1	Embryonic exposure to artificial light at night impairs learning abilities
2	and their covariance with behavioural traits in teleost fish
3	
4	Tyrone Lucon-Xiccato ^{1*} , Gaia De Russi ¹ , Stefano Cannicci ² , Elena Maggi ³ ,
5	Cristiano Bertolucci ¹
6	
7	¹ Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
8	² Department of Biology, University of Florence, Sesto Fiorentino, Italy
9	³ Department of Biology, CoNISMa, University of Pisa, Pisa, Italy
10	
11	*Correspondence: T. Lucon-Xiccato, Department of Life Sciences and Biotechnology, Via L.
12	Borsari 46, 44121, Ferrara, Italy. Phone: +39 0532455478; e-mail:

13	tyrone.lucc	nxiccato	@unife.it
	-		\sim

14 Abstract

The natural light cycle has profound effects on animals' cognitive systems. Its 15 alteration due to human activities, such as artificial light at night (ALAN), affects the 16 biodiversity of mammalian and avian species by impairing their cognitive functions. The 17 impact of ALAN on cognition, however, has not been investigated in aquatic species, in spite 18 of the common occurrence of this pollution along water bodies. We exposed eggs of a teleost 19 20 fish (the zebrafish Danio rerio) to ALAN and, upon hatching, we measured larvae' cognitive abilities with a habituation learning paradigm. Both control and ALAN-exposed larvae 21 22 showed habituation learning, but the latter learned significantly slower, suggesting that under ALAN conditions, fish require many more events to acquire ecologically relevant 23 information. We also found that individuals' learning performance significantly covaried 24 25 with two behavioural traits in the control zebrafish, but ALAN disrupted one of these relationships. Additionally, ALAN resulted in an average increase in larval activity. Our 26 results showed that both fish's cognitive abilities and related individual differences are 27 negatively impacted by light pollution, even after a short exposure in the embryonic stage. 28 29

30 Keywords: ALAN; cognitive plasticity; cognitive variation; fish cognition; personality;
31 zebrafish

32 Introduction

Artificial light at night (ALAN) is recognised as a one of the most pervasive sources 33 of pollution on Earth, with multiple reported negative effects on animals' biology [1-3]. 34 Among these, substantial literature indicates that humans display cognitive impairments due 35 to ALAN [4-6]. Similar effects have been reported for laboratory rodent models [7] and even 36 more severe ones for wild avian populations, in which ALAN-mediated alterations in 37 38 hormonal homeostasis hamper cognitive functioning [8-11; but see: 12]. Considering the often-reported influence of individuals' cognitive abilities on fitness [e.g., 13], these records 39 40 suggest that ALAN might impact biodiversity via cognitive alteration. As a significant proportion of human settlings are related to water bodies, aquatic 41 animals are also affected by ALAN [14-17]. It is estimated that 22% of coastal areas 42 43 worldwide are affected by light pollution [15] and linear freshwater bodies such as rivers and canals are often entirely affected due to streetlights [17]. Therefore, we can expect ALAN to 44 impact aquatic species' cognition, as well. Previous reports found effects of ALAN on teleost 45 fish behaviours such as activity, boldness, and preference for environments with different 46 illumination [18-20]. Yet, the potential impact of ALAN on fish cognition remains unknown. 47 To fill this gap, we experimentally investigated whether ALAN exposure affects cognitive 48 abilities in a teleost fish. 49

We treated fish during their embryonic stages, which are intuitively more susceptible to ALAN due to the impossibility to actively avoid it and the sensitivity of the developing nervous system. We used the zebrafish *Danio rerio* as our study species, which is particularly useful to investigate cognitive abilities and their plasticity during early development [21,22] and is considered a general fish model [23,24]. After exposure to ALAN or control treatment, we assessed zebrafish cognitive abilities with a habituation learning assay [25]. We also measured two behavioural traits (activity and startle response). Multiple studies in fish have

reported that individuals' cognitive traits covary with behavioural traits [26,27]. It has been
hypothesised that covariations with personality might help maintain cognitive variation [28].
Additionally, these covariations might result from local adaptation to ecological conditions,
as suggested by different patterns shown by populations from distinct habitats [29,30].
Considering that similar relationships between traits are affected by environmental stressors
[31,32], it is important to consider the covariation between cognition and behaviour to fully
understand the potential impact of ALAN.

64

65 Materials and methods

66 (a) Experimental treatments

Groups of 25 wild-type embryos obtained with a standard breeding protocol (ESM, 67 S1) were randomly assigned to one of 12 Petri dishes ($\emptyset = 9$ cm) within 2 h from the 68 spawning. The Petri dishes with the subjects were maintained under either ALAN (N = 6) or 69 control condition (N = 6; details in ESM, S1) until testing. In both conditions, a white LED 70 71 strip (0.38 W/m²; 570 lux) provided illumination 12 h per day (6:00-18:00 h). In the ALAN condition, a single LED (0.008 W/m²; 1.5 lux) was turned on during the night phase (18:00-72 6:00 h), obtaining a night illumination comparable to that affecting aquatic species in urban 73 rivers [33,34]. The eggs began to hatch the third day post fertilisation (3 dpf). In contrast with 74 75 other species [35,36], we did not find ALAN effects on zebrafish eggs survival and hatching 76 (ESM, S1). At 4 dpf, hatched larvae underwent testing for behavioural and cognitive traits.

77

78 (b) Behavioural assays

The two behavioural traits (activity and startle response) were analysed before the cognitive testing. The experimenter collected available larvae (90 from the ALAN treatment and 85 from the control treatment; total N = 176 larvae; replicate N = 6). Larvae were moved

individually into the wells of a 48-wells culture plate (N = 4 plates overall). To assess the
behavioural activity, a tracking system recorded the distance moved by each subject for each
minute of testing, starting immediately after inserting the plate, for a total time of 60 minutes.

The second behavioural trait, the startle response, was measured after the behavioural activity measure ended. The larvae were exposed to a sudden vibrational stimulation that typically elicits an immediate startle response (i.e., increased activity; [37]). We measured the startle response as the distance moved in the second after the stimulation, and we also recorded the occurrence of unresponsive larvae (distance moved = 0). Details are provided in ESM, S1.

91

92 (c) Habituation learning test

93 The subjects underwent a habituation learning assay based on the reduction of the startled response elicited by repeated vibrational stimulations [25,37; ESM, S1]. This test 94 allows the earliest cognitive assessment in zebrafish. It has been shown to be sensitive to 95 alterations in learning due to pollutants even at 4 dpf [38], and can predict cognitive abilities 96 of older larvae (ESM, S1). The assay consisted of administering 25 additional stimulations 97 following the stimulation for the startle test. The stimulations were always separated by a 1-98 second interval. Using the distance moved by each subject after each stimulation, we 99 calculated an index of activity reduction between each subsequent stimulation and the first 100 101 [38,39]. This index provided a measure of habituation learning as the reduction in each individual's response to the repeated stimulation. Lower values of the index indicated greater 102 habituation learning performance. 103

104

105 **Results**

106 (a) ALAN increased activity

Activity was analysed in three temporal blocks according to the observed trend 107 (Figure 1a). The activity peak in the first minute was not affected by the treatment (Linear 108 Mixed-Effects Model, LMM: $\chi^2_1 = 1.404$, P = 0.236). In the following phase (minutes 2-11) 109 of increasing activity (main effect of time: $\chi^2_1 = 50.933$, P < 0.001), the effect of the 110 treatment approached the threshold of statistical significance ($\chi^{2}_{1} = 3.708$, P = 0.054), while 111 the interaction between treatment and time was not significant ($\chi^{2}_{1} = 0.496$, P = 0.481). In the 112 last phase (minutes 12-60), characterised by decreasing activity trend ($\chi^{2}_{1} = 307.259$, P < 113 0.001), the main effect of treatment was not significant ($\chi^2_1 = 2.658$, P = 0.103). However, in 114 the last phase, a significant interaction between treatment and time indicated a transitory 115 higher activity of larvae from the ALAN treatment group ($\chi^2_1 = 21.052$, P < 0.001). 116 In the startle test, the proportion of individuals that responded did not significantly 117 vary between the treatments (ALAN treatment: 0.85; control treatment: 0.78; Generalised 118 Linear Mixed-Effects Model, GLMM: $\chi^2_1 = 1.806$, P = 0.179). In the responding subjects, the 119 intensity of the startle did not differ between the treatments (LMM: $\chi^2_1 = 0.695$, P = 0.403; 120 Figure 1b). 121 122 (b) ALAN impaired learning abilities 123 Overall, the habituation index significantly decreased across the stimulations, as 124 expected due to learning (stimulation: LMM: $\chi^2_1 = 168.894$, P < 0.001; Figure 1c). Compared 125 to the ALAN group, the control group showed a lower habituation index (treatment: χ^2_1 = 126 4.621, P = 0.032; Figure 1c) and a greater response reduction across stimulations (treatment \times 127

stimulation interaction: $\chi^2_1 = 29.605$, P < 0.001; Figure 1c), both effects indicating greater

129 habituation learning in the control group (Figure 1c).

131 (c) ALAN affected covariations between behaviour and cognition

132	In the control group, the habituation learning index was significantly correlated with
133	the behavioural activity (Kendall's $T = 0.185$, $P = 0.032$; Figure 2a) and the startle response
134	(Kendall's T = 0.178, P = 0.039; Figure 2b). In the ALAN-exposed larvae, habituation
135	learning significantly correlated with activity (Kendall's $T = 0.210$, $P = 0.008$; Figure 2c), but
136	not with startle response (Kendall's $T = 0.006$, $P = 0.942$; Figure 2d).

137

138 Discussion

ALAN pollution affects a significant proportion of aquatic habitats [14-17], 139 potentially exposing fish to the cognitive impairments associated with altered light-dark 140 cycles described for land vertebrates [4,7,8]. We demonstrated that fish larvae from 141 142 experimental populations exposed to ALAN exhibited reduced habituation learning. The impairment was evident as a slower reduction of the startle response after repeated 143 stimulation [40]. For instance, in the second stimulation, the control group responded 144 approximately 75% less compared to the first stimulation, whereas the ALAN group only 145 showed a 25% response decrease. The performance of the two experimental groups became 146 similar only after nine stimulations. While our laboratory test is difficult to directly relate to a 147 natural situation, the treatment effect is not trivial: individuals exposed to ALAN require 148 many more events to acquire relevant information. Habituation learning has been associated 149 with several activities important for fitness, including antipredator responses [41,42], social 150 151 relationships [43], and human-wildlife interactions [44,45]. The impairment due to ALAN might impact fitness in wild fish populations. Reduced habituation might prevent learning to 152 153 discern predator from non-predator species [46], ultimately explaining the increased predation suffered by juvenile marine fish exposed to ALAN [19,47]. ALAN might also 154

affect other cognitive abilities, calling for investigations on adult fish, which can undergomore complex tests.

157 A second finding of our experiment involved the two behavioural traits and their relationship with cognition. In line with a study on the rockfish *Girella laevifrons* [48], 158 zebrafish exposed to ALAN were more active than control subjects. This effect has been 159 attributed to the loss of behavioural rhythmicity derived from night illumination [48]. 160 161 Conversely, under ALAN, guppies, *Poecilia reticulata*, showed no significant activity alterations [18], and bluegill, *Lepomis macrochirus* showed activity reduction [49], 162 163 suggesting a species-specific effect on behavioural activity. These interspecific differences might also be due to different responses to the assay. In our zebrafish, the effect on activity 164 was mediated by time, being initially more marked and reducing after approximately 30 165 minutes. Therefore, we may have measured acclimation to the novel environment rather than 166 plain activity. Regarding the second behavioural trait examined, the startle response, we 167 detected no ALAN-related effects. 168

Critically, we found significant correlations between the two behavioural traits and 169 individuals' learning performance in the control group, whereas in the ALAN group, we 170 detected only one of these covariations. Relationships between cognition and behaviour have 171 been increasingly reported in the literature [26,27], and are likely part of a more extended set 172 of covariations involving physiological and life-history traits [50]. An earlier study has 173 174 reported ALAN-driven disruption of the relationship between behaviour and metabolism in hermit crabs [51]. While the evolutionary significance of the covariation between cognition 175 and behaviour is not fully understood, other covariations have been linked to fundamental 176 life-history trade-offs [52,53], suggesting that the same may occur for the cognition-177 behaviour relationships. Under this scenario, when a stressor such as ALAN disrupts the 178 covariation, it may alter how individuals optimise their investment across various traits. 179

Moreover, this intraspecific variability might be related to local adaptation [e.g., 29]. If this possibility will be confirmed by future studies, fitness effects of covariance disruption due to ALAN will deserve attention in wild fish populations. The scenario might be gloomier if we postulate that this, as well as other covariations between traits, could also be altered by additional, co-occurring anthropogenic stressors [32,54,55]. Lastly, the covariance between behaviour and learning may be involved in mechanisms of invasive species success [56], suggesting the importance of studying ALAN effects in this context.

Our focus on the embryonic stage has led to further insights into the impacts of 187 188 ALAN on teleost fishes. First, we can conclude that even a short exposure to ALAN might induce phenotypic changes, at least during the earlier development. Due to behavioural and 189 cognitive alterations, fish hatching from eggs laid in habitats affected by ALAN could suffer 190 negative consequences from their first day of life, often the onset of a critical period for 191 survival. Second, the observed effects were directly caused by individuals' experience 192 without contribution of parental effect, which remain nevertheless interesting to investigate as 193 reported for various cognitive functions [57,58]. An unanswered question is whether ALAN-194 mediated alterations persist for the entire life. Studies with various approaches suggest that 195 stressors can determine long-lasting cognitive plasticity in fish [59,60]. If this will be 196 confirmed for ALAN, its impacts could carry over into later life stages, even if later life 197 stages move to habitats without light pollution. The adult fish brain, however, is probably the 198 199 most plastic among vertebrates [61] and we cannot exclude continuous plasticity in response to changing light conditions. 200

Overall, this study highlighted the negative effects of early life ALAN exposure on fish cognition and its covariation with behavioural traits. Our findings advocate for investigation on other fish species in their early ontogenetic stages, as studies in zebrafish have been often predictive for other freshwater and marine teleosts [23,24]. Similarly,

205	cognitive impairments from embryonic ALAN exposure might occur in other aquatic taxa
206	such as invertebrates and amphibians.
207	
208	Acknowledgements
209	We are thankful to Chiara Uccello, Sabrina Briscese, and Georgiana Andrei for help
210	in maintaining and testing the larvae.
211	
212	Funding
213	Funding was provided by FAR2023 grant from University of Ferrara to T.LX. and
214	C.B

215 **References**

216	1. Gaston, K	. J.,	Visser, M	М. Е.,	& Hölker,	F. (2015). The bio	logical im	pacts of art	ificial li	ght
-----	--------------	-------	-----------	--------	-----------	----------	------------	------------	--------------	------------	-----

- at night: the research challenge. Philosophical Transactions of the Royal Society B:
- 218 Biological Sciences, 370(1667), 20140133.

219

- 220 2. Gaston, K. J., Ackermann, S., Bennie, J., Cox, D. T., Phillips, B. B., Sánchez de Miguel,
- A., & Sanders, D. (2021). Pervasiveness of biological impacts of artificial light at night.

Integrative and Comparative Biology, 61, 1098-1110.

223

3. Sanders, D., Frago, E., Kehoe, R., Patterson, C., & Gaston, K. J. (2021). A meta-analysis

of biological impacts of artificial light at night. Nature Ecology & Evolution, 5, 74-81.

226

4. Vandewalle, G., Maquet, P., & Dijk, D. J. (2009). Light as a modulator of cognitive brain
function. Trends in Cognitive Sciences, 13, 429-438.

229

230 5. Zielińska-Dąbkowska, K., & Xavia, K. (2018). An overview of the cognitive and

biological effects of city nighttime illumination including a London case study. Conscious

232 Cities Anthology 2018: Human-Centred Design, Science, and Technology, 1-9.

233

6. Lee, Y., Cho, C. H., & Lee, H. J. (2020). Impact of exposure to dim artificial light at night
during sleep on cognitive function. Chronobiology in Medicine, 2, 160-165.

236

237 7. Song, P., Yan, B., Lei, F., Qiu, Z., Zhang, C., Wu, Y., et al. (2021). Continuous artificial

light at night exacerbates diisononyl phthalate-induced learning and memory impairment in

239 mice: Toxicological evidence. Food and Chemical Toxicology, 151, 112102.

240

241	8. Buniyaadi, A., Prabhat, A., Bhardwaj, S. K., & Kumar, V. (2022). Night melatonin levels
242	affect cognition in diurnal animals: Molecular insights from a corvid exposed to an
243	illuminated night environment. Environmental Pollution, 308, 119618.
244	
245	9. Taufique, S. T. (2022). Artificial light at night, higher brain functions and associated
246	neuronal changes: An avian perspective. Birds, 3, 3.
247	
248	10. Moaraf, S., Vistoropsky, Y., Pozner, T., Heiblum, R., Okuliarová, M., Zeman, M., &
249	Barnea, A. (2020). Artificial light at night affects brain plasticity and melatonin in birds.
250	Neuroscience Letters, 716, 134639.
251	
252	11. Meijdam, M., Eens, M., & Müller, W. (2023). Artificial light at night impairs inhibitory
253	control in a wild songbird. Science of The Total Environment, 163765.
254	
255	12. Yorzinski, J. L., Ordonez, K. A., & Chema, K. T. (2017). Does artificial light pollution
256	impair problem-solving success in peafowl?. Ethology, 123, 854-860.
257	
258	13. Rochais, C., Schradin, C., & Pillay, N. (2023). Cognitive performance is linked to
259	survival in free-living African striped mice. Proceedings of the Royal Society B, 290,
260	20230205.
261	
262	14. Marangoni, L. F., Davies, T., Smyth, T., Rodríguez, A., Hamann, M., Duarte, C., et al.
263	(2022). Impacts of artificial light at night in marine ecosystems—A review. Global Change
264	Biology, 28, 5346-5367.

266	15. Davies, T. W., Duffy, J. P., Bennie, J., & Gaston, K. J. (2016). Stemming the tide of light
267	pollution encroaching into marine protected areas. Conservation Letters, 9, 164-171.
268	
269	16. Moore, M. V., Kohler, S. J., Cheers, M. S., Rich, C., & Longcore, T. (2006). Artificial
270	light at night in freshwater habitats and its potential ecological effects. In: Ecological
271	consequences of artificial night lighting (Rich, C., & Longcore, T., eds), Inslandpress,
272	Washington, pp. 365-384.
273	
274	17. Jechow, A., & Hölker, F. (2019). How dark is a river? Artificial light at night in aquatic
275	systems and the need for comprehensive night-time light measurements. Wiley
276	Interdisciplinary Reviews: Water, 6, e1388.
277	
278	18. Kurvers, R. H., Drägestein, J., Hölker, F., Jechow, A., Krause, J., & Bierbach, D. (2018).
279	Artificial light at night affects emergence from a refuge and space use in guppies. Scientific
280	Reports, 8, 1-10.
281	
282	19. O'Connor, J. J., Fobert, E. K., Besson, M., Jacob, H., & Lecchini, D. (2019). Live fast, die
283	young: Behavioural and physiological impacts of light pollution on a marine fish during
284	larval recruitment. Marine Pollution Bulletin, 146, 908-914.
285	
286	20. Pulgar, J., Manríquez, P. H., Widdicombe, S., García-Huidobro, R., Quijón, P. A., Carter,
287	M., Aldana, M., Quintanilla-Ahumada, D., & Duarte, C. (2023). Artificial Light at Night
288	(ALAN) causes size-dependent effects on intertidal fish decision-making. Marine Pollution
289	Bulletin, 193, 115190.

291	21. Gatto, E., Bruzzone, M., & Lucon-Xiccato, T. (2021). Innate visual discrimination abilities of
292	zebrafish larvae. Behavioural Processes, 193, 104534.
293	
294	22. Lucon-Xiccato, T., Gatto, E., Fontana, C. M., & Bisazza, A. (2023). Quantity
295	discrimination in newly hatched zebrafish suggests hardwired numerical abilities.
296	Communications Biology, 6, 247.
297	
298	23. Chen, X., Li, L., Wong, C. K. C., & Cheng, S. H. (2009). Rapid adaptation of molecular
299	resources from zebrafish and medaka to develop an estuarine/marine model. Comparative
300	Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149, 647-655.
301	
302	24. Dahm, R., & Geisler, R. (2006). Learning from small fry: the zebrafish as a genetic model
303	organism for aquaculture fish species. Marine Biotechnology, 8, 329-345.
304	
305	25. Faria, M., Prats, E., Novoa-Luna, K. A., Bedrossiantz, J., Gómez-Canela, C., Gómez-
306	Oliván, L. M., & Raldúa, D. (2019). Development of a vibrational startle response assay for
307	screening environmental pollutants and drugs impairing predator avoidance. Science of The
308	Total Environment, 650, 87-96.
309	
310	26. Savaşçı, B. B., Lucon-Xiccato, T., & Bisazza, A. (2021). Ontogeny and personality affect
311	inhibitory control in guppies, Poecilia reticulata. Animal Behaviour, 180, 111-121.
312	

313	27. Wallace, K. J., Rausch, R. T., Ramsey, M. E., & Cummings, M. E. (2020). Sex
314	differences in cognitive performance and style across domains in mosquitofish (Gambusia
315	affinis). Animal Cognition, 23, 655-669.
316	
317	28. Lucon-Xiccato, T., Montalbano, G., & Bertolucci, C. (2020). Personality traits covary
318	with individual differences in inhibitory abilities in 2 species of fish. Current Zoology, 66,
319	187-195.
320	
321	29. De Meester, G., Pafilis, P., & Van Damme, R. (2022). Bold and bright: Shy and supple?
322	The effect of habitat type on personality-cognition covariance in the Aegean wall lizard
323	(Podarcis erhardii). Animal Cognition, 1-23.
324	
325	30. Daniel, D. K., & Bhat, A. (2023). Correlations begin at home: drivers of co-occurrence
326	patterns in personality and cognitive ability in wild populations of zebrafish. Animal
327	Cognition, 26, 1381-1394.
328	
329	31. Jacquin, L., Petitjean, Q., Côte, J., Laffaille, P., & Jean, S. (2020). Effects of pollution on
330	fish behavior, personality, and cognition: some research perspectives. Frontiers in Ecology
331	and Evolution, 86.
332	
333	32. Killen, S. S., Marras, S., Metcalfe, N. B., McKenzie, D. J., & Domenici, P. (2013).
334	Environmental stressors alter relationships between physiology and behaviour. Trends in
335	Ecology & Evolution, 28, 651-658.
336	

337	33. Brüning, A., Hölker, F., Franke, S., Preuer, T., & Kloas W. (2015). Spotlight on fish: light
338	pollution affects circadian rhythms of European perch but does not cause stress. Science of The Total
339	Environment, 511, 516-522.
340	
341	34. Perkin, E. K., Hölker, F., Heller, S., & Berghahn, R. (2014). Artificial light and nocturnal
342	activity in gammarids. PeerJ, 2, e279.
343	
344	35. Fobert, E. K., Burke da Silva, K., & Swearer, S. E. (2019). Artificial light at night causes
345	reproductive failure in clownfish. Biology Letters, 15, 20190272.
346	
347	36. Fobert, E. K., Schubert, K. P., & da Silva, K. B. (2021). The influence of spectral
348	composition of artificial light at night on clownfish reproductive success. Journal of
349	Experimental Marine Biology and Ecology, 540, 151559.
350	
351	37. Chanin, S., Fryar, C., Varga, D., Raymond, J., Kyzar, E., Enriquez, J., Bagawandoss, S.,
352	Gaikwad, S., Roth, A., Pham, M., Zapolsky, I., Bruce, I., Hester, J., Green, J., Desmond, D.,
353	Stewart A. M., & Kalueff, A. V. (2012). Assessing startle responses and their habituation in
354	adult zebrafish. In: Zebrafish protocols for neurobehavioral research (Kalueff, A. V., &
355	Adam Stewart, A. M., eds.), pp. 287-300, Humana Press, NJ.
356	
357	38. Lucon-Xiccato, T., Savaşçı, B. B., Merola, C., Benedetti, E., Caioni, G., Aliko, V.,
358	Bertolucci, C. & Perugini, M. (2023). Environmentally relevant concentrations of
359	triclocarban affect behaviour, learning, and brain gene expression in fish. Science of The

360 Total Environment, 903, 166717.

362	39. Lucon-Xiccato, T., Montalbano, G., Gatto, E., Frigato, E., D'Aniello, S., & Bertolucci, C.
363	(2022). Individual differences and knockout in zebrafish reveal similar cognitive effects of
364	BDNF between teleosts and mammals. Proceedings of the Royal Society B, 289, 20222036
365	
366	40. Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo, J., et al.
367	(2009). Habituation revisited: an updated and revised description of the behavioral
368	characteristics of habituation. Neurobiology of Learning and Memory, 92, 135-138.
369	
370	41. Deecke, V. B., Slater, P. J., & Ford, J. K. (2002). Selective habituation shapes acoustic
371	predator recognition in harbour seals. Nature, 420, 171-173.
372	
373	42. Hemmi, J. M., & Merkle, T. (2009). High stimulus specificity characterizes anti-predator
374	habituation under natural conditions. Proceedings of the Royal Society B: Biological
375	Sciences, 276, 4381-4388.
376	
377	43. Dong, S., & Clayton, D. F. (2009). Habituation in songbirds. Neurobiology of Learning
378	and Memory, 92, 183-188.
379	
380	44. Geist, V. (2011). Wildlife habituation: advances in understanding and management
381	application. Human-Wildlife Interactions, 5, 9-12.
382	
383	45. Higham, J. E. S., & Shelton, E. J. (2011). Tourism and wildlife habituation: reduced
384	population fitness or cessation of impact?. Tourism Management, 32, 1290-1298.
385	

386	46. Mitchell, M. D., Chivers, D. P., McCormick, M. I., & Ferrari, M. C. (2015). Learning to
387	distinguish between predators and non-predators: understanding the critical role of diet cues
388	and predator odours in generalisation. Scientific Reports, 5, 13918.
389	
390	47. Schligler, J., Cortese, D., Beldade, R., Swearer, S. E., & Mills, S. C. (2021). Long-term
391	exposure to artificial light at night in the wild decreases survival and growth of a coral reef
392	fish. Proceedings of the Royal Society B, 288, 20210454.
393	
394	48. Pulgar, J., Zeballos, D., Vargas, J., Aldana, M., Manriquez, P. H., Manriquez, K.,
395	Manriquez, K., Quijón, P. A., Widdicombe, S., Anguita, C., Quintanilla, D., & Duarte, C.
396	(2019). Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is
397	modified by artificial light pollution at night (ALAN). Environmental Pollution, 244, 361-
398	366.
399	
400	49. Latchem, E., Madliger, C. L., Abrams, A. E. I., & Cooke, S. J. (2021). Does artificial light
401	at night alter the subsequent diurnal behavior of a teleost fish?. Water, Air, & Soil Pollution,
402	232, 1-8.
403	
404	50. Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P. O.
405	(2010). Personality and the emergence of the pace-of-life syndrome concept at the population
406	level. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 4051-
407	4063.
408	
409	51. Velasque, M., Denton, J. A., & Briffa, M. (2023). Under the influence of light: How light
410	pollution disrupts personality and metabolism in hermit crabs. Environmental Pollution, 316,

411 120594.

413	52. Le Galliard, J. F., Paquet, M., Cisel, M., & Montes-Poloni, L. (2013). Personality and the
414	pace-of-life syndrome: variation and selection on exploration, metabolism and locomotor
415	performances. Functional Ecology, 27, 136-144.
416	
417	53. Khelifa, R., Zebsa, R., Amari, H., Mellal, M. K., & Mahdjoub, H. (2019). Field estimates
418	of fitness costs of the pace-of-life in an endangered damselfly. Journal of Evolutionary
419	Biology, 32, 943-954.
420	
421	54. Tüzün, N., Savaşçı, B. B., & Stoks, R. (2021). Seasonal time constraints shape life
422	history, physiology and behaviour independently, and decouple a behavioural syndrome in a
423	damselfly. Oikos, 130, 274-286.
424	
425	55. Killen, S. S., Marras, S., Ryan, M. R., Domenici, P., & McKenzie, D. J. (2012). A
426	relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in
427	juvenile European sea bass. Functional Ecology, 26, 134-143.
428	
429	56. Chung, M., Goulet, C. T., Michelangeli, M., Melki-Wegner, B., Wong, B. B., & Chapple,
430	D. G. (2017). Does personality influence learning? A case study in an invasive lizard.
431	Oecologia, 185, 641-651.
432	
433	57. Colson, V., Cousture, M., Damasceno, D., Valotaire, C., Nguyen, T., Le Cam, A., &
434	Bobe, J. (2019). Maternal temperature exposure impairs emotional and cognitive responses
435	and triggers dysregulation of neurodevelopment genes in fish. PeerJ, 7, e6338.
436	

437	58. Roche, D. P., McGhee, K. E., & Bell, A. M. (2012). Maternal predator-exposure has
438	lifelong consequences for offspring learning in threespined sticklebacks. Biology Letters, 8,
439	932-935.
440	
441	59. Vila Pouca, C., Mitchell, D. J., Lefèvre, J., Vega-Trejo, R., & Kotrschal, A. (2021). Early
442	predation risk shapes adult learning and cognitive flexibility. Oikos, 130, 1477-1486.
443	
444	60. Vindas, M. A., Fokos, S., Pavlidis, M., Höglund, E., Dionysopoulou, S., Ebbesson, L. O.,
445	Papandroulakis, N., & Dermon, C. R. (2018). Early life stress induces long-term changes in
446	limbic areas of a teleost fish: the role of catecholamine systems in stress coping. Scientific
447	Reports, 8, 5638.
448	
449	61. Zupanc, G. K. H. (2006). Neurogenesis and neuronal regeneration in the adult fish brain.
450	Journal of Comparative Physiology A, 192, 649-670.
451	
452	62. Lucon-Xiccato, T., De Russi, G., Cannicci, S., Maggi, E., & Bertolucci, C. (2023).
453	Embryonic exposure to artificial light at night impairs learning abilities and their covariance
454	with behavioural traits in teleost fish. Figshare. (doi:)
455	

456 **Figure captions**

457 Figure 1. Behavioural and cognitive alterations due to the ALAN. (a) Activity measured as

458 distance moved; (b) index of first response to the stimulation; (c) habituation learning index.

459 Data points and bars represent means and error bars represent standard errors; the stimulation

460 '0' in panel b represents the index of the initial reference startle.

461

462 Figure 2. Covariation between the cognitive trait (habituation learning) and the two

behavioural traits. Scatterplots of habituation learning versus (a) behavioural activity and (b)

- 464 startle response in control zebrafish; scatterplots of habituation learning versus (c)
- 465 behavioural activity and (d) startle response in ALAN-exposed zebrafish. Lines represent
- 466 predicted values from linear regression displayed for illustrative purposes.

