
Citation: Rai, M.; Paudel, N.; Sakhrie,

M.; Gemmati, D.; Khan, I.A.; Tisato,

V.; Kanase, A.; Schulz, A.; Singh, A.V.

Perspective on Quantitative

Structure–Toxicity Relationship

(QSTR) Models to Predict Hepatic

Biotransformation of Xenobiotics.

Livers 2023, 3, 448–462. https://

doi.org/10.3390/livers3030032

Academic Editor: James Luyendyk

Received: 11 July 2023

Revised: 10 August 2023

Accepted: 16 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Perspective on Quantitative Structure–Toxicity Relationship
(QSTR) Models to Predict Hepatic Biotransformation
of Xenobiotics
Mansi Rai 1,†, Namuna Paudel 2,†, Mesevilhou Sakhrie 3, Donato Gemmati 4,5 , Inshad Ali Khan 1,
Veronica Tisato 4,5 , Anurag Kanase 6, Armin Schulz 7 and Ajay Vikram Singh 8,*

1 Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri,
Dist-Ajmer 305817, Rajasthan, India; raimanu1998@gmail.com (M.R.); inshad@curaj.ac.in (I.A.K.)

2 Department of Chemistry, Amrit Campus, Institute of Science and Technology, Tribhuvan University,
Lainchaur, Kathmandu 44600, Nepal; namunapaudel7@gmail.com

3 School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University,
Lanka-Varanasi 221005, Uttar Pradesh, India; sesesak@yahoo.com

4 Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; cet@unife.it (D.G.);
veronica.tisato@unife.it (V.T.)

5 Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
6 Opentrons Labworks Inc., Brooklyn, NY 11201, USA; anurag.kanase@opentrons.com
7 Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany; a.schulz@fkf.mpg.de
8 German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety,

Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
* Correspondence: ajay-vikram.singh@bfr.bund.de
† These authors contributed equally to this work.

Abstract: Biotransformation refers to the metabolic conversion of endogenous and xenobiotic chemi-
cals into more hydrophilic substances. Xenobiotic biotransformation is accomplished by a restricted
number of enzymes with broad substrate specificities. The biotransformation of xenobiotics is cat-
alyzed by various enzyme systems that can be divided into four categories based on the reaction they
catalyze. The primary concentration is in cytochrome P450, while the CYP enzymes responsible for
xenobiotic biotransformation are located within the hepatic endoplasmic reticulum (microsomes).
Cytochrome P450 (CYP450) enzymes are also present in extrahepatic tissues. Enzymes catalyzing
biotransformation reactions often determine the intensity and duration of the action of drugs and
play a key role in chemical toxicity and chemical tumorigenesis. The structure of a given biotrans-
forming enzyme may differ among individuals, which can cause differences in the rates of xenobiotic
biotransformation. The study of the molecular mechanisms underlying chemical liver injury is
fundamental for preventing or devising new modalities of treatment for liver injury using chem-
icals. Active metabolites arise from the biotransformation of a parent drug compound using one
or more xenobiotic-processing enzymes to generate metabolites with different pharmacological or
toxicological properties. Understanding how exogenous chemicals (xenobiotics) are metabolized,
distributed, and eliminated is critical to determining the impact of these compounds on human
health. Computational tools such as Biotransformer have been developed to predict all the possible
metabolites of xenobiotic and enzymatic profiles that are linked to the production of metabolites. The
construction of xenobiotic metabolism maps can predict enzymes catalyzing metabolites capable of
binding to DNA.

Keywords: hepatic biotransformation; metabolites; computational prediction; enzymes; xenobiotics

1. Introduction

The liver plays a crucial role in the metabolism and detoxification of a wide range of
foreign compounds known as xenobiotics. These compounds include medications, chemi-
cals, contaminants, and dietary components. Xenobiotics, which are foreign compounds
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that enter the body through multiple pathways, are mostly biotransformed in the liver [1].
These chemicals are transformed throughout the biotransformation process into more
excretable metabolites that are hydrophilic [2]. Some of these metabolites, meanwhile,
can be poisonous and have negative consequences. To determine xenobiotic safety and
possible toxicity, it is, therefore, critical to anticipate the hepatic biotransformation of these
substances [3]. Cytochrome P450 (CYP450) enzymes are particularly significant among
the major enzymes involved in this process, as shown in Figure 1. These enzymes convert
xenobiotics into more water-soluble molecules that can be readily removed from the body.
However, genetic differences in CYP450 enzymes, notably the p-cytochrome P450 vari-
ants, can alter xenobiotic detoxification efficiency and efficacy. Cytochrome P450 enzymes
are a subfamily of heme-containing enzymes found mostly in the liver but also in other
organs. They participate in the oxidative metabolism of several endogenous molecules,
such as steroids, fatty acids, and bile acids. In addition, they participate in the metabolism
of exogenous substances, such as medicines, environmental pollutants, and carcinogens.
The CYP450 enzyme system is made up of many isoforms, including CYP1A2, CYP2C9,
CYP2D6, CYP2E1, and CYP3A4. Genetic variations in CYP450 enzyme genes can result in
altered enzyme activity, altering xenobiotic metabolism.
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Figure 1. Role of liver enzyme cytochrome P450 variants (CYP1A2 (caffeine and other aromatic com-
pounds), CYP2C9 (non-steroidal anti-inflammatory drugs (NSAIDs) and anticoagulants), CYP2D6
(antidepressants and antipsychotics), CYP2E1 (alcohol and some volatile organic compounds), and
CYP3A4 (statins, antivirals, and immunosuppressants)) [4] in detoxification of xenobiotic substances,
facilitating oxidation and increasing water solubility of various substances for subsequent excretion.

It is possible to forecast xenobiotic toxicity using methods called quantitative structure–
toxicity relationship (QSTR) models to forecast their toxicity [5]. QSTR models predict the
toxicity of numerous chemicals, such as pesticides, herbicides, and medications. The use of
QSTR models to predict the hepatic biotransformation of xenobiotics has gained popularity
in recent years.

1.1. Exploring the Enigma of Xenobiotic Hepatic Biotransformation

It is possible to forecast xenobiotic toxicity using methods called quantitative structure–toxicity
relationship (QSTR) models to forecast their toxicity [6]. QSTR models predict the toxi-
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city of numerous chemicals, such as pesticides, herbicides, and medications. The use of
QSTR models to predict the hepatic biotransformation of xenobiotics has gained popular-
ity [7]. To assess the structure–toxicity link of xenobiotics, QSTR models employ a range
of physical parameters such as molecular weight, lipophilicity, and electronic properties.
Novel compounds may be identified mathematically using these descriptors based on their
structural resemblance to established toxicants. QSTR models that can forecast the hepatic
biotransformation of xenobiotics have been shown in several investigations. For instance,
the acute oral toxicity of organophosphate pesticides to male rats was assessed using a
QSTR model [8]. Hepatic biotransformation refers to the enzymatic and chemical changes
that occur in the liver, converting xenobiotics (foreign chemicals) into more water-soluble
molecules for excretion by the body. QSTR models play a pivotal role in drug develop-
ment, toxicity testing, ADME prediction, and structure–activity relationship studies by
providing valuable insights into the hepatic biotransformation of various substances [9].
They empower researchers to make well-informed choices regarding compound selection,
optimization, and lead prioritization, leading to the effective design of safer and more
efficient medications.

The study presented conclusive evidence of the QSTR model’s efficacy in accurately
estimating pesticide toxicity based on its structural characteristics. To predict the harmful
effects of nitroaromatic compounds (NACs), another study employed a QSTR model [10].
The research demonstrated that using chemical characteristics, including molecular weight,
polarizability, and hydrogen bond acceptor capability, the QSTR model could accurately
predict NAC toxicity.

Additionally, xenobiotics’ liver biotransformation routes may be predicted using QSTR
models. For instance, the biotransformation of polychlorinated dibenzofurans (PCDFs) in
the liver was investigated using a QSTR model [11].

Research demonstrated that using quantum chemical descriptors of PCDFs, the QSTR
model could predict the biotransformation routes of these compounds [12]. In conclusion,
QSTR models are effective resources for forecasting xenobiotic hepatic biotransformation.
These models can aid in the development of safer compounds by offering useful information
on substances’ possible toxicities. To increase the precision and dependability of QSTR
models in foretelling the hepatic biotransformation of xenobiotics, more study is necessary.

1.2. Progress in QSTR Models for Anticipating Hepatic Biotransformation Pathways

In several in vitro and in vivo models, QSTR models have been utilized to predict the
hepatic biotransformation of xenobiotics [13]. QSTR models have been used to forecast
hepatic biotransformation in a variety of animal models, including those of rodents and
non-human primates. These models take into account changes across species in enzyme
expression, activity, and metabolic pathways.

The illustration in Figure 2 depicts a detailed flowchart detailing the step-by-step
method of constructing QSTR models that are intended to forecast xenobiotic hepatic
biotransformation. The use of molecular descriptors, model validation procedures, and
subsequent application to in silico predictions are all used in the construction of these mod-
els. The flowchart is intended to serve as a reference for scholars and practitioners working
on the subject. It highlights the critical phases and factors required for accurate predictions.
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Figure 2. A flowchart illustrating the process of developing QSTR models for predicting hepatic
biotransformation of xenobiotics, including the selection of molecular descriptors, model validation,
and application to in silico predictions.

QSTR models extend metabolic data from animal models to humans, enabling med-
ication development and safety assessment. This is achieved by merging the structural
characteristics of xenobiotics with pharmacokinetic factors. Here are some recent changes
in this area:

• A method was devised that uses measures of in vitro hepatic biotransformation in
animals to predict in vivo hepatic clearance [14]. This method has been applied to
chemical risk assessment, evaluating medication candidates, and looking at idiosyn-
cratic drug reactions. Hepatic clearance estimates may be included successfully in
compartmental clearance-volume models.

• Understanding the trajectory of a medication necessitates awareness of the extent of
hepatic metabolism and the capability to predict hepatic clearance [15]. Translation
of preclinical pharmacokinetic and pharmacodynamic data has improved because of
recent advancements in in vitro and in vivo models.
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• To parameterize 1-CoTK models, QSARs were created and validated for forecasting
in vivo whole-body biotransformation half-lives [16]. These models can be used to
forecast chemical toxicity and aid in safer compound development.

• To evaluate possible herb–drug interactions, clearance tests are frequently performed
in in vitro hepatic models [17]. These models can aid in the development of safer
compounds by offering useful information on substances’ possible toxicities.

• Quantitative structure–pharmacokinetic relationships (QSPRs) that link biological
activity to epithelial and hepatic first-pass biotransformation may also be created
using QSTR models [18]. These models can be used to forecast drug pharmacokinetics
and aid in the creation of more powerful pharmaceuticals.

In conclusion, in several in vitro and in vivo models, hepatic biotransformation of
xenobiotics has been predicted using QSTR models. Both in vitro and in vivo models
of xenobiotic hepatic biotransformation have shown the value of QSTR models. These
models establish links between structure and activity, aid in toxicity evaluation and ADME
prediction, and enable virtual screening. They also shed light on metabolic pathways. Our
understanding of hepatic biotransformation is improved by combining QSTR models with
experimental research, which helps with medication development and safety evaluation.
These models can aid in the development of safer chemicals and more powerful medi-
cations by offering useful information on substances’ possible toxicities. To increase the
precision and dependability of QSTR models for foretelling the hepatic biotransformation
of xenobiotics, more study is necessary.

2. Molecular Descriptors Used in QSTR Models for Hepatic Biotransformation

In quantitative structure–activity relationship (QSAR) models for liver metabolism
predictions, molecular descriptors play a crucial role in determining the rate of metabolism
and clearance of a drug [19]. Lipophilicity determines the rate of passive diffusion of a drug
across the cell membrane and its distribution in the body [20]. Molecular weight affects drug
metabolism and clearance. Polarizability and hydrogen bonding influence the interaction
of a drug with an enzyme and its metabolism rate [21]. Topological indices account for a
molecule’s structural complexity and its effect on metabolism. Molecular surface area affects
drug metabolism and clearance rates. However, it is important to note that each molecular
descriptor comes with its own set of limitations [22]. For instance, lipophilicity alone cannot
provide insights into the metabolism of compounds that are highly lipophilic. Similarly,
while molecular weight is a useful descriptor, it does not consider the structural complexity
of molecules. Polarizability, on the other hand, may not accurately predict the metabolism
of highly polar compounds. Additionally, the predictive ability of hydrogen bonding
is limited when it comes to compounds with weak hydrogen-bonding interactions [23].
Topological indices cannot assess compound metabolism. Molecular surface area has
a limited ability to estimate the metabolism of highly lipophilic compounds [23]. To
overcome these limitations, other molecular descriptors can be used in combination with
the ones mentioned above. For example, if lipophilicity has a limited ability to predict
the metabolism of highly lipophilic compounds, other molecular descriptors, such as
polarizability and hydrogen bonding, can be considered. Similarly, if molecular weight
does not account for a molecule’s structural complexity, other molecular descriptors, such
as topological indices and molecular surface area, can be used [24].

The graphic in Figure 3 depicts a heatmap of the relationship between numerous
molecular descriptors and the rate of xenobiotic hepatic biotransformation. A color gradient
is used in the heatmap, with different hues or colors representing the intensity and direction
of the association. Positive correlations are often represented by warmer colors (e.g., red and
orange), whereas negative correlations are typically represented by cooler colors (e.g., blue
and green). On both axes, molecular descriptors are presented, with their names describing
their unique qualities and characteristics. The correlation heatmap gives an in-depth look
at the link between molecular descriptors and the rate of xenobiotic biotransformation in
the liver. To enhance drug discovery, toxicology investigations, and risk assessment of
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xenobiotics, it is crucial to identify the fundamental predictors of xenobiotic metabolism.
This study focuses on pinpointing these essential factors, enabling the development of
more precise prediction models. The quantification of the structure–toxicity relationship
of xenobiotics involves the utilization of QSTR models, which rely on physicochemical
descriptors [25]. Several of the molecular characteristics frequently employed in QSTR
models to forecast hepatic biotransformation are listed below:
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• Lipophilicity: Lipophilicity plays a pivotal role and is commonly considered in quanti-
tative structure-toxicity relationship (QSTR) models. It describes a molecule’s capacity
to partition or dissolve into lipid-based environments, such as cell membranes or lipid
bilayers. To accurately represent a compound’s hydrophobic properties, lipophilicity
is frequently measured experimentally or with a variety of molecular descriptors
in QSTR modeling [26]. This term describes a substance’s propensity to dissolve in
lipids or fats. Lipophilicity significantly influences the ADME (absorption, distribu-
tion, metabolism, and excretion) of xenobiotics. High lipophilicity substances have
longer half-lives in the body and accumulate in adipose tissue. In order to antici-
pate the hepatic biotransformation of xenobiotics, lipophilicity is a crucial molecular
descriptor [18].

• Molecular weight: The term “molecular weight” describes how much mass a molecule
has. In QSTR modeling, molecular weight is frequently employed as a descriptor



Livers 2023, 3 454

to characterize the size and mass of a drug. This might affect its biological activity,
pharmacokinetics, and other aspects. Xenobiotics’ physicochemical characteristics,
such as solubility, permeability, and bioavailability, are significantly influenced by their
molecular weights. High molecular weight substances often have reduced solubility
and permeability, which might affect how they are absorbed and distributed by the
body. As a result, molecular weight is a crucial molecule descriptor for determining
how xenobiotics will be metabolized in the liver [27].

• Polarizability: Polarizability is frequently employed as a descriptor in QSTR modeling
to describe compound electrical and structural features. This can influence how it
interacts with biological targets and exhibits certain qualities. When exposed to an
external electric field, a molecule’s capacity to instantly create dipoles is measured by
a property called polarizability. Polarizability is a crucial factor in determining how a
molecule interacts with its surroundings, including whether or not it can pass through
biological membranes. The capacity to anticipate the hepatic biotransformation of
xenobiotics using polarizability is crucial [28].

• Hydrogen bonding: The term “hydrogen bonding” describes how well a molecule cre-
ates hydrogen bonds with other molecules. A key factor in determining solubility and
reactivity is hydrogen bonding. As a result, hydrogen bonding is a crucial molecular
descriptor for determining how xenobiotics will be transformed in the liver [29].

• Topological indices: These are mathematical descriptors that rate the branching, con-
nectedness, and symmetry of molecules as well as other aspects of their topology. The
physicochemical characteristics of xenobiotics, such as their solubility, permeability,
and bioavailability, are significantly influenced by topological indices. Topological
indicators are crucial molecular descriptors for foretelling xenobiotic hepatic biotrans-
formation as a result [30].

• Molecular surface area: This term describes a molecule’s surface area. A key factor
in determining how a molecule interacts with its surroundings, such as whether it
can pass through biological membranes, is its molecular surface area. In order to
anticipate the hepatic biotransformation of xenobiotics, molecular surface area is a
crucial molecular descriptor [31].

It is clear that using physicochemical descriptors, QSTR models are essential for
measuring xenobiotic structure–toxicity links. For predicting the hepatic biotransformation
of xenobiotics, lipophilicity and molecular weight are significant molecular descriptors [32].
These models have a huge potential for revealing significant details about chemical toxicity
and assisting in the creation of safer compounds. It is imperative to recognize that further
study is required to improve the precision and dependability of QSTR models in foretelling
the hepatic biotransformation of xenobiotics [33].

QSARs also predict the intrinsic hepatic clearance of organic compounds in humans.
These QSARs utilize multiple linear models and microsomes to forecast the in vitro clear-
ance (CLINT) of xenobiotics metabolized in human hepatocytes. These models choose up
to 6 predictors from a pool of over 2000 possible molecular descriptors. The explained
variance (Radj(2)) and predictive power (Rext(2)) of the hepatocyte QSAR were 67% and
62%, respectively. The microsomes QSAR, on the other hand, showed a Radj(2) of 50%
and Rext(2) of 30% [27]. In conclusion, QSARs make it easier to forecast intrinsic hepatic
clearance, whereas QSTR models help quantify the link between structure and toxicity. Both
of these models provide insightful information on chemical toxicity [34]. They facilitate
chemical risk assessment, screen potential therapeutic candidates, and help create safer
chemicals. To improve the precision and dependability of QSTR models for foretelling the
hepatic biotransformation of xenobiotics, however, ongoing research efforts are essential.

3. Limitations of QSTR Models for Hepatic Biotransformation

By utilizing a collection of physicochemical descriptors shown in Table 1, which
quantify the structure–toxicity connection of these chemicals, quantitative structure–toxicity
relationship (QSTR) models are used to predict xenobiotic toxicity [35]. A key factor in
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xenobiotic toxicity is its hepatic biotransformation, which may be predicted using QSTR
models. However, QSTR models for hepatic biotransformation have certain drawbacks [36].
These are their limitations:

3.1. Limited Ability to Predict Metabolism of Highly Lipophilic Compounds

QSTR models are based on physicochemical characteristics connected to compound
solubility and permeability. This limits their capacity to predict the metabolism of extremely
lipophilic compounds [37]. Low solubility and permeability are common characteristics of
highly lipophilic substances, which may affect their metabolism and clearance. As a result,
QSTR models may not forecast the metabolism of highly lipophilic substances [38].

3.2. Inability to Account for the Structural Complexity of a Molecule

QSTR models do not consider the complexity of a molecule’s structural makeup. QSTR
models are built on a collection of physicochemical descriptors that measure a molecule’s
structure–toxicity connection [39]. However, a molecule’s metabolism and clearance may
be impacted by its structural complexity. For instance, compared to a molecule with a
single chiral center, a molecule with several chiral centers may have distinct metabolic
paths and clearance rates [40]. As a result, QSTR models may not adequately account for
structural complexity.

3.3. Limited Ability to Predict Metabolism of Highly Polar Compounds

The prediction of metabolism for highly polar substances is restricted due to the re-
liance of quantitative structure-toxicity relationship (QSTR) models on physicochemical
attributes connected to a compound’s solubility and permeability. These models’ depen-
dency on these attributes constrains their ability to accurately predict the metabolism
of such substances [41]. These models often encounter challenges when dealing with
substances exhibiting low solubility and permeability, which are common traits among
extremely polar compounds. Consequently, the metabolism and elimination of such com-
pounds may be impacted. As a result, QSTR models may not forecast the metabolism of
highly polar substances [42].

3.4. Limited Ability to Predict Metabolism of Compounds with Weak Hydrogen Bonding

Hydrogen bonding plays a pivotal role in determining the physicochemical attributes of
compounds, including solubility and permeability. Consequently, predicting the metabolism
of molecules featuring feeble hydrogen bonds poses a challenge [43]. As a result, com-
pounds with deficient hydrogen bonds may exhibit heightened metabolic processes and
clearance rates compared to those with robust hydrogen bonds. It is important to ac-
knowledge that QSTR models may not effectively predict the metabolic fate of molecules
characterized by weak hydrogen bonds [44].

Table 1. Molecular descriptors used in the hepatic biotransformation of xenobiotics, including their
molecular mechanisms underlying chemical liver injury predictions, limitations of each descriptor,
and opportunities to improve.

Molecular Descriptor Role in Liver Metabolism Limitations How to Overcome Limitations

Lipophilicity

Determines the rate of passive
diffusion of a drug across the

cell membrane and its
distribution in the body.

Limited ability to predict the
metabolism of highly

lipophilic compounds.

Use other molecular descriptors, such
as polarizability and hydrogen

bonding [45].

Molecular weight Affects the rate of metabolism
and clearance of a drug.

Inability to account for the
structural complexity of

a molecule.

Incorporate other molecular
descriptors, such as topological
indices and molecular surface

area [46].
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Table 1. Cont.

Molecular Descriptor Role in Liver Metabolism Limitations How to Overcome Limitations

Polarizability
Affects the interaction of a

drug with the enzyme and its
rate of metabolism.

Limited ability to predict the
metabolism of highly

polar compounds.

Consider using alternative molecular
descriptors, like lipophilicity and

hydrogen bonding [47].

Hydrogen bonding
Affects the interaction of a

drug with the enzyme and its
rate of metabolism.

Limited ability to predict the
metabolism of compounds

with weak hydrogen bonding.

Explore other molecular descriptors,
such as lipophilicity and

polarizability [48].

Topological indices
Account for the structural

complexity of a molecule and
its effect on metabolism.

Limited ability to predict the
metabolism of compounds
with unusual structures.

Utilize additional molecular
descriptors such as molecular weight

and molecular surface area [24].

Molecular surface area Affects the rate of metabolism
and clearance of a drug.

Limited ability to predict the
metabolism of highly

lipophilic compounds.

Consider other molecular descriptors
such as polarizability and

hydrogen [47].

In summary, Table 1 highlights the diverse roles of molecular descriptors in predicting
the hepatic biotransformation of xenobiotics. While each descriptor has its limitations,
these can be overcome by integrating other relevant descriptors, thus enhancing their effec-
tiveness in predicting chemical liver injury and contributing to more accurate assessments
of compound metabolism.

3.5. Limited Ability to Predict Metabolism of Compounds with Unusual Structures

With the limited ability to predict the metabolism of highly lipophilic compounds,
QSTR models are based on physicochemical characteristics connected to drug solubility
and permeability, which limits their capacity to predict the metabolism of compounds
with novel structures [49]. Different metabolism routes and clearance rates may apply
to substances having unique structures compared to more typical structures. As a result,
QSTR models may not forecast the metabolism of substances with unique structures [50].

3.6. Limited Ability to Predict Metabolism of Highly Lipophilic Compounds

QSTR models are based on physicochemical characteristics connected to compound
solubility and permeability. This limits their capacity to predict the metabolism of intense
lipophilic compounds [51]. Low solubility and permeability are common characteristics of
highly lipophilic substances, which may affect their metabolism and clearance. As a result,
QSTR models may not forecast the metabolism of highly lipophilic substances [52].

QSTR models including more intricate molecular descriptors: QSTR models now
employ a group of physicochemical descriptors that measure a molecule’s link between
structure and toxicity. However, more intricate molecular descriptors, such as quantum
chemical descriptors, can provide predictions about xenobiotic biotransformation in the
liver that are more precise [53]. Creating models for certain metabolic pathways: At the
moment, QSTR models forecast the total liver biotransformation of xenobiotics. Toxicology
predictions for certain metabolic pathways may, however, be made with more accuracy [54].

Model validation with in vivo data: QSTR models are currently validated using
in vitro data. However, substances’ toxicities may, however, be predicted more precisely
by comparing these models to in vivo data [55]. As a result, QSTR models have several
limitations when forecasting the hepatic biotransformation of xenobiotics. These limitations
include their low capacity to anticipate the metabolism of highly polar chemicals and
molecules with weak hydrogen bonding. Chemical toxicity may still be predicted using
these models, and safer compounds can still be created. To increase the precision and
dependability of QSTR models for forecasting the hepatic biotransformation of xenobiotics,
more study is required.
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4. Opportunities to Improve QSTR Models for Hepatic Biotransformation
4.1. Use of Other Molecular Descriptors in Combination with the Ones Mentioned Above

QSTR models now employ a collection of physicochemical descriptors that assess a
molecule’s link between structure and toxicity. To increase the precision and dependability
of QSTR models for predicting the hepatic biotransformation of xenobiotics, other molecular
descriptors, such as topological descriptors, may offer additional information.

4.2. Development of More Accurate and Reliable In Silico Models of Metabolism

Computer-based models called “in silico metabolism models” simulate liver metabolic
processes [56]. These models can predict xenobiotic toxicity and metabolism. However,
these models’ precision and reliability need to be increased. Incorporating more intricate
molecular descriptors, such as quantum chemical descriptors, that can provide more precise
predictions of the hepatic biotransformation of xenobiotics is one strategy to enhance
these models.

4.3. Consideration of Predicted Small-Molecule Metabolites in Computational Toxicology

Xenobiotics are now projected to be biotransformed into the liver. However, Xeno-
biotics’ metabolites, which are created during their biotransformation, may also increase
their toxicity. In order to provide more precise predictions about the toxicity of substances,
computational toxicology can take into account the projected small-molecule metabolites.

4.4. Creation of Complementary Substrate/Non-Substrate Classification Models

QSTR models currently forecast xenobiotic biotransformation in the liver. Not all
xenobiotics, however, serve as the basis for the conversion of xenobiotics into bioactive
compounds in the liver. In order to produce more precise forecasts of substances’ toxicities,
supplementary substrate/non-substrate categorization models can be created.

4.5. Use of QSAR Approaches to Predict Sites of Metabolism

Xenobiotic metabolism sites can be predicted using QSAR techniques. These methods
estimate the probability that a substance will be metabolized at a certain location using
molecular descriptors. Hepatic biotransformation of xenobiotics can be predicted more
precisely by including these methods in QSTR models. For hepatic biotransformation,
there are several potential improvements to QSTR models. We can increase the predic-
tion power of these models by including more datasets, including a broader variety of
chemical compounds and metabolic pathways. Furthermore, combining cutting-edge
machine learning strategies, like deep learning and ensemble approaches, may improve
the model’s capacity to capture intricate connections between molecular properties and
biotransformation results. These models may also be validated and improved with in vitro
and in vivo experimental data, confirming their dependability and applicability in real-
world situations. We can enhance the science of predicting the biotransformation of the
liver and aid in the creation of safer and more potent medicines by taking advantage of
these opportunities [57].

5. Summary of the Importance of QSTR Models in Predicting Hepatic Biotransformation
of Xenobiotics

When predicting the hepatic biotransformation of xenobiotics, which are foreign sub-
stances that enter the body, QSTR models are extremely critical. Understanding these
xenobiotic biotransformations is imperative for drug development, toxicology, and envi-
ronmental risk assessment. The liver is the main organ responsible for this. As compared
to other in silico approaches in Figure 4, QSTR models demonstrated competitive accuracy
in predicting hepatic biotransformation rates. The QSTR models successfully capture the
intricate correlations between xenobiotic characteristics and biotransformation rates. This
indicates their use as reliable prediction tools in drug development and toxicity research.
Machine learning methods, particularly deep learning architectures, also produce promis-
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ing results but with significantly larger datasets for training. While PBPK models provide
comprehensive knowledge of xenobiotic dispositions, they are inaccurate in predicting
biotransformation rates. This work demonstrates the effectiveness of QSTR models as a
robust and reliable in silico strategy for forecasting xenobiotic hepatic biotransformation.
QSTR models are a cost-effective and time-efficient alternative to experimental approaches
for identifying prospective drug candidates and assessing their toxicity profiles. However,
machine learning methods and PBPK models provide useful insights and may be used
in tandem to improve prediction accuracy in certain scenarios. Future research should
concentrate on developing and testing these in silico algorithms on significantly larger and
more varied datasets to increase their prediction powers.
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based pharmacokinetic (PBPK) models.

The significance of QSTR models in foretelling hepatic biotransformation is summed
up as follows:

5.1. Predictive Power

QSTR models use statistical and mathematical methods to create links between xenobi-
otic structural characteristics and the rates at which they undergo biotransformation or the
results of their metabolic actions. Researchers may evaluate chemical safety, effectiveness,
and toxicity using these models. These models can precisely predict how a certain molecule
will be processed by the liver.

5.2. Cost and Time Effectiveness

Traditional experimental techniques for evaluating xenobiotic biotransformation are
time- and money-consuming and frequently include animal testing. By making quick
predictions based on the computational study of chemical structures, QSTR models provide
a time- and money-efficient alternative. In the early stages of drug development or risk
assessment, this helps researchers select and screen a huge number of molecules [58].
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5.3. Mechanistic Insights

QSTR models can offer insightful mechanistic information on the biotransformation
processes taking place in the liver. Researchers can better understand the underlying
biochemical pathways and enzymatic activities involved by looking at the correlations
between various structural characteristics of xenobiotics and their metabolic conversions.
This information helps locate significant metabolic hotspots and possible toxicity areas.

5.4. Structure–Activity Relationships

Establishing structural–activity relationships (SARs) between the chemical structure
of xenobiotics and their biotransformation results is made possible by QSTR models [56].
SAR analysis pinpoints the essential molecular elements in charge of a certain metabolic
pathway or reaction. This knowledge can help medicinal chemists enhance metabolic
stability or desirable biotransformation characteristics of medication candidates.

5.5. Applications for Virtual Screening and Design

QSTR models may be used in virtual screening and design. Researchers can assess
possible metabolic liabilities of novel compounds early in the drug development process by
utilizing these models to predict the hepatic biotransformation of existing molecules. This
makes it possible to locate potential leads with advantageous biotransformation profiles and
helps scientists create new molecules with enhanced metabolic properties. QSTR models
provide a strong and effective method to forecast xenobiotic hepatic biotransformation.
They promote drug development efforts by making it easier to identify lead compounds
with the most promising metabolic profiles. They assist in risk assessment and provide
insight into compounds’ metabolic destinies. QSTR models help us learn more about
xenobiotic metabolism and contribute to the development of safer and more effective drugs.

6. Discussion of the Potential for Future Improvements in QSTR Models for
Hepatic Biotransformation
6.1. Integration of Various Data Sources

Enhancing QSAR models involves incorporating diverse data sources, including
molecular descriptors, chemical characteristics, biological information, as well as omics
data such as transcriptomics, proteomics, and metabolomics. A more thorough knowledge
of hepatic biotransformation processes may be obtained by integrating various data sources,
which can result in more accurate prediction models.

6.2. Integration of Enzymes and Metabolic Pathways

Hepatic biotransformation requires the complex interaction of different enzymes and
metabolic processes. Future QSAR models can include a wide range of hepatic enzymes
and metabolic pathways involved in drug metabolism, such as cytochrome P450 enzymes,
UDP-glucuronosyltransferases (UDP-GTs), and sulfotransferases (SULTs). The accuracy
of forecasting biotransformation routes and metabolite generation can be improved with
enzyme-specific information.

6.3. Taking into Account Interindividual Variability

Genetic, environmental, and pharmacological co-administration impacts all contribute
to interindividual heterogeneity in hepatic biotransformation. Future QSAR models can
incorporate genetic polymorphisms, drug–drug interactions, and other pertinent variables
that affect interindividual variations in hepatic metabolism to account for this heterogeneity.
More precise forecasts based on each patient’s unique characteristics may be possible with
customized QSAR models. Future developments in digitalization and sequencing tech-
nologies will narrow down the knowledge gap making personalized medicine approaches
more successful, resulting in wider outreach [32].
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6.4. The Incorporation of Systems Biology Methods

QSAR models often concentrate on the molecular level, considering molecule structural
characteristics. However, cellular and physiological variables [32] play a significant role in
the complicated process of hepatic biotransformation. A more comprehensive knowledge of
hepatic biotransformation can be obtained by integrating systems biology techniques, such as
mechanistic modeling or physiologically-based pharmacokinetic (PBPK) modeling, which
capture the interactions between substances and their biological environment.

6.5. Expansion of Training Data

To provide reliable predictions, QSAR models strongly rely on high-quality training
data. The generalizability and robustness of QSAR models can be enhanced by increasing
training data, incorporating well-studied and less-studied substances. Model advance-
ments will be substantially aided by efforts to compile more extensive and comprehensive
databases of hepatic biotransformation information.

6.6. Validation and Openness

To evaluate QSAR models’ accuracy and dependability, it is essential to systematically
verify them. Model performance may be assessed externally using cross-validation methods
and independent datasets. Additionally, for QSAR models to be widely used and accepted,
transparency and interpretability must be guaranteed. Giving the models’ forecasts, specific
justifications may increase their usefulness in the pharmaceutical industry.

Future advancements in QSAR models for hepatic biotransformation can be made
by combining data from various sources, including metabolism-related enzymes and
pathways, taking interindividual variation into account, incorporating systems biology
techniques, expanding the training data, and applying strict validation and transparency.
These developments may improve QSAR models’ precision, applicability, and robustness,
enhancing their usefulness for drug development and safety evaluation.
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