratic recast,
the Taylor series is computed in a very efficient way even if the number of
harmonics chosen to represent the system dynamics is very high. On the
other hand additional time is needed to rearrange the equation of motion
by applying a dimensionless procedure and the quadratic recast. Beside this
aspect, the power of the Asymptotic Numerical Method continuation method
rely on the possibility to continue the periodic solution of a dynamic system
with respect to an arbitrary parameter of interest as damping or stiffness.
The simulations performed in the present work show a stable vibro-impact
behavior when shaft speed is around 6000-8000 RPM. By observing figure 23,
one may notice that only single-side impact occurs. In fact, when teeth are in
contact on working flank the transmission error x; is defined along the Direct
Line of Action, as depicted in eq. 31. On the other hand, referring to eq. 20,
when x; < —xy,/2, the meshing force is transmitted along the Back-side Line of
Action. As a matter of fact, the definition of the dynamic transmission error
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Figure 21: Transmission error computed with Runge Kutta time integration scheme
(solid line) and transmission error computed with the Asymptotic Nu-
merical Method (dash-dotted line). The dashed line represents half of the
backlash value.

depends on which side of the tooth contact occurs. When gears are in contact
on Back-side Line of Action, the expression of transmission error yields:

Xr = —R107 + R0, — x1 sin ¢ —yj cos @ + x sin @ + Yy, cos @ (35)

where @ is the angle between y axis and the Back-side Line of Action. This aspect
can be easily implemented with the Runge Kutta time integration scheme,
where, by using a piece-wise linear non-analytic function, the definition of x;
can be changed at any time step. By working with the ANM coupled with
the HBM, a definition of an analytical function in a quadratic form is needed.
This aspect makes the modeling of radial dynamics a challenging task when
double-sided impacts occurs. In fact, in case of bilateral impacts, more suitable
numerical techniques may be employed. As an example the ANM may be
combined with polynomial collocation techniques which allows the definition
of the nonlinear contact function as a piece-wise linear non-analytic function.
The employment of this technique will be investigated in the future and may
represent the basis of further works. Beside this, the proposed methodology
is an effective and reliable way to represent in a correct manner the complete
dynamics of a gear pair when single sided impacts occurs. It is worth to
underline that this phenomena only affect radial dynamics, any consideration
about the torsional behavior of the system remains valid.
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Figure 22: Root mean square of transmission error computed with the Runge Kutta
time integration scheme (diamond line) and Asymptotic Numerical Method
(dotted line)

3.5 CONCLUDING REMARKS

The Chapter is devoted to the application of the Asymptotic Numerical Method
and the Harmonic Balance Method for the resolution of the nonlinear dynamics
of a gearpair. In a first instance, the state of the art on the current methodologies
is investigated. Among all the existing methods, it is characterized by an high
efficiency in the computation of high-order Taylor and Fourier series. Usually,
all the employed methods for the resolution of the nonlinear dynamics of a
generic system, use a predictor corrector procedure for which the solution
points are predicted from a previous solution step. Afterwards, a corrector is
applied to verify that the corrected solution pertains to the solution branch.
On the other hand, the Asymptotic Numerical Method can be seen as an high-
order predictor, as most of the time, it does not require a correction step. In
Section 3.2, a brief explanation of the method and its effectiveness is presented.
Moreover it is shown how the adoption of a quadratic formalism to recast
the equation of motion is useful for the computation of high-order Taylor
series. This feature allows the user to consider an high number of harmonics to
approximate the system response. Within geared system dynamics, this aspect
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Figure 23: Transmission error computed with Runge Kutta time integration scheme
(solid line) and with Asymptotic Numerical Method (dash-dotted line). The
dashed line represents half of the backlash value.

become more relevant as it is possible to study the effect of internal excitation
at high frequency and the effect due to low frequency external torque.

In Section 3.3, a nonlinear lumped parameter model of a spur gear pair
with time-varying meshing stiffness and backlash is established. The system of
equation is recast in a quadratic form in order to be solved with the Asymptotic
Numerical Method. The quadratic recast is firstly conducted on a purely
torsional system and successively on the classical 4 DOFs system where the
bearing and shaft compliance are considered. In Section 3.4, the periodic
solution of geared systems are computed by implementing the quadratic
equ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>