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Abstract

Flexoelectric materials exhibit coupling between electric polarization and me-
chanical strain gradient. At the nano-scale and micro-scale, these materials
offer a promising potential for the development of mechanical transducers and
energy harvesters. This work proposes a new imperfect interface model simu-
lating the behavior of a thin flexoelectric layer (adhesive) of vanishing thick-
ness, embedded between two flexoelectric media (adherents). The adhesive is
assumed to be mechanically compliant and electrically lowly-conducting. The
interface model is obtained by using the asymptotic analysis. The contact
laws, expressed in terms of the jumps and means values of the displacements,
normal derivatives of the displacements, and electric potential across the in-
terface, represent a formal generalization of the soft elastic and piezoelectric
interface conditions. A simple application, considering a one-dimensional
three-layer composite micro-bar subject to electro-mechanical loads, is de-
veloped in order to analytically/numerically assess the asymptotic model.
Nonlocal phenomena and end-effects, related to a flexoelectric length-scale
parameter, are highlighted. The example illustrates the usefulness of the
proposed approach toward the design of thin nano- and microscale devices
exploiting the flexoelectric effect.
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1. Introduction

The conception and use of smart functional materials have undergone ma-
jor development over the past decades in the fields of civil and mechanical
engineering, industrial applications, automation systems, biomedical instru-
ments, and more. Besides, nanotechnologies and system miniaturization offer
incredible potential for the conceptual design and the practical realization of
radically new smart materials. The main characteristic of smart materials
is their ability to change their properties, sense, heal and adapt themselves
in response to external stimuli. Smart materials can be subdivided into
materials that exhibit either a direct or an indirect coupling. Piezoelectric
materials, magnetostrictive ceramics, and flexoelectric materials are a few ex-
amples of active materials that exhibit direct/indirect coupling. This means
that either the mechanical or the non-mechanical field can serve as an input,
while the other as the output. This list cannot be considered comprehensive
and exhaustive of all types of functional materials (for more details, see [1]).

Piezoelectric materials exhibit electrical polarization when subjected to
a mechanical stress, and conversely deform in response to an applied elec-
tric field. They are used in electronic devices as sensors (direct piezoelectric
effect), actuators (inverse piezoelectric effect) [2, 3, 4]. Magnetostrictive ma-
terials can be magnetized on the application of stress or deform in response to
the magnetic field. Due to these capabilities, magnetostrictive structures are
excellent candidates to be utilized as sensors and actuators, tuned vibration
absorbers, dampers, and energy harvesters [5, 6, 7].

A different effect is flexoelectricity, in which the electrical polarization is
induced by a strain gradient. Within crystals, polarization associated with
flexoelectricity is originated by the non-uniform displacement of ions under
a strain gradient. While piezoelectricity is a linear response of the dielectric
polarization to a uniform strain, flexoelectricity is a high-order electrome-
chanical phenomenon coupling strain gradients and electric polarization (see,
[8, 9] for a detailed overview).

Apart from hard crystalline materials, flexoelectricity has been observed
in soft materials, like biological materials, isotropic elastomers, liquid crystal,
and semi-crystalline polymers such as polyvinylidene fluoride, polyurethane
and polythiophene films [10, 11, 12, 14, 13, 15]. Being associated with strain
gradients, flexoelectricity exhibits an inherent scale effect and it is more pre-
dominant at smaller scales (micro-and/or nano-scale). Thus, it is expected
to be enhanced in thin layers. Moreover, the progress in nano-technologies
has progressively permitted to diminish the size of electromechanical devices
and transducers, reaching thicknesses of a few micrometers where gradients
are significant [16, 17, 18, 19, 20]. In this case, the flexoelectric effects cannot
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be ignored, leading to a drastic performance degradation [21, 22]. This mo-
tivates the present work, aimed at studying the behavior of thin flexoelectric
interphase within a composite medium, as its thickness vanishes to zero.

Concerning the theoretical aspects of bonded joints modeling, the thin
layer between two adjacent bodies can be treated as a two-dimensional sur-
face, called the imperfect interface, on which appropriate transmission con-
ditions are defined. Various interface models for layered composites have
been developed throughout the years by means of classical variational tools
[23, 24, 25], and more refined mathematical techniques (asymptotic analy-
sis), in linear elasticity [26, 27, 28, 29, 30, 31, 32], and in general multiphysics
theories [33, 34], such as continua with microstructure [35, 36], coupled ther-
moelasticity [37], and piezoelectricity [38, 39, 40]. It is only in recent years
that the flexoelectric effect has been incorporated in such theoretical schemes,
to: predict the effective properties of heterogeneous flexoelectric multilayer
composites, via asymptotic homogenization methods [41, 42, 43]; numerically
simulate higher-order weak interface conditions by means of Nitsche’s method
for complex material architectures, including general multimaterial arrange-
ments [44]; analyze the flexoelectric effect with a highly/weakly interface in
distinct piezoelectric materials in [45]. Nevertheless, the previous approaches
lack a proper characterization of the transmission conditions for soft or weak
interfaces, in terms of the jumps of the flexoelectric state (displacements and
electric potential) and its conjugated physical quantities (stresses, electric
displacements, and hyper-stresses).

The present paper aims at providing a novel and explicit form of the
imperfect interface law for flexoelectric composites by means of an asymptotic
analysis. The flexoelectric assembly is constituted by two surrounding media
(adherents), connected by an intermediate thin interphase (adhesive), whose
thickness depends on a small parameter ε. The elastic, piezoelectric and
dielectric coefficients of the intermediate layer are assumed to linearly depend
on ε, while the flexoelectric moduli depend on ε2. The material parameters
of the adherents are independent of ε. This allows to characterize the so-
called soft interface model. Following the asymptotic approach developed
in [33], it is possible to compute the interface law at order 0, defining an
original and nontrivial interface model. Lastly, a numerical example has been
developed considering a one-dimensional three-layer flexoelectric composite
bar, subjected to a tensile load and an assigned electric potential at the free
ends. The exact solution of the three-layer configuration is compared with
the closed-form solution of a two-layer composite, in which the intermediate
adhesive has been replaced by the imperfect contact conditions.

The plan of the paper is the following. Section 2 is a summary of the linear
theory for flexoelectric solids, accounting for the weak and strong formula-
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tions of the equilibrium problem for a flexoelectric body. The (weak form
of the) equilibrium problem of an assemblage incorporating two adherents
joined by a soft adhesive is described in Section 3, together with the rescaled
governing formulation and asymptotic expansions of the relevant fields. In
Section 4, we obtain imperfect contact conditions replacing the behavior of
the very thin, soft, flexoelectric adhesive. Here, we discuss the form of the
contact conditions comparing them with the classical spring-type interface
model and the contact model for a soft piezoelectric interface calculated in
[34, 38]. Section 5 is devoted to a one-dimensional example, a flexoelectric
three-layer micro-bar. Despite its simplicity, it turns out to be an interesting
setting to study the influence of the thin interposed layer on the structural
behavior of the structure. Some concluding remarks are addressed in Section
6.

2. Linear theory of flexoelectricity: background

In this section the linear theory for flexoelectric solids is summarized,
considering the expression of the constitutive law and the weak and strong
formulation of the governing equations. In the sequel, Greek indices range
in the set {1, 2}, Latin indices range in the set {1, 2, 3}, and the Einstein’s
summation convention with respect to the repeated indices is adopted. Let us
consider a three-dimensional Euclidian space identified by R3 and such that
the three vectors ei form an orthonormal basis. We introduce the following
notations for the inner and dyadic products: a ·b := aibi, and a⊗b := (aibj),
for all vectors a = (ai) and b = (bi) in R3.

Considering the case of direct flexoelectricity [46, 47], the electric Gibbs
stored energy density G is given in terms of eij, eij,k and Ei, being the lin-
earized strain tensor, the gradient of the linearized strain tensor and the
electric field, respectively:

G(eij, eij,k, Ei) :=
1

2
cijklekleij − piklEiekl − µijklEiejk,l −

1

2
κijEiEj,

where (cijkl), (pikl), (µijkl), and (κij) represent, respectively, the elasticity
tensor, the piezoelectric coupling tensor, the flexoelectric coupling tensor, and
the dielectric permittivity tensor and eij = 1

2
(ui,j+uj,i), eij,k = 1

2
(ui,jk+uj,ik)

and Ei = −φ,i, with ui and φ the displacement field and electric potential.
We remark that higher order constitutive tensors (i.e. fifth-order and sixth-
order tensor) are neglected for the sake of simplicity.

The constitutive law can be derived as follows:

σ̌ij =
∂G
∂eij

, σ̃ijk =
∂G
∂eij,k

, Di = − ∂G
∂Ei

,
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with (σ̌ij), (σ̃ijk), and (Di) denote the Cauchy stress tensor, the hyper-stress
tensor and the electric displacement field, respectively. Thus,

σ̌ij = cijklekl − pkijEk,
σ̃ijk = −µlijkEl,
Di = piklekl + µijklejk,l + κijEj.

(1)

We note with σij := σ̌ij − σ̃ijk,k = cijklekl − pkijEk + µlijkEl,k the so-called
physical stress [48]. Using (1), the electric Gibbs energy density takes the
following form:

G(eij, eij,k, Ei) =
1

2
(σ̌ijeij + σ̃ijkeij,k +DiEi) .

Let us consider a material body Ω made of a flexoelectric material, whose
constitutive law is defined in (1). The body is subjected to body forces fi
and a volume charge density ρe, acting in Ω, and to surface forces gi, higher-
order surface forces ri and a surface charge source w, applied to the boundary
Γ1 ⊂ ∂Ω. The body is mechanically clamped and electrically short-circuited
on Γ0 ⊂ ∂Ω. The work of external sources is given by

L(s) :=

∫
Ω

{fiui − ρeφ}dx+
∫
Γ1

{giui + ri∂nui + wφ}dΓ,

where s := (u, φ) denotes the flexoelectric state. The enthalpy functional Π
can now be written in the form:

Π[s] :=

∫
Ω

G(eij, eij,k, Ei)dx− L(s).

The flexoelectric equilibrium state s∗ = (u∗, φ∗) corresponds to the sad-
dle point of the enthalpy potential, fulfilling the variational principle s∗ =
argminu∈V (Ω) maxφ∈Ψ(Ω)Π[s], with V (Ω) := {v ∈ [H2(Ω)]3 : v = 0, ∂nv =
0 on Γ0}, Ψ(Ω) := {ψ ∈ H1(Ω) : ψ = 0 on Γ0}. The variational formulation
of the problem can be derived by enforcing the first variation of the enthalpy
functional Π to vanish [47, 49], so that:{

Find s ∈ V(Ω) := V (Ω)×Ψ(Ω), such that
A(s, r) = L(r), for all r := (v, ψ) ∈ V(Ω), (2)

where

A(s, r) :=

∫
Ω

{σ̌ijeij(v) + σ̃ijkeij,k(v) +DiEi(ψ)} dx =

=

∫
Ω

{cijklekl(u)eij(v) + pkij (φ,keij(v)− eij(u)ψ,k)+

+µlijk(φ,leij,k(v)− eij,k(u)ψ,l) + κijφ,iψ,j } dx.
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By virtue of the Gauss-Green’s theorem, it is possible to compute the differ-
ential form of the equilibrium problem, as follows:

−
∫
Ω

{σij,jvi −Di,iψ} dx+
∫
∂Ω

{
σijnj +Dt

l(nl)nknjσ̃ijk −Dt
j(nkσ̃ijk)

}
vidΓ+

+

∫
∂Ω

{σ̃ijknjnk∂nvi −Diniψ} dΓ = L(r),

where (ni) denotes the outer unit normal vector to the boundary ∂Ω, Dt
i(·) :=

(δij − ninj)(·),j and ∂n(·) := ni(·),i are the tangential and normal derivative
operators on the boundary, respectively, with δij as the Kronecker’s sym-
bol. In this formulation, the integral on the boundary edges is neglected.
Thus, the governing equations for a flexoelectric material take the following
expression:

σij,j + fi = 0, Di,i = ρe in Ω,

Ti := σijnj +Dt
l(nl)nknjσ̃ijk −Dt

j(nkσ̃ijk) = gi on Γ1,

Ri := σ̃ijknjnk = ri on Γ1,

Dini = −w on Γ1,

ui = 0, ∂nui = 0, φ = 0 on Γ0.

Ti and Ri are, respectively, the physical traction vector and the higher-order
traction vector. In the presence of a perfect interface S within the material
body, the following six continuity conditions must be satisfied:

[Ti] = 0, [Ri] = 0, [Dini] = 0, [ui] = 0, [∂nui] = 0, [φ] = 0,

where [·] represents the jump function at the interface S.

3. Statement of the problem for a composite material: asymptotic
expansions

Let us define a small parameter 0 < ε < 1. We consider the assembly
constituted of two solids Ωε

± ⊂ R3, called the adherents, bonded together
by an intermediate thin layer Bε := S × (− ε

2
, ε
2
) of thickness ε, called the

adhesive, with cross-section S ⊂ R2. In the following Bε and S will be called
interphase and interface, respectively. Let Sε

± be the plane interfaces between
the interphase and the adherents and let Ωε := Ωε

+ ∪ Bε ∪ Ωε
− denote the

composite system comprising the interphase and the adherents, (cf. Figure
1a). The variational form of the flexoelectric problem defined on the variable
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Figure 1: Initial (a), rescaled (b) and limit (c) configurations of the composite.

domain Ωε can be derived as follows:{
Find sε ∈ V(Ωε), such that
Āε

−(s
ε, rε) + Āε

+(s
ε, rε) + Âε(sε, rε) = Lε(rε), for all rε ∈ V(Ωε).

(3)

In order to study the asymptotic behavior of the solution of problem (3)
when ε tends to zero, we rewrite the problem on a fixed domain Ω inde-
pendent of ε. By using the approach of [50], let us consider the change of
coordinate πε : x ∈ Ω 7→ xε ∈ Ω

ε given by

πε :

{
π̄ε(x1, x2, x3) = (x1, x2, x3 ∓ 1

2
(1− ε)), for all x ∈ Ω±,

π̂ε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ B,

where, after the change of variables, the adherents occupy Ω± := Ωε
±± 1

2
(1−

ε)e3 and the interphase B = {x ∈ R3 : (x1, x2) ∈ S, |x3| < 1
2
}. The sets

S± = {x ∈ R3 : (x1, x2) ∈ S, x3 = ±1
2
} denote the interfaces between B

and Ω± and Ω = Ω+ ∪Ω− ∪B is the rescaled configuration of the composite,
see Fig. 1b. Lastly, Γ0 and Γ1 indicate the images through πε of Γε

0 and
Γε
1 (cf. Figure 1.b). Consequently, ∂

∂xε
α
= ∂

∂xα
and ∂

∂xε
3
= ∂

∂x3
in Ω±, and

∂
∂xε

α
= ∂

∂xα
and ∂

∂xε
3
= 1

ε
∂

∂x3
in B. In the sequel, only if necessary, s̄ε = (ūε, φ̄ε)

and ŝε = (ûε, φ̂ε) will note the restrictions of functions sε = (uε, φε) to Ω±
and B.

The constitutive coefficients of Ωε
± are assumed to be independent of ε,

while the constitutive tensors of Bε present the following dependences on ε:

ĉεijkl = εq ĉijkl, p̂
ε
ijk = εqp̂ijk, κ̂

ε
ij = εqκ̂ij, µ̂

ε
ijkl = εq+1µ̂ijkl.

The choice of the exponent q+1 for µ̂ε
ijkl can be considered the only suitable

assumption to let the flexoelectric behavior appear in the limit model. From

7



a technical point of view, this exponent is justified by the fact that the
flexoelectric coefficients are related to the strain gradient, depending on the
second derivatives of the displacement field.

The limit behavior for a soft flexoelectric interface with low conductivity
can be characterized by choosing q = 1. Finally, the data, unknowns and
test functions verify the following scaling assumptions:

sε(xε) = sε(x), rε(xε) = r(x) x ∈ Ω,
f ε
i (x

ε) = fi(x), ρe,ε(xε) = ρe(x) x ∈ Ω±,
gεi (x

ε) = gi(x), rεi (x
ε) = ri(x) wε(xε) = w(x), x ∈ Γ1,

so that Lε(rε) = L(r). According to the previous scaling assumptions, prob-
lem (3) can be rewritten on a fixed domain Ω independent of ε. Thus, the
following rescaled problem is obtained:{

Find sε ∈ V(Ω), such that
Ā−(s

ε, r) + Ā+(s
ε, r) + ε2Â(sε, r) = L(r), for all r ∈ V(Ω), (4)

where Â(sε, r) := 1
ε2
a0(s

ε, r) + 1
ε
a1(s

ε, r) + a2(s
ε, r) + εa3(s

ε, r), with

a0(s
ε, r) :=

∫
B

{
ĉi3j3u

ε
j,3vi,3 + p̂3i3(φ

ε
,3vi,3 − ψ,3u

ε
i,3) + κ̂33φ

ε
,3ψ,3+

+µ̂i333(φ
ε
,3vi,33 − ψ,3u

ε
i,33)

}
dx,

a1(s
ε, r) :=

∫
B

{
ĉi3jα(u

ε
j,3vi,α + uεj,αvi,3) + p̂3αi(φ

ε
,3vi,α − ψ,3u

ε
i,α)+

+p̂α3i(φ
ε
,αvi,3 − ψ,αu

ε
i,3) + κ̂α3(φ

ε
,3ψ,α + φ,αψ

ε
,3)+

+µ̂αi33(φ
ε
,αvi,33 − ψ,αu

ε
i,33) + (µ̂3iα3 + µ̂3i3α)(φ

ε
,3vi,3α − ψ,3u

ε
i,3α)

}
dx,

a2(s
ε, r) :=

∫
B

{
ĉiαjβu

ε
j,βvi,α + p̂αβi(φ

ε
,αvi,β − ψ,αu

ε
i,β) + κ̂αβφ

ε
,βψ,α+

+µ̂3iαβ(φ
ε
,3vi,αβ − ψ,3u

ε
i,αβ) + (µ̂βαi3 + µ̂βi3α)(φ

ε
,βvi,3α − ψ,βu

ε
i,3α)

}
dx,

a3(s
ε, r) :=

∫
B

µ̂σiαβ(φ
ε
,σvi,αβ − ψ,σu

ε
i,αβ)dx.

The polynomial structure of the rescaled problem (4) in terms of ε sug-
gests to develop the solution sε as a series of powers of ε:

sε = s0 + εs1 + ε2s2 + . . . ,
s̄ε = s̄0 + εs̄1 + ε2s̄2 + . . . ,
ŝε = ŝ0 + εŝ1 + ε2ŝ2 + . . . .

(5)

where s̄ε = sε◦ π̄ε and ŝε = sε◦ π̂ε. By inserting (5) into the rescaled problem
(4), and by identifying the terms with identical power of ε, as customary, a
set of variational problems is obtained to be solved in order to characterize
the limit flexoeletric state s0 and its associated limit problem.
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4. Flexoelectric imperfect contact conditions

In this section, the imperfect flexoeletric contact model corresponds to
an adhesive which is weaker with respect to the adherents. The following set
of variational problems Pq is obtained from the asymptotic analysis:

P0 : Ā−(s
0, r) + Ā+(s

0, r) + a0(s
0, r) = L(r),

P1 : Ā−(s
1, r) + Ā+(s

1, r) + a0(s
1, r) + a1(s

0, r) = 0,
Pq : Ā−(s

q, r) + Ā+(s
q, r) + a0(s

q, r) + a1(s
q−1, r) + a2(s

q−2, r) = 0, q ≥ 2.

Let us focus on problem P0. The integration by parts is performed by
means of the Gauss-Green theorem, as follows:

−
∫
Ω±

{
σ̄0
ij,jvi − D̄0

i,iψ
}
dx+

∫
Γ1

{
T̄ 0
i vi + R̄0

i ∂nvi − D̄0
i niψ

}
dΓ−

−
∫
B

(
ĉu0

,33 + p̂φ0
,33 − µ̂φ0

,333

)
· vdx−

−
∫
B

(
κ̂φ0

,33 − p̂ · u0
,33 − µ̂ · u0

,333

)
ψdx∓

∓
∫
S±

(
Σ̄0 − ĉu0

,3 − p̂φ0
,3 + µ̂φ0

,33

)
|x3=± 1

2
· vdΓ∓

∓
∫
S±

(
¯̃σ0 − µ̂φ0

,3

)
|x3=± 1

2
· v,3dΓ±

±
∫
S±

(
D̄0

3 + κ̂φ0
,3 − p̂ · u0

,3 − µ̂ · u0
,33

)
|x3=± 1

2
ψdΓ = L(r),

(6)

where n(x̃,±1
2
) = ∓e3 on S±, ĉ := (ĉi3j3), p̂ := (p̂3i3), κ̂ := κ̂33, and µ̂ :=

(µ̂i333). Σ̄0 := (σ̄0
i3 + ¯̃σ0

iα3,α) and ¯̃σ0 := (¯̃σ0
i33) represent, respectively, the

physical and the higher-order traction vectors evaluated at the interfaces S±.
From equation (6), using standard variational arguments, the following set
of equilibrium equations is derived:

σ̄0
ij,j + fi = 0, D̄0

i,i = ρe in Ω±,

T̄ 0
i = gi, R̄0

i = ri, D̄0
i ni = −w on Γ1,

ū0i = 0, ∂nū
0
i = 0, φ̄0 = 0 on Γ0,

ĉû0
,33 + p̂φ̂0

,33 − µ̂φ̂0
,333 = 0 in B,

κ̂φ̂0
,33 − p̂ · û0

,33 − µ̂ · û0
,333 = 0 in B,

∓
(
Σ̄0 − ĉû0

,3 − p̂φ̂0
,3 + µ̂φ̂0

,33

)
|x3=± 1

2
= 0 on S±,

±
(
D̄0

3 + κ̂φ̂0
,3 − p̂ · û0

,3 − µ̂ · û0
,33

)
|x3=± 1

2
= 0 on S±,

∓
(
¯̃σ0 − µ̂φ̂0

,3

)
|x3=± 1

2
= 0 on S±.

(7)
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Equations (7)1,2,3 represent the equilibrium equations at order 0 on the
adherents with the suitable boundary conditions. Equations (7)4,5 allows to
characterize the explicit expressions of the displacement field and electric po-
tential within the interface layer B, and combined with (7)6,7,8, the interface
conditions can be easily derived. Let us integrate (7)4,5 along x3. One gets:

ĉû0
,3 + p̂φ̂0

,3 − µ̂φ̂0
,33 = c1,

κ̂φ̂0
,3 − p̂ · û0

,3 − µ̂ · û0
,33 = d1,

(8)

where c1 = (c1i) and d1 are independent of x3. By virtue of the continuity
conditions for the displacements, normal derivative of the displacements, and
electric potential at the interface S±, the constant term d1 can be immediately
determined, having the following known form: d1 = κ̂[φ0]− p̂ · [u0]− µ̂ · [u0

,3].
By manipulating the system of equations (8), one has:

1
κ̂
(µ̂⊗ µ̂)û0

,33 − 1
κ̂
(p̂⊗ µ̂− µ̂⊗ p̂)û0

,3 −
(
ĉ+ 1

κ̂
p̂⊗ p̂

)
û0 = c0 + x3

(
pd1

κ̂
− c1

)
,

φ̂0
,3 =

1
κ̂
(d1 + p̂ · û0

,3 + µ̂ · û0
,33),

(9)
where c0 = (c0i) is independent of x3. To explicitly characterize the expres-
sion of u0 and φ0, a particular flexoelectric constitutive law is considered,
namely a piezoelectric transversely isotropic material, with flexoelectric cu-
bic symmetry (for more details, see Appendix A). In this special case, the
adhesive constitutive matrices reduce to

ĉ =

 ĉ44 0 0
0 ĉ44 0
0 0 ĉ33

 , p̂ =

 0
0
ê33

 , µ̂ =

 0
0
µ̂11

 .

Taking into account the above material properties, equations (9) simplify
into the following system:

û0α = 1
ĉ44

(c1αx3 − c0α),

û03,33 − γ2û03 =
κ̂

µ̂2
11

(
c03 + x3

(
ê33
κ̂
d1 − c13

))
, with γ2 :=

ĉ33κ̂+ê233
µ̂2
11

,

φ̂0
,3 =

1
κ̂
(d1 + ê33û

0
3,3 + µ̂11û

0
3,33).

(10)

Thus, imposing the continuity conditions at the interface S±, costants c1 and
c0 can be determined and we obtain:

û0α(x̃, x3) = ⟨u0α, ⟩+ x3[u
0
α], x̃ = (xα),

û03(x̃, x3) = A0 + A1x3 + A2e
γx3 + A3e

−γx3 ,

φ̂0(x̃, x3) = B0 +B1x3 +B2e
γx3 +B3e

−γx3 ,

(11)
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where Ai and Bi depend on the jump and mean values of the flexoelectric
state s0 = (u0, φ0) at the interfaces S±:

A0 :=
γµ̂2

11

2κ̂(eγ−1)

{
(1 + eγ)[u03,3]− 2γ(eγ − 1)⟨u03⟩

}
,

A1 :=
1

eγ(γ−2)+γ+2

{
γ(1 + eγ)[u03]− 2(eγ − 1)⟨u03,3⟩

}
,

A2 :=
eγ/2

γ(eγ−1)(eγ(γ−2)+γ+2)

{
(1− eγ)[u03,3] + γ(eγu0,+3,3 − u0,−3,3 )− γ(eγ − 1)[u03]

}
,

A3 :=
eγ/2

γ(eγ−1)(eγ(γ−2)+γ+2)

{
(1− eγ)[u03,3]− γ(eγu0,−3,3 − u0,+3,3 ) + γ(eγ − 1)[u03]

}
,

B0 := ⟨φ0⟩ − ê33
κ̂
(⟨u03⟩ − A0)− µ̂11

κ̂
(⟨u03,3⟩ − A1),

B1 := [φ0]− ê33
κ̂
([u03]− A1)− µ̂11

κ̂
[u03,3],

B2 :=
ê33+γµ̂

κ̂
A2, B3 :=

ê33−γµ̂
κ̂

A3.

with f± := f(x̃,±1
2
). As in classical elastic soft interface models [26, 28,

32], the in-plane displacements u0α are linear functions of the through-the-
thickness coordinate x3. While the transversal displacement u03 and the elec-
tric potential φ0 depend exponentially on x3: this result is due to the particu-
lar second gradient flexoelectric continuum model employed in the derivation
and will influence the expression of the imperfect contact conditions for soft
flexoelectric interfaces.

By summing and subtracting equations (7)6,7,8, combined with the expres-
sions (11), one can evaluate the jumps [·] and mean values ⟨·⟩ and establish
the following set of transmission conditions for flexoelectric imperfect con-
tact:

[Σ0
i3] = 0,

[D0
3] = 0,

⟨Σ0
α3⟩ = ĉ44[u

0
α],

⟨Σ0
33⟩ = ĉ33[u

0
3] + ê33[φ

0]− µ̂11ê33
κ̂33

[u03,3] + d̂33λ([u
0
3]− ⟨u03,3⟩),

⟨D0
3⟩ = −κ̂33[φ0] + ê33[u

0
3] + µ̂11[u

0
3,3],

[σ̃0
α33] = 0,

⟨σ̃0
α33⟩ = 0,

[σ̃0
333] =

µ̂11ê33
κ̂33

[u03,3]− d̂33λ([u
0
3]− ⟨u03,3⟩),

⟨σ̃0
333⟩ = − µ̂11ê33

κ̂33
([u03]− ⟨u03,3⟩) + µ̂11[φ

0] +
µ̂2
11

λκ̂33
[u03,3],

(12)

with d̂33 := ĉ33+
ê233
κ̂33

, and λ := 2(eγ−1)
eγ(γ−2)+γ+2

, and [f ] := f(x̃, 1/2)− f(x̃,−1/2)

and ⟨f⟩ := 1
2
(f(x̃, 1/2)+f(x̃,−1/2)). We can note that µ̂11[φ

0
,3] =

µ̂11ê33
κ̂33

[u03,3]−
d̂33λ([u

0
3]− ⟨u03,3⟩) and, thus, ⟨Σ0

33⟩ = ĉ33[u
0
3] + ê33[φ

0]− µ̂11[φ
0
,3] and [σ̃0

333] =
µ̂11[φ

0
,3].
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Remark 1. The transmission problems for a soft flexoelectric interface at
order 0 represent a formal generalization of the soft interface models ob-
tained by means of the asymptotic methods in linear elasticity [32] and in
other multifield frameworks [33, 34], such as piezoelectricity [38], magneto-
electro-thermo-elasticity [39, 37] and microstructural theories [39, 36]. The
soft interface model presents a similar structure at order 0 as, for instance, in
linear elastic asymptotic models. At order 0, the interface shows a disconti-
nuity of the flexoelectric state s0, namely displacements, normal derivatives
of the displacements and electric potential. The interphase layer behaves
from a mechanical point of view as a series of springs, reacting to the gap
between the top and bottom flexoelectric state. The physical traction vector
(Σ0

i3) and normal electric displacement D0
3 at the interface remain contin-

uous. The higher-order traction σ̃0
333 presents a discontinuity, which is not

expected and predicted as in classical linear elastic or piezoelectric contin-
uum theories and is likely due to the second gradient nature of the chosen
direct flexoelectric model. Surface elastic or piezoelectric effects do not ap-
pear in asymptotic models for soft (spring-type) interfaces, at order 0. In
order to highlight surface effects, it is necessary to characterize the higher-
order model, at order 1, see [33].

Remark 2. The flexoelectric contact law (4) at order 0 reduces to the
soft interface piezoelectric interface conditions by letting the flexoelectric
coefficient µ̂11 vanish. Indeed,

lim
µ11→0

λ(µ11) = lim
γ→∞

λ(γ) = 0 and lim
µ11→0

µ2
11

λ(µ11)
= 0.

Consequently, by neglecting the contribution of the flexoelectric effect, the
hyper-stresses can also be discarded, giving σ̃0

i33 = 0, and Σ0
i3 = σ̌0

i3, i.e.,
the physical stress coincides with the Cauchy stress. Thus, the transmission
conditions become 

[σ̌0
i3] = 0,

[D0
3] = 0,

⟨σ̌0
α3⟩ = ĉ44[u

0
α],

⟨σ̌0
33⟩ = ĉ33[u

0
3] + ê33[φ

0],

⟨D0
3⟩ = −κ̂33[φ0] + ê33[u

0
3].

As found in [34, 38], the above conditions are typical of lowly-conducting and
mechanically compliant transversely isotropic piezoelectric adhesives, also
known as soft piezoelectric adhesives.
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Finally, by applying the inverse coordinate change (πε)−1, and knowing
that ĉ = 1

ε
ĉε, p̂ = 1

ε
p̂ε, κ̂ = 1

ε
κ̂ε, and µ̂ = 1

ε2
µ̂ε, the interface conditions (4)

can be scaled back onto the original domain Ωε (see Fig. 1), as follows:

[Σε
i3] = 0,

[Dε
3] = 0,

⟨Σε
α3⟩ = 1

ε
ĉε44[u

ε
α],

⟨Σε
33⟩ = 1

ε

(
ĉε33[u

ε
3] + êε33[φ

ε]− µ̂ε
11ê

ε
33

κ̂ε
33

[uε3,3] + d̂ε33λ
ε([uε3]− ε⟨uε3,3⟩)

)
,

⟨Dε
3⟩ = 1

ε

(
−κ̂ε33[φε] + êε33[u

ε
3] + µ̂ε

11[u
ε
3,3]

)
,

[σ̃ε
α33] = 0,

⟨σ̃ε
α33⟩ = 0,

[σ̃ε
333] =

1
ε

(
µ̂ε
11ê

ε
33

κ̂ε
33

[uε3,3]− d̂ε33λ
ε([uε3]− ε⟨uε3,3⟩)

)
,

⟨σ̃ε
333⟩ = 1

ε2

(
− µ̂ε

11ê
ε
33

κ̂ε
33

([uε3]− ε⟨uε3,3⟩) + µ̂ε
11[φ

ε] +
(µ̂ε

11)
2

λεκ̂ε
33
[uε3,3]

)
,

(13)

where d̂ε33 = εd̂33, γε = εγ, λε := 2(e
γε

ε −1)

e
γε
ε ( γ

ε

ε
−2)+ γε

ε
+2

. The obtained transmission

conditions can be implemented in the simple numerical example presented
in the following section.

5. A closed-form solution for one-dimensional flexoelectric imper-
fect contact problems

In this section, the closed-form solution for the one-dimensional equilib-
rium problem of a flexoelectric three-layer micro-bar is presented. Moreover,
the exact solution of the three-layer one-dimensional problem will be com-
pared with the solution of a two-phase composite micro-bar, in which the
intermediate layer is replaced by the imperfect contact conditions (13) (see
Section 4).

In the sequel, for the sake of brevity, we omitted the dependences on
ε of the unknown functions and constitutive coefficients. The geometry of
the one-dimensional composite micro-beam is illustrated in Fig. 2. The
bar axis is identified with the abscissa x, the adherents are Ω− := (0, L),
Ω+ := (L+ ε, 2L+ ε), and the adhesive B := (L,L+ ε), with ε << L. The
boundary Γ0 = {0} is fully clamped, while Γ1 = {2L+ ε} is a free end.

The one-dimensional flexoelectric equilibrium equations take the following
form on each domain Ω−, Ω+ and B, respectively:{

Cu′′ + pφ′′ − µφ′′′ = 0,
pu′′ + µu′′′ − kφ′′ = 0,

13



Figure 2: One-dimensional flexoelectric composite bar under tensile load

where (·)′ := d
dx
(·), C, p, µ, k represent the elastic, piezoelectric, flexoelectric

and dielectric material moduli, respectively. The system can be decoupled,
as customary, {

φ′′ = 1
k
(pu′′ + µu′′′)

u′′′′ − γ2u′′ = 0, γ2 := ck+p2

µ2 ,
(14)

and the closed-form solution, defined on each sub-domain, takes the following
form:

u(x) = c0+c1x+c3e
γx+c4e

−γx, φ(x) = c5+c6x+c3
e+ µγ

k
eγx+c4

e− µγ

k
e−γx,

with ci are constants to be determined by applying the boundary conditions
on Γ0 and Γ1, and interface conditions on S±. Two types of electromechanical
loading conditions will be tested: BC1 is associated with an applied electric
potential difference ±V acting on Γ0 and Γ1, without any mechanical charges;
BC2 corresponds to the case of a prescribed tensile traction q on Γ1, with no
electric loads. The conditions on the extremities take the following form:

BC1 :

{
u(0) = 0, u′(0) = 0, φ(0) = −V, on Γ0,
σ(2L+ ε) = 0 σ̃(2L+ ε) = 0, φ(2L+ ε) = V, on Γ1.

BC2 :

{
u(0) = 0, u′(0) = 0, φ(0) = 0, on Γ0,
σ(2L+ ε) = q σ̃(2L+ ε) = 0, D(2L+ ε) = 0, on Γ1.

Note that the boundary conditions for both the exact three-phase model and
two-phase model with imperfect contact are identical. For the three-layers
composite bar, classical interface continuity conditions (CC) are considered
on S±, namely x = L and x = L+ ε, so that

CC :

{
[u] = 0, [u′] = 0, [φ] = 0,
[σ] = 0, [σ̃] = 0, [D] = 0.

Concerning the two-layers composite bar with imperfect contact (IC), the
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soft interface conditions (13) on S± are adapted for the one-dimensional case:

IC :



[σ] = 0,

⟨σ⟩ = 1
ε

(
c[u] + p[φ]− µp

k
[u′] + dλ([u]− ε⟨u′⟩)

)
,

[D] = 0,

⟨D⟩ = 1
ε
(−k[φ] + p[u] + µ[u′]) ,

[σ̃] = 1
ε

(
µp
k
[u′]− dλ([u]− ε⟨u′⟩)

)
,

⟨σ̃⟩ = 1
ε2

(
µ[φ]− µp

k
([u]− ε⟨u′⟩) + µ2

kλ
[u′]

)
,

with d := c+ p2/k.
The adherents Ω± are constituted by SrTiO3 (Strontium Titanate), while

the adhesive B is made of BaTiO3 (Barium Titanate), whose material prop-
erties are shown in Table 1.

Moduli SrTiO3 (Ω±) BaTiO3 (B)
c, GPa 350 151
p, C/m2 8.82 17.5
k, F/m 3.45·10−8 1.16·10−8

µ, C/m 1·10−4 5·10−4

Table 1: Constitutive material properties for SrTiO3 and BaTiO3, [8, 51]

Remark 3. The proposed formulation of flexoelectricity is able to capture
possible non-local effects. Even though strain gradient elasticity, generally
associated with one or more mechanical length-scale parameters, has been ne-
glected in the expression of the electric Gibbs energy G, the present modeling
of flexoelectricity shows a particular size-dependency, related to a flexoelec-
tric characteristic length. This phenomenon can be highlighted by means of
the simple one-dimensional closed-form solution of the flexoelectric equilib-
rium problem (14). Equation (14)2 can be rewritten as follows:

u′′ − g2u′′′′ = 0,

where g := 1
γ
= µ√

ck+p2
is interpreted as a flexoelectric material length, di-

rectly related to the flexoelectric coefficient µ. The above equation is equiv-
alent to the static equilibrium problem of strain gradient bars in tension,
see, e.g. [52]. Fig. 3 and Fig. 4 show the variations of the displacement
u, the deformation ϵ := u′ and electric potential φ versus the dimensionless
length x/L, varying the values of g, for a flexoelectric bar subject to a tensile
load (dashed lines). The curves are compared with the classical solution of a
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Figure 3: Displacement and electric potential vs x/L, for various values of g

Figure 4: Deformation vs x/L, for various values of g

piezoelectric bar (red line), where the flexoelectric contribution is discarded,
i.e., g = 0.

The plots reveal interesting conclusions. It is observed that the flexoelec-
tric solution for the displacement field decreases for increasing values of g,
showing a stiffness-softening. The piezoelectric solution, g = 0, is an upper-
bound. The electric potential tends to increase with increasing values of g,
hence the piezoelectric solution represents a lower-bound. Concerning the de-
formations, the present flexoelectric theory is capable of predicting end-effect
(g < 0.1) or strain localization phenomena.
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5.1. The applied electric potential difference
In this section, we study the case of two electric potentials V = ±25V,

applied on both the two extremities of the composite micro-beam, of half-
length L = 10 µm, corresponding to BC1 (see Fig. 2). No mechanical loading
is considered in this example.

Following the ideas proposed in [34], the numerical results for the variables
are provided using the dimensionless units. For an applied electric potential
V , we set:

(U,Φ) =
E0

V

(
u,

φ

E0

)
, (Σ,∆, Σ̃) =

LE0

C00V

(
σ,E0D,

σ̃

L

)
where, for numerical convenience, E0 = 109 Vm−1 and C00 = 1 GPa.

First, the influence of the relative thickness of the adhesive ε
L

is investi-
gated in order to evaluate the accuracy of the asymptotic modeling. In par-
ticular, the quality of the solutions is evaluated considering the L2-relative
errors ∥U−Umodel∥

∥U∥ and ∥Φ−Φmodel∥
∥Φ∥ , where U and Φ indicate the exact solutions

computed using the three-phase problem, while Umodel and Φmodel denote the
solutions of the two-phase model with imperfect contact (13). The conver-
gence of the interface model towards the three-phase one with respect to the
thickness ratio ε

L
(%) is presented in Fig. 5. From Fig. 5, it can be observed

Figure 5: Convergence results with respect to the relative thickness ε/L

that, by reducing the thickness of the adhesive, the L2-relative error presents
a significant reduction, linearly decreasing with respect to ε/L. Hence, the
proposed asymptotic imperfect contact model well-approximates the exact
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solution, especially for small thickness ratios, and provides an acceptable so-
lution. Indeed, passing from a relative thickness of 1% to 0.1%, the error
drastically drops from 9.89% to 1.01%, concerning the displacement field,
and from 2.21% to 0.22%, for the electric potential. Clearly, due to the
plot linear trend, the reduction of an order of magnitude of ε/L implies the
consequent decrease of an order of magnitude of the relative error.

Figure 6: Dimensionless displacement and electric potential vs x/L, for ε/L = 0.1%

Figure 7: Dimensionless electric displacement and hyper-stress vs x/L, for ε/L = 0.1%

Fig. 6 and Fig. 7 depict a comparison between the solutions of the three-
phase problem and two-phase with imperfect interface, obtained through the
asymptotic approximation. In this case, the relative thickness of the interface
is fixed to 0.1%. Fig. 6 and Fig. 7 represent the trend of the dimensionless
displacement field, electric potential, electric displacement and hyper-stress
along the composite bar relative length. The stress field has not been plotted
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since in both cases is equal to zero. The plots show a very good agreement
between the solution of the three-layers problem (red solid line) and the
solution of the reduced model (blue dashed line). Due to the second gradient
nature of the problem, the displacement and electric potential exponentially
vary along the beam length. The general trend is well-approximated by the
asymptotic model. Negligible deviations can be found at the interface level
since the material of the adhesive layer cannot be considered mechanically
compliant and lowly conducting, asymptotically speaking. Indeed, the ratio
among the adherents and adhesive constitutive coefficients does not qualify
the intermediate layer as "properly soft". In order to overcome this problem,
the asymptotic model at order 0 could be enhanced by characterizing also
the first order order corrector term of the expansion, giving a more precise
approximation.

5.2. The applied tensile load
In this section, the case of a tensile load q=1 Pa, applied to the free end,

is investigated, corresponding to BC2 (see Fig. 2). No electric loadings are
taken into account.

As previously shown, the numerical results are provided using the dimen-
sionless units. For an applied pressure q, we set:

(U,Φ) =
C00

Lq

(
u,

φ

E0

)
, (Σ,∆, Σ̃) =

1

q

(
σ,E0D,

σ̃

L

)
where E0 = 1012 Vm−1 and C00 = 1000 GPa.

As before, from Fig. 8, one can observe, as before, by decreasing the
relative thickness ratio the L2-relative error significantly diminishes. Consid-
ering ε/L= 0.1%, the errors is 0.11%, for the displacement, and 0.41% for
the electric potential, respectively.

Fig. 9 and Fig. 10 illustrate a comparison between the exact three-layer
solution and two-phase with imperfect interface one, in terms of dimensionless
displacement, electric potential, stress and hyper-stress, for a fixed ε/L. The
electric displacement plot has not been reported since it vanishes in both
cases. The plots show that the asymptotic model well-approximates the
behaviour of the three-layers composite beam. This is in agreement with
the previous convergence diagram. A slight deviation can be perceived in
correspondence of the interface due to the particular choice of involved real
material properties.

6. Conclusions

A novel form of the imperfect interface law for flexoelectric composite
has been proposed, based on an asymptotic approach. The order 0 interface
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Figure 8: Convergence results with respect to the relative thickness ε/L

Figure 9: Dimensionless displacement and electric potential vs x/L, for ε/L = 0.1%

conditions (4) corresponded to the case of soft flexoelectric adhesive and were
given in terms of the mean values and jumps of the physical stress vector,
normal electric displacement and higher-order traction, evaluated at the in-
terface. The transmission conditions presented a similar structure compared
to other soft adhesives in other different multiphysic frameworks [33], provid-
ing a discontinuity of the flexoelectric state in terms of u0i , u0i,3 and φ0, and
a continuity of the corresponding conjugated quantities (Σ0

i3) and D0
3. The

interface model also highlighted an unexpected discontinuity of the hyper-
stress vector σ0

333 at the interface, which could not be predicted in classical
mechanical models.

Despite other proposed contact models for composite structures, e.g.
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Figure 10: Dimensionless stress and hyper-stress vs x/L, for ε/L = 0.1%

[53, 54], these conditions took into account the flexoelectric effect of the
interface. Moreover, the formal asymptotic derivation allowed to consider
the intrinsic second gradient nature of direct flexoelectricity, giving an un-
precedented original form to the interface conditions.

In order to assess the validity of the previous asymptotic procedures, the
analytical solution of a one-dimensional flexoelectric composite three-layers
bar, alternatively subjected to a tensile load and an electric potential dif-
ference, has been developed. The numerical example took also into account
the aforementioned imperfect contact laws. The convergence results showed
that, by reducing the thickness of the adhesive, the relative error has a drastic
reduction. Moreover, the numerical results reported a very good agreement
between the exact three-layer solution and the two-layers solution with in-
terface conditions in terms of electric potential, displacement, physical and
higher-order stresses, and electric displacement, especially for thin adhesives.

The numerical example represents a preliminary numerical/analytical as-
sessment of the obtained imperfect interface model. For an in-depth compu-
tational validation, the interface model needs to be implemented into a FE
general code, providing full 3D numerical examples.

The proposed methodology proved to be efficient and simple-to use, and
can be used in several applications, involving thin films and interfaces at
micro-and nano-scales, such as in MEMS/NEMS, composite graphene struc-
tures, epitaxially strained films, contact problem in biological membranes,
and more.

As future perspective, the first-order correction term of the asymptotic
expansion will be characterized, allowing the definition of higher-order in-
terface conditions as in [33]. Besides, the case of similar rigidities (hard
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interface) will be investigated in order to characterize a generalized interface
law for flexoelectric composites.
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Appendix A.

Using Voigt’s notation, the constitutive matrices of a transversely isotropic
piezoelectric material are defined as follows (see [8, 10, 46]):

(cijhk) =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 , (pijh) =


0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0



(κij) =

κ11 0 0
0 κ11 0
0 0 κ33

 .

with c66 := 1
2
(c11 − c12). Furthermore, by assuming a cubic symmetry,

c33 = c11, c12 = c13, c66 = c44, κ11 = κ33, and the independent flexoelec-
tric components reduce to three, namely, the longitudinal µ11, the transver-
sal µ12, and the shear µ44 coefficients. In isotropic flexoeletricity, the above
coefficients satisfy µ11−µ12+2µ44 = 0. The direct flexoelectric tensor (3×18-
matrix) is given as

(µijkl) =

µ11 µ12 µ12 0 0 0 0 0 0 0 0 µ44 0 0 0 0 µ44 0
0 0 0 0 0 µ44 µ12 µ11 µ12 0 0 0 0 0 0 µ44 0 0
0 0 0 0 µ44 0 0 0 0 µ44 0 0 µ12 µ12 µ11 0 0 0

 .

Note that because of the difference in number of components of strain gra-
dient eij,k and electric field gradient Ei,j, the converse flexoelectric tensor
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(6× 9-matrix) takes the following matrix form

(µijkl) =


µ11 0 0 0 µ12 0 0 0 µ12

µ12 0 0 0 µ11 0 0 0 µ12

µ12 0 0 0 µ12 0 0 0 µ11

0 0 0 0 0 µ44 0 µ44 0
0 0 µ44 0 0 0 µ44 0 0
0 µ44 0 µ44 0 0 0 0 0

 .

All the symmetries of the flexoelectric tensor can be found in [55].
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