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Abstract
In recent years, many pre-clinical studies have tested gene therapy approaches as possible treatments for epilepsy, following 
the idea that they may provide an alternative to conventional pharmacological and surgical options. Multiple gene therapy 
approaches have been developed, including those based on anti-sense oligonucleotides, RNA interference, and viral vectors. 
In this opinion article, we focus on translational issues related to viral vector-mediated gene therapy for epilepsy. Research has 
advanced dramatically in addressing issues like viral vector optimization, target identification, strategies of gene expression, 
editing or regulation, and safety. Some of these pre-clinically validated potential gene therapies are now being tested in clinical 
trials, in patients with genetic or focal forms of drug-resistant epilepsy. Here, we discuss the ongoing translational research 
and the advancements that are needed and expected in the near future. We then describe the clinical trials in the pipeline and 
the further challenges that will need to be addressed at the clinical and economic levels. Our optimistic view is that all these 
issues and challenges can be overcome, and that gene therapy approaches for epilepsy will soon become a clinical reality.

Key Points 

Multiple gene therapy approaches are currently being tested 
for drug-resistant epilepsies, in particular those based on 
anti-sense oligonucleotides and on viral vectors.

Two phase I/II viral vector-based gene therapy clinical 
studies that target focal and genetic forms of epilepsy are 
now starting.

Viral vector-based gene therapy approaches have 
reached high levels of optimization but refinement is still 
required.

1 � Epilepsies

The term “epilepsy” refers to a collection of diseases 
characterized by the enduring predisposition to generate 
spontaneous unpredictable seizures [1]. Although seizures 
are the main sign of the disorder, their origin, semiology, 
frequency, and severity can be extremely heterogeneous, 
reflecting many possible etiologies [2]. Seizures can be 
generalized, when the electrical activity occurs in bilater-
ally distributed networks, or focal, when activity is limited 
to one hemisphere. Epilepsies associated with generalized 
seizures are often caused by a genetic defect, whereas epi-
lepsies with focal seizures generally result from a lesion in a 
specific brain region. More than 30% of the patients are drug 
resistant [3, 4] and may experience a wide range of comor-
bidities, mostly psychiatric and cognitive, as well as social 
complications. In addition, people with epilepsy also have 
an increased risk of premature death mainly due to sudden 
unexpected death in epilepsy [5].

There are many unmet clinical needs in this disorder, 
in particular [6], the development of treatments for drug-
resistant epilepsies, the improvement of tolerability of treat-
ments, identification of disease-modifying treatments that 
prevent or attenuate the development of epilepsy in at-risk 
individuals (e.g., children experiencing febrile seizures, 
individuals with a brain trauma, and individuals affected 
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by brain tumors, stroke, or Alzheimer’s disease), and the 
development of treatments capable of preventing or ame-
liorating the common comorbidities that contribute to dis-
ability. The introduction of new drugs into clinical practice 
over the past two decades has not substantially changed the 
situation [7]. Epilepsy surgery, consisting of the removal 
of the abnormal part of the brain, is effective for carefully 
selected patients with drug-resistant focal epilepsies [8] but, 
unfortunately, this option can be offered only to a small num-
ber of patients because many epilepsies do not have a focal 
origin and because of the risk of affecting important brain 
functions, for example, resecting the eloquent cortex. In 
addition, epilepsy surgery centers require highly specialized 
personnel and are very expensive, strongly limiting access 
to treatment for many of those who may benefit, especially 
in low-income countries. Evidence of efficacy and safety 
of other approaches, such as vagal nerve stimulation, deep 
brain and cortical stimulation, or a ketogenic diet, is still 
insufficient [9, 10]. In sum, the identification of alternative, 
more effective treatment options for difficult-to-treat epilep-
sies is highly urgent.

2 � Might Gene Therapy Become an Option 
for Epilepsy Treatment?

There is growing pre-clinical evidence to indicate that gene 
therapy is a suitable approach to treat a large population 
of patients with epilepsy that have no therapeutic alterna-
tives. The concept of gene therapy has evolved over the 
years, and currently includes not only the introduction of 
healthy variants of genes in cells, but also the modulation 
of existing gene activity and gene editing. These goals may 
be pursued using different cargo delivery methods (nano-
particles, viruses, ribonucleoprotein complexes), different 
approaches (patient-derived cells treated ex vivo, direct 
in vivo injection), and different gene modulation strategies 
(CRISPR-Cas9, anti-sense oligonucleotides, microRNAs) 
[11]. Altogether, gene therapy is now emerging as a prom-
ising therapeutic strategy for many diseases, including dis-
eases that may not have a genetic cause, such as Parkinson’s 
disease and Alzheimer’s disease [12].

Gene therapy approaches for epilepsy can be divided 
into two broad categories: those targeting the gene defect, 
for genetic forms of the disease; and those targeting 
mechanism(s) of seizure generation [13]. In both cases, dif-
ferent gene therapy approaches have been developed, based 
on anti-sense oligonucleotides, RNA interference, and viral 
vectors. In this opinion paper, while referring the reader 
to other articles discussing other approaches [13, 14], we 
focus on in vivo gene therapies mediated by viral vectors. 
For such an approach to be successful, many issues should 
be considered and addressed, for example, optimization of 

the natural ability of viruses to transfer genetic material into 
target cells; production of clinical-grade vectors; targeting of 
specific cell populations in a highly heterogeneous environ-
ment; long-lasting and modulated expression of therapeutic 
genes; and safety. In the following paragraphs, we discuss 
recent developments and future prospects in these many 
respects, before describing the first clinical trials that are 
now ready to start.

3 � Viral Vectors

To be effective, gene therapy for epilepsy needs to achieve 
stable, highly regulated, and safe gene expression in the 
brain. Viral vectors based on different viruses [adenovirus, 
adeno-associated virus (AAV), lentiviruses (LV), herpes 
simplex virus] have been shown to represent valid options to 
achieve these requirements [12, 15, 16]. Among these, AAV- 
and LV-based vectors are emerging as the most promising.

Recombinant AAV vectors seem particularly suited to 
central nervous system (CNS) gene therapy because of their 
low pathogenicity, high delivery efficiency, and specific tis-
sue or cell tropism [17]. Many different recombinant AAV 
vector-based gene therapy products are already approved for 
use in patients with lipoprotein lipase deficiency, Leber’s 
congenital amaurosis, spinal muscular atrophy, and Duch-
enne muscular dystrophy [18, 19]. Recombinant AAV vec-
tors ensure long-lasting transgene expression and a broad 
spread in the parenchyma after direct injection in the brain 
[20], which makes them good candidates to target focal epi-
leptogenic areas. In addition, the discovery of new AAV 
capsids, such as AAVrh.8, AAVrh.10, and AAV9, which 
are able to cross the blood–brain barrier (BBB), hold the 
promise of application to genetic forms of epilepsy that may 
require targeting the entire brain [21, 22]. The downside of 
AAV vectors is the very limited cargo capacity and, there-
fore, efforts are directed to addressing this issue [23].

Notwithstanding their limitations, for example, the inabil-
ity to cross the BBB and the limited spread from the site of 
injection in the brain tissue [24], LV vectors remain a prom-
ising strategy to treat neurological diseases because of their 
larger cargo capacity and their efficiency in providing per-
manent expression of transgenes in non-dividing cells such 
as neurons [25]. They are currently studied for gene therapy 
of neurometabolic diseases that can display epileptic symp-
toms [26, 27]. In addition, their ability to provide rapid, sta-
ble, and spatially restricted transgene expression makes them 
a very interesting tool for focal epilepsies [28]. One issue 
that must be addressed relates to the fact that LVs insert 
their DNA in the host cell genome, with the consequent risk 
of mutagenesis. However, this risk is highly attenuated with 
last-generation LV vectors [29, 30].
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Independent of the type of viral backbone, one common 
hurdle is the production of clinical-grade vectors. High 
yield, concentration, and purity are necessary attributes of 
clinical-grade vectors, owing to the large amounts of viral 
particles that are needed for transducing relatively broad 
brain areas or to overcome the BBB. Improvements in the 
scalability of recombinant AAV vector production can be 
achieved through different strategies [31–35]. There is still 
room for improvement, as some of these issues (e.g., DNA 
contamination or non-infective particles) remain a funda-
mental challenge. Describing all the issues related to large-
scale production of vectors goes beyond the scope of this 
paper. Nonetheless, it will be very important to overcome 
them, as the very high manufacturing cost of gene therapy 
products has a huge impact on their affordability [20].

4 � Targets and Strategies

As mentioned above, gene therapy strategies for epilepsy 
may aim at targeting the genetic defect or the mechanism(s) 
of seizure generation. The former strategy may be the most 
obvious for genetic forms of epilepsy. In these cases, how-
ever, the genetic defect affects widespread populations of 
cells in the CNS, and the gene therapy vector should there-
fore be able to cross the BBB or diffuse broadly after injec-
tion in the cerebrospinal fluid, a goal that can be achieved 
using specific AAV serotypes [36, 37]. In the epilepsy field, 
promising results have been obtained for Dravet syndrome 
(DS) [38], a severe infantile epilepsy syndrome that affects 
approximately 2.5 in 100,000 children [39]. Dravet syn-
drome is a developmental epileptic encephalopathy that 
is most often caused by monogenic loss-of-function vari-
ants of the SCN1A gene, which encodes the alpha subunit 
of the voltage-gated type I sodium channel (NaV1.1). This 
leads to impaired activity of neurons, primarily inhibitory 
GABAergic neurons [40]. Recent data suggest that DS may 
be treated efficiently with a AAV gene therapy approach, 
ETX101. ETX101 uses a non-replicating recombinant 
AAV9 in which a GABAergic regulatory element ensures 
selective expression in GABAergic neurons of an engineered 
transcription factor that increases SCN1A gene transcription 
[38]. A single injection of ETX101 in a mouse model of DS 
induced increased SCN1A gene activity and NaV1.1 protein 
expression in brain GABA neurons, as well as a significant 
reduction in spontaneous seizures and improved long-term 
survival [38].

The alternative option is to target the mechanisms under-
lying the generation of seizures [41, 42], which has mainly 
been tested via a direct injection of vectors in the epilepto-
genic region, in models of focal epilepsies. In this respect, 
several strategies have been proposed and characterized 
based on the transfer in the epileptogenic area of genes that 

modify cell function and control hyperexcitability, such as 
ion channels [43], neurotransmitters [44, 45], neurotrophic 
factors [46], or receptors [47]. Other strategies that have 
been tested include the transfer of genes encoding proteins 
that render the cell sensitive to specific drugs (chemogenet-
ics [48]) or to light stimulation (optogenetics [49]). A com-
binatory gene therapy may be useful to disrupt more than 
one mechanism of seizure generation. One example is the 
use of viral vectors to locally supplement a combination of 
the neurotransmitter neuropeptide Y (NPY) with its recep-
tor Y2, which proved superior compared with NPY alone 
[47, 50]. Finally, recent studies explored the possibility of 
using gene editing technologies, which proved very prom-
ising both in models of genetic and focal lesional epilepsy 
[51, 52].

5 � Control of Transgene Expression

Finely tuning transgene expression in terms of cell specific-
ity, temporal (on-demand) expression, and levels of expres-
sion would increase safety and efficacy. First, transgene 
expression in specific cell populations is often essential 
for epilepsy gene therapy. For example, anti-seizure effects 
may be obtained by increasing the strength of inhibitory sig-
nals or reducing that of excitatory signals, but these effects 
depend on the cell population expressing the transgene, 
that is, selective inhibition of excitatory, but not inhibitory, 
neurons can produce anti-seizure effects [12]. Targeting the 
therapeutic intervention on specific brain cell populations 
may be obtained by various means, for example, driving 
transgene expression by cell-specific promoters [16]; incor-
porating tandem repeats of artificial microRNA target sites 
into the 3′ UTR of the transgene expression cassette, which 
leads to degradation of transgene mRNA in cells expressing 
the corresponding microRNA [53]; and using specific AAV 
serotypes [54]. Although none of these systems is perfect, 
they may be combined in an attempt to achieve a high degree 
of cell specificity.

In addition, all protocols that have been experimentally 
tested thus far have applied gene therapy at a single dose, 
and this was irreversible, with a fixed gene expression level 
and the consequent risk of under-dosing or over-dosing. This 
way, expression of the transgene could not be stopped or 
modified according to the specific patient’s needs. Regulated 
or “on-demand” inducible systems would therefore be desir-
able. Controlled transgene expression can be obtained in 
multiple ways [16], for example, by using inducible promot-
ers, obtained by incorporating in the vector (or in a separate 
vector) a cassette driving the constitutive expression of a 
transcription factor (transactivator) able to activate or block 
transgene expression depending on the availability of a mol-
ecule that is administered systemically (e.g., doxycycline, 
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rapamycin); or by using promoters activated only when neu-
rons are hyper-excited [55].

Finally, self-regulation or transgene expression may 
be obtained by engineering vectors to respond to internal 
environmental cues, such as inflammation or hypoxia [56, 
57]. These systems are not yet fully developed. Externally 
regulated systems (inducible promoters, optogenetics, DRE-
ADDs) seem more attractive, but entail issues related to the 
safety of the transgene expression inducer (drug or device) 
and to the potential leakage of the system in the absence of 
the inducer. Moreover, the expression of non-self-proteins 
implies potential immunogenicity (see below).

Last but not least, all systems described in this section 
require expanding the size of the expression cassette and/or 
expressing multiple genes. As discussed above, this implies 
several technical problems, such as limited payload capac-
ity of the viral genome for AAVs and positional effects due 
to varying gene positions in multi-cistronic constructs [58, 
59], particularly for gene products that are delivered to dif-
ferent subcellular compartments or display post-translational 
modifications [60, 61].

6 � Toxicity and Immunogenicity

Viral vector-mediated gene therapy is expected to cause 
dose-dependent adverse effects [62–66]. However, little 
evidence regarding this issue is as yet available for CNS 
gene therapy, because almost all pre-clinical studies are 
conducted with single doses. This complicates the trans-
lation to human studies that are generally conducted with 
single doses (even if dose-escalating designs were employed 
in first-in-human gene therapy studies in patients with Par-
kinson’s disease [67–70]). Experimental designs including 
dose finding would be useful in future pre-clinical and, if 
ethically acceptable, first-in-human clinical studies of gene 
therapy for epilepsy.

Intracranial administration of vectors into the CNS, while 
being less prone to evoke immune reactions (see below), 
may entail other risks, in particular in people with epilepsy 
because the vectors themselves may cause neuroinflamma-
tion [71–73] and thereby facilitate seizures. Pre-clinical 
studies in neurodegenerative disorders reported that infil-
tration by innate immune cells interferes with AAV vectors 
and compromises the gene therapy effect after intracere-
broventricular, intra-cisterna magna, intrathecal, and intra-
parenchymal injections [74, 75]. Improvements in this issue  
were obtained with modified capsids [76, 77]. Because acute 
inflammation can favor epilepsy development and mainte-
nance and, in turn, seizure activity favors brain inflammation 
[78–81], anti-inflammatory prophylaxis should be consid-
ered for people approaching gene therapy (see also below).

Another factor that may strongly impact the feasibility of 
future gene therapies for epilepsy is the immune response. 
At the moment, despite advanced technological strategies 
(e.g., engineered “immune stealth” capsids, immune system 
evasion) and significant efforts to improve the specificity, 
inducibility, efficiency, and broad applicability of different 
classes of viral vectors, we still do not adequately know the 
short- and long-term toxicity interactions of gene therapies 
with the human immune system. The prevailing host immu-
nologic responses observed with gene therapy in the CNS 
are against viral vector proteins [75, 82, 83] or transgene-
encoded proteins [75, 84, 85]. These reactions involve both 
the innate and adaptive immune systems, and can occur after 
both systemic or local (intra-cerebral) administration of the 
vector. However, no major problem in this respect has been 
encountered with the now broad experience of gene ther-
apy for Leber’s congenital amaurosis and spinal muscular 
atrophy.

Immunological drawbacks may be associated with any 
gene therapy strategy. Individual pre-existing immunity 
may prevent vector transduction of host cells or hamper 
repeated administration, making the treatment ineffective. 
In addition, it may be hypothesized that immune reactions 
attacking transduced cells compromise the patient’s health. 
Such potential adverse immunoreactivity would worsen the 
symptoms in patients with epilepsy, i.e., it may directly pro-
voke spontaneous seizures [86–88] or interfere with anti-
epileptic drugs [89–91] by limiting their anti-seizure effect 
or amplifying their undesirable effects. To reduce the cases 
of unwanted immune reactions, one possibility is to measure 
the levels of pre-existing antibodies against the designated 
vector in the patients and set exclusion criteria for individu-
als whose values are above a certain threshold [66, 92, 93]. 
Unfortunately, this approach may greatly limit the potential 
use of future gene therapies. For example, we may have to 
exclude up to half of the patients because of their pre-exist-
ing immunity against AAV or herpes simplex virus proteins 
[94, 95]. However, immunomodulatory strategies may be 
adopted to suppress vector-related immune reactions. Sin-
gle or combined administration of immunosuppressants has 
been used in many CNS-targeting gene therapies, allowing 
repeated administration of viral vectors and thereby prolong-
ing the expression of transgene-encoded proteins [66, 75, 
96].

7 � Clinical Trials of Anti‑Epileptic Gene 
Therapy

Over the past few decades, gene therapy has offered unique 
treatment opportunities for CNS diseases in which symp-
tom management is currently the only treatment option. 
The recent success of the first CNS gene therapies has 
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encouraged the growing community of researchers, and led 
to an escalated launch of new clinical-stage biotech compa-
nies. This sector is becoming increasingly strong, contribut-
ing to the value of the global market for all gene therapies, 
which is expected to reach nearly $20 billion by 2027 [97]. 
Its main applications are genetic diseases caused by single 
mutations with a loss of gene function, but also more com-
plex progressive neurological diseases, including Alzhei-
mer’s disease [98], Parkinson’s disease [99], and epilepsy 
[100].

As for epilepsy, gene therapy may first of all represent a 
unique opportunity for people with focal epilepsies. In fact, it 
may be initially offered to patients with drug-resistant focal 
epilepsies selected for surgical resection [101]. Gene therapy 
vectors may be injected directly into the epileptogenic focus, 
abolishing or lowering the risk of affecting healthy brain 
tissue and, therefore, unpredictable side effects. Should the 
treatment not prove effective or well tolerated, patients could 
undergo resective surgery as originally planned. Should it 
instead prove effective, patients could avoid surgery. In the 
wider context of future gene therapy for epilepsy, such proof 
of efficacy would extend the application of the treatment 
to some of the patients with focal epilepsies who are not 
eligible for surgery.

The first approved gene therapy trial is based on a rand-
omized blinded pre-clinical study in which a non-integrating 
lentiviral vector was engineered to deliver a potassium chan-
nel (EKC) in excitatory neurons [43]; this EKC gene therapy 
was found to be effective in models of both focal neocorti-
cal and temporal lobe epilepsy, providing strong support for 
clinical development. Indeed, a phase I/IIa, first-in-human, 
open-label, single-site trial (ClinicalTrials.gov Identifier: 
NCT04601974) was approved in 2023 and will soon start to 
recruit patients with refractory neocortical epilepsy, eligible 
for surgical resection. Selected patients will receive a sin-
gle dose of LV gene therapy treatment via an intracerebral 
infusion into the area scheduled for resection. The safety, 
tolerability, and feasibility of the treatment, including the 
surgical procedures, are the primary outcomes of this study. 
A secondary exploratory analysis will investigate delayed-
onset adverse events and some efficacy indicators, such as 
seizure frequency and severity over a long follow-up period.

Promising therapeutic approaches that may soon lead 
to clinical trials for focal epilepsies have been developed 
using neuropeptides. The first stems from years of intensive 
research on the role of the inhibitory peptide NPY in the 
epileptic brain [50]. An AAV gene therapy product has been 
developed, called CG01, that over-expresses NPY and one 
of its receptors, Y2 [102]. This product had been licensed to 
Spark Therapeutics™, but will return to CombiGene in early 
2024. Similarly, EpiBlok Therapeutics GmbH is developing 
an AAV vector overexpressing dynorphin, an opioid peptide 
that has been shown to induce the long-term suppression 

of seizures and prevention of learning and memory decline 
[45]. However, neither Spark Therapeutics™ or EpiBlok 
Therapeutics GmbH has yet announced clinical trials of 
these two gene therapy approaches.

Another viral vector-based gene therapy clinical trial has 
been recently approved for a genetic form of epilepsy, DS 
(ClinicalTrials.gov Identifier: NCT05419492). As described 
above, pre-clinical studies showed that an AAV9 vector 
expressing a transcription factor that increases SCN1A gene 
expression (ETX101) reduces spontaneous seizures and pro-
longs survival in a DS model [38]. Furthermore, to address 
the delivery system scalability, a unilateral intracerebroven-
tricular injection of ETX101 was performed in non-human 
primates, and found to be well tolerated and widely distrib-
uted in the brain with low off-target transgene expression 
in peripheral tissues [38]. The lack of disease-modifying 
therapies for DS prompted the approval of the clinical trial 
ENDEAVOR (NCT05419492), which aims at evaluating 
the safety and efficacy of a one-time intracerebroventricu-
lar administration of ETX101 in infants and children with 
SCN1A-related DS.

8 � Further Challenges

The results of these initial clinical studies will be instrumental 
for stimulating further research in the field, refining the current 
tools (in terms of target identification, regulation, and scalabil-
ity) and addressing other challenges that cannot be addressed 
in pre-clinical settings. One such challenge, relevant for direct 
injections of gene therapy vectors in epileptogenic areas, is the 
proper coverage of the target brain tissue. This issue includes 
two aspects: the first is the large volume and complex geom-
etry of the epileptogenic area in human epilepsy; the second 
is the need for an accurate diagnostic definition of the area 
that should be covered by gene therapy. With reference to the 
first aspect, it is known that multiple injections can be well 
tolerated when implementing proper neurosurgical techniques, 
and that the spread of the vector from the injection site can be 
increased by using infusion techniques such as convection-
enhanced delivery. Convection-enhanced delivery has already 
been shown to increase the efficacy of AAV2 delivery in the 
brain of children [103]. With reference to the second aspect, 
accurate identification of the epileptogenic zone may be 
obtained by using imaging and electroencephalogram tech-
niques. A promising development may be the creation of a 
“digital twin” of a person’s brain by combining different diag-
nostic data, an idea pursued by a current ongoing clinical trial 
(EPINOV, https://​ins-​amu.​fr/​epinov) [104]. This might help 
not only to better identify the origin of seizures, but also to 
precisely calculate the spread of gene therapy vectors needed 
in a specific epileptic brain.

https://ins-amu.fr/epinov
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Last, the cost of gene therapy treatments is still extremely 
high, very often unaffordable even for the most prosperous 
national healthcare systems [105]. To date, research, develop-
ment and clinical trials testing gene therapy have remained 
restricted to high-income countries [106]. The need for sophis-
ticated equipment, complex regulatory systems, and skilled 
personnel poses significant challenges to low- and middle-
income countries, where the economic and social burden of 
epilepsy is particularly high [107]. Despite the huge health and 
economic potential of gene therapies, the worldwide health 
gap is likely to widen without concerted efforts to implement 
these approaches in low-resource settings.
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