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Merkel Cell Carcinoma (MCC) is a rare but highly aggressive form of non–melanoma skin
cancer whose 5-year survival rate is 63%. Merkel cell polyomavirus (MCPyV), a small DNA
tumor virus, is the etiological agent of MCC. Although representing a small proportion of
MCC cases, MCPyV-negative MCCs have also been identified. The role of epigenetic
mechanisms, including histone post-translational modifications (PTMs) in MCC, have
been only partially determined. This review aims to describe the most recent progress on
PTMs and their regulative factors in the context of MCC onset/development, providing an
overview of current findings on both MCC subtypes. An outline of current knowledge on
the potential employment of PTMs and related factors as diagnostic and prognostic
markers, as well as novel treatment strategies targeting the reversibility of PTMs for MCC
therapy is provided. Recent research shows that PTMs are emerging as important
epigenetic players involved in MCC onset/development, and therefore may show a
potential clinical significance. Deeper and integrated knowledge of currently known
PTM dysregulations is of paramount importance in order to understand the molecular
basis of MCC and improve the diagnosis, prognosis, and therapeutic options for this
deadly tumor.

Keywords: Merkel cell carcinoma, histone post-translational modifications, epigenetics, Merkel cell polyomavirus,
acetylation, methylation, phosphorylation, histone deacetylase inhibitors
INTRODUCTION

Merkel cell carcinoma (MCC) is a rare, but aggressive non–melanoma skin cancer (1–3). Although
similar presentation and prognosis, two different MCC aetiologies have been identified. The first,
which accounts for the highest proportion (4–8), ~80% of cases, is caused by a DNA tumor virus
belonging to the polyomaviridae family, i.e., Merkel cell polyomavirus (MCPyV) (2, 9). The
expression of the two viral oncoproteins truncated large T antigen (tLT) and small T antigen
(sT), alongside the integration of the MCPyV DNA into the host genome, are the main events for
MCPyV-positive MCC (MCCP) onset (9–12). In MCCP cells, LT expression leads to cell
proliferation maintenance (13), while sT is required for cell transformation and survival (14).
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The second MCC form MCPyV-negative (MCCN), is caused by
high levels of UV-induced tumorigenic point mutations (10, 15,
16). Despite MCCN tumor having a high mutational burden,
MCCP harbours a 100-fold lower mutational load (17).
According to the Surveillance, Epidemiology, and End Results
(SEER) Program, the MCC 5-year survival rate is 76, 53 and 19%
for localized, regional and distant disease, respectively, with an
overall combined rate of 63% (18–21). MCC global incidence
ranges 0.1-1.6 cases/100,000 individuals (22). UV light exposure
in fair-skinned people, possibly due to occupational sunlight
exposure (23), anti-viral/-tumor immunological decline (6, 24, 25),
and old age are considered as MCC risk factors (26). MCC onset
risk increases in patients under iatrogenic immunosuppression (9,
27–29). At primary diagnosis, ~30% of MCC patients present
adjacent metastasis and/or lymph node metastases (26), while
current therapies are poor. The most effective MCC therapy is
cisplatin and etoposide cytotoxic chemotherapy. However, this
therapeutic approach is limited by mean progression-free survival
being estimated at ~3 months (30). Moreover, some patients are
not responders and/or develop therapy resistance. Surgery and
radiation therapies are adopted for local and nodal MCC (31, 32),
while systemic therapy is preferred for extensive, metastatic, and
recurrent tumor. Even when early diagnosed, patients may not be
eligible for surgery/radiotherapy due to other comorbidities. The
use of Programmed cell death protein 1 (PD-1) and Programmed
death-ligand 1 (PD-L1) inhibitors seems to be an effective
therapeutic approach (33–36). Novel therapies are also under
evaluation (31, 36–38).

The role of histone post-translational modifications (PTMs)
in MCC has been remarked upon (2). PTMs, DNA methylation
and microRNAs (miRNAs), are fundamental epigenetic
mechanisms for controlling gene expression (39–42). These
mechanisms collectively determine the accessibility of gene
promoters to RNA polymerase II and transcription factors.
Histone octamer core complex is composed of two copies each
histone protein H2A, H2B, H3, and H4 and is surrounded by
147 bp of DNA to form a nucleosome, the main structural
chromatin unit (43). PTMs mostly occur on histone N-Terminal
regions (histone tails) protruding from the histone core. These
modifications regulate the expression of genes by chromatin
remodelling. The combination of single/multiple PTMs and their
regulatory role on gene expression are referred to as histone
code (44). These processes typically occur in concert with DNA
methylation (45–47). The main PTMs are acetylation, methylation,
and phosphorylation. Less well-understood PTMs include
glycosylation, ubiquitylation, sumoylation, carbonylation and
ribosylation (48). The combination of different PTMs can
modulate gene expression. Impairment of both PTMs and
modifying enzymes has been associated with various diseases,
including cancer (2, 49). However, despite large number of PTMs
and modifying enzymes being identified, a functional
understanding of most is still yet to be gained.

Growing evidence indicates that PTM dysregulation play a
role in MCC (2, 50, 51). Studies aimed at epigenetically
characterizing MCC have reported data on acetylation,
methylation, and phosphorylation, alongside histone modifying
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enzymes (2). However, the relationship between these
dysregulations and MCC onset, progression and metastasis
have only been covered partially, while the clinical application
of most remains to be determined. Moreover, how MCPyV
oncoproteins are capable of dysregulating PTMs in MCCP
onset is unclear. Indeed, unlike other DNA tumor viruses (52–
56) whose oncogenic activity has been linked (57, 58), and
demonstrated as functionally dysregulating a variety of PTMs
(59, 60), little information has yet been reported for MCPyV.
Notably, PTM dysregulation offers both diagnostic and
prognostic potential in the clinic and represents a therapeutic
target in a large variety of tumors (57).

This review is addressed at collecting and summarizing the
state of the art on PTMs and regulative factors whose
dysregulation has been assumed to play a role in MCC. A
description of current knowledge on the potential usage of
PTMs and regulative factors as diagnostic and prognostic tools,
as well as targets for MCC therapy is also provided.
HISTONE POST-TRANSLATIONAL
MODIFICATIONS AND MERKEL
CELL CARCINOMA

Histone Acetylation
Histone acetylation occurs on lysine residues and leads to
chromatin relaxation by creating repulsive forces with the
negatively charged DNA. This process makes the DNA
accessible to the transcription factors, ultimately leading to
gene expression (61–63). Histone deacetylation generally
induces chromatin condensation while being linked to gene
silencing (64). Histone acetylation is mediated by Histone
Acetyltransferases (HATs), while Histone Deacetylases
(HDACs) catalyze deacetylation reactions (65).

Histone acetylation dysregulation is involved in MCC host
immune-surveillance escape. As other tumors (25, 66–68), MCC
present strong immuno-selective pressures and, thus, arises and
progress when developing efficient immune escape mechanisms.
One strategy provides the improper recognition by T cells owing
to the downregulation of major histocompatibility complex
(MHC) class-I on tumor cell surfaces. Indeed, MHC class-I
encodes for surface receptors which are essential for the
adaptive immune system (66, 69, 70). Ritter and colleagues
reported on the loss of MHC class I chain-related protein
(MIC) A and B expression in MCCP cells (71). MICs are
polymorphic proteins whose expression is induced upon cell
transformation and act as kill me signals for natural killer cells,
which are therefore activated against tumor cells during the
innate immune response. This loss has been afterwards reported
as a consequence of H3K9 deacetylation nearby the MIC
promoter (71). MIC expression can also be epigenetically
restored by pharmacological treatment with the HDAC
inhibitor (iHDAC) Vorinostat (Figure 1) (71). Additional cell
surface receptors encoded by MHC locus, i.e., HLA class-I
complex, have been reported as down-regulated MCC tissues
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with unknown MCPyV-positivity and in MCCP cell lines (69).
This down-regulation has been related to the impaired
expression of key components of antigen processing machinery
(APM), including low-molecular-weight protein (LMP) 2 and
LMP7, as well as a transporter associated with Antigen
Processing 1 and 2. In vitro/in vivo data also indicate that HLA
class-I APM down-regulation is attributable to a dysregulated
H3K9 deacetylation in proximity to APM gene promoters, whilst
Vorinostat has been reported as capable of restoring their
expression (69). The epigenetic re-expression of HLA class-I
on the surfaces of MCC cells has also been demonstrated with
Domatinostat, an orally available iHDAC (Figure 1) (72).
Following pharmacological treatments, RNA sequencing and
functional experiments indicated a distinct gene expression
signature for antigen processing and presentation, cell-cycle
arrest and apoptosis. Therefore, the re-expression of HLA
class-I by Domatinostat might favour MCC cell identification
and eradication by the anti-tumor immune response (72).

Inhibitory receptors expression on tumor-targeted immune
cells and tumor cells surfaces can be considered as another MCC
immune escape mechanism. During cell transformation, the
interaction between PD-1 and PD-L1 expressed on the surface
of activated T cells and tumor cells, respectively, reduces T-cell
function and prevents the immune system from acting against
tumor cells (73). Although PD-1/PD-L1 blockade therapy is
promising for cancer treatment (74), a fraction of patients are
either non-responders or develop resistance (75, 76). To
circumvent these negative responses, therapies combining PD-
1/PD-L1 blockers and iHDACs have been developed for MCC. A
Phase II clinical trial (NCT04393753) is currently ongoing to
investigate the efficacy/safety of the anti-PD-L1 antibody
avelumab in combination with domatinostat in MCC patients.
Furthermore, the iHDAC Panobinostat has been administered to
a small group of PD-1/PD-L1 non-responder metastatic MCC
patients (77). The pharmacological treatment of two patients
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with Panobinostat was reported as inducing a restored HLA
class-I expression and an increase in CD8+ T-cell infiltration in
tumor tissues. These data suggest that iHDACs might be helpful
in overcoming HLA class-I expression loss in PD-1/PD-L1 non-
responder patients (77). In summary, histone acetylation
dysregulation in chief immune system players represents a key
mechanism whereby MCC can escape the anti-tumor response,
while expression restoration in immune regulatory complexes by
iHDACs epigenetic priming might be a helpful therapeutic
approach based on boosting adaptive immune responses (38).

Histone acetylation impairment in MCC encompasses the
dysregulation of proto-oncogene c-Myc (50). In MCC tissues/
cells with unknown MCPyV positivity and in MCCP cell lines,
c-Myc overexpression has been linked to acetylated lysine 27
enrichment at histone H3 (H3K27Ac) in an enhancer proximal
to the c-Myc promoter. At the same time, high occupancy of
Bromodomain protein 4 (BRD4), a gene expression regulator
which binds to H3K27Ac, has also been reported. Also, in vitro
treatment with bromodomain and extra-terminal (BET)
inhibitors (iBETs), a class of drugs that reversibly bind to
BET family proteins, comprising BRD4, depleted BRD4
occupancy at the c-Myc enhancer and induced c-Myc down-
regulation (50). This evidence underlines not only that both
H3K27Ac and BRDs play a role in MCC, but also that iHDAC
and iBET combination therapy should be considered as a novel
therapeutic approach.

Histone Methylation
Histone methylation provides the addition of a methyl group on
lysine and arginine residues, which can undergo mono-/di-/
trimethylation, and mono-/dimethylation, respectively.
Enzymes mediating histone methylation and demethylation
reactions are histone methyltransferases (HMTs) and
demethylases (HDMs), respectively (78). Histone methylation
can be associated with either transcriptional repression or
FIGURE 1 | Histone post-translational modifications in Merkel cell carcinoma. The specific modifications and amino acids (a.a.) residues are reported. Histone
deacetylase inhibitors Panobinostat, Domatinostat and Vorinostat has been found to restore histone acetylation in vitro in MCC cell lines, thereby promoting gene
expression. S, Serine; K, Lysine; T, Threonine.
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activation (79, 80). Important HMT/HDM enzymes are: (i)
Enhancer of zeste homolog 2 (EZH2) which is the catalytic
subunit of the Polycomb Repressive Complex 2 (PRC2); the
complex methylates lysine 27 in histone H3 (H3K27) (81), a
repressive mark on tumor suppressor gene promoters during
tumorigenesis (82, 83); (ii) Lysine-specific demethylase 1 (LSD1)
which removes the mono-/di- methylation marks in lysine 4 and
9 of histone H3 (H3K4/9) (84, 85). H3K9 tri-methylation is
almost exclusively localized in pericentric heterochromatin,
repetitive elements and non-coding portions of the genome
(86), while H3K27 tri-methylation is mainly associated with
gene silencing and can be found in genes rich areas (87, 88).
Methylated H3K4 has been found in transcriptionally active
euchromatic regions (89).

Significant attention has been paid to histone methylation and
particularly toLSD1 (17, 90),with the aimofdevelopingnovelMCC
therapies (Figure 1) (17, 91, 92). During MCCP onset, sT can
interact with several factors, such asMYCL andMAX. Both factors
are recruited to the EP400 subunit (or p400) of the histone
acetyltransferase complex by sT (90). Improper complex
activation leads to LSD1 overexpression, thereby favouring MCC
growth in vitro/in vivo (91). Consistently, LSD1 inhibition in vitro
can induce cell cycle arrest and apoptosis in MCCP cells, while
activating a gene expression signature which resembles normal
Merkel cells; tumor growth inhibition has also been shown in vivo
(17). LSD1 inhibition could therefore be consideredas anadditional
MCC therapeutic option (17, 91–93).

The role played by PRC2 and its functional enzymatic
component EZH2 in MCC progression and metastasis has
been remarked upon. Increased EZH2 expression has been
reported as associated with both MCC progression and poor
prognosis (81). Immunohistochemistry (IHC) experiments
conducted on MCCP and MCCN tissues, including primary
tumors, as well as lymph node, in-transit and distant metastases,
reported about half specimens as exhibiting strong/moderate
EZH2 expression. Weak EZH2 expression in the primary tumor,
but not nodal metastases, has been correlated with improved
prognosis. High EZH2 expression levels have also been reported
in a set of MCC tissues, with no differences according to MCPyV
presence (94). Although H3K27me3 has not been studied, these
papers underlined the prognostic value of EZH2 in MCC, thus
suggesting that this HMT might be a potential target for
MCC treatment.

Additional studies have examined H3K27me3 in different
primary/metastatic MCC tissue specimens, such as: (i) MCCP
and MCCN tumors with pure histological features, including
primary and metastatic lesions, as well as a small number of
combined squamous and neuroendocrine carcinomas (51); (ii)
different tumor types, including MCC (95); (iii) MCC tissues
stratified according to MCPyV status and morphological type
(49). The first study described reduced H3K27me3 expression in
MCCPs and in MCCs with pure histologic features (51). The
second reported H3K27me3 loss in 90% of MCCs with unknown
MCPyV positivity, while all MCCs were H3K27me2-positive
(95). The third reported low H3K27me3 levels in MCCN
compared to MCCP tumors, and in particular in MCCNs
Frontiers in Oncology | www.frontiersin.org 4
combined with squamous cell carcinoma than in MCCP/N
pure tumors or pure histologic MCCs (regardless of MCPyV
status). Following prospective analyses indicated a lack of
correlation between low H3K27me3 and MCC patient
outcome, thus excluding a prognostic role for this epigenetic
mark (49). Considering these data, the loss of H3K27me2/me3
marks in MCC might be attributable to an impairment in PRC2
activity (96). However, neither PRC2 expression nor activity has
been evaluated in these studies. H3K27me2/me3 modifications
might potentially be due to PRC2 levels/activity changes.
However, a link between PRC2 and H3K27me2/me3 upon
MCC has not been determined. In this context, whether PRC2
and its epigenetic marks play a role in MCC onset is yet to be
verified with further studies.

The important role of histone methyltransferase PRDM8 in
MCCN development has recently been highlighted (97). High
PRDM8 mRNA levels have been reported in MCCN cell lines,
while PRDM8 overexpression has been found as linked to an
increase in H3 lysine 9 methylation (H3K9me) global levels in
MCCN specimens. Notably, the same study also identified miR-
20a-5p as an upstream PRDM8 regulator, pointing to its
involvement in MCC tumorigenesis as a tumor suppressor
miRNA. Taken together, these findings provide insight into the
role of PRDM8 and histone methylation in MCC (97).
Histone Phosphorylation
Histone phosphorylation provides the addition of phosphate
groups to serine, tyrosine and/or threonine residues (98–100).
Phosphatases and kinases are the two enzyme classes known to
remove and include the phosphate groups, respectively (101, 102).
Although being somewhat less well-understood than acetylation
and methylation, phosphorylation seems to be linked to positive
gene regulation, as leading to chromatin relaxation (101, 102).

The involvement of histone phosphorylation in MCC has
been investigated in studies focused in both histone methylation
and phosphorylation marks. H3 lysine 79 trimethylation/H3
threonine 80 phosphorylation (H3K79me3T80ph, or H3KT)
and H3 phosphorylation (PHH3) marks, which are both
expressed during G2/M phase progression, have been assessed
as prognostic markers for MCC in relation to mitotic figures and
G2+ tumor nuclei. The latter are both proliferation indicators.
Despite the limited number of MCC patients enrolled in the
study, H3KT/PHH3 marks, evaluated by IHC in MCC tissues
with unknown MCPyV positivity, had prognostic significance in
stratifying patient risk in relation to proliferative rates (103). The
role of histone methylation and phosphorylation in MCCP
during MCPyV sT-induced DNA damage response (DDR)
pathway activation has also been reported (104). MCPyV sT
overexpression has been described as functionally inducing (i)
H2AX phosphorylation via ataxia telangiectasia mutant (ATM)
activation, which is a crucial upstream kinase for H2AX
phosphorylation; (ii) dimethylation of H3 lysine 4 (H3K4me2)
and H4 lysine 20 (H4K20me2). Moreover, phosphorylation of
other DDR/ATM downstream proteins has also been described.
These findings cumulatively suggest the contribution of histone
March 2022 | Volume 12 | Article 832047
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methylation and phosphorylation in MCPyV sT-induced DDR
pathway activation upon MCCP onset (104).
HISTONE VARIANTS AND MERKEL
CELL CARCINOMA

Mass spectrometry analyses conducted on MCCP cell lines
compared to a control epithelial cell line reported a total of 5
different histone families with 15 different subfamily members,
including H2A type 1-H as being differentially expressed (105).
Although these histones have not been investigated epigenetically,
the study highlighted the role of histone variants in MCCP.
Further studies might extend these proteome data towards an
epigenetic point of view.
DISCUSSION AND
FUTURE PERSPECTIVES

This review summarizes and provides insights into PTMs and
related factors being assessed as linked to MCC (Figure 1). While
emerging evidence indicates that PTM dysregulations are
involved in MCC, the clinical application of most has only
been limitingly demonstrated. The impairment of histone
acetylation (50, 69, 71), methylation (49, 51, 95) and
phosphorylation marks (103, 104) as well as histone modifying
enzymes, including PCR2/EZH2 (81, 94), LSD1 (17, 90, 91) and
PRDM8 (97), have been reported as playing a role in MCC. From
a therapeutic point of view, promising data have been obtained
with iHDAC inhibitors, such as Vorinostat, Domatinostat and
Panobinostat (17, 69, 71, 72, 77), as well as with LSD1 inhibitors
(17). Moreover, studies conducted with Vorinostat and LSD1
inhibitors have been conducted both in vitro with MCC cells, and
in vivo with animal models, thus underling the reliability of these
antitumor compounds (17, 69, 91). The clinical application of
iHDACs has also been demonstrated with MCC patients under
combination therapy with PD-1/PD-L1 inhibitors in one study
and in one phase II clinical trial (NCT04393753) (77).
Contrariwise, a few studies questioning PTMs as MCC
diagnostic/prognostic markers, comprising histone methylation
(49, 51, 95) and simultaneous methylation and phosphorylation
(103), have been reported. Further studies should be performed
to identify novel PTMs as MCC diagnostic/prognostic markers.

As hypothesized in the abovementioned studies, the
dysregulation of epigenetic mechanisms plays a role in MCC to
Frontiers in Oncology | www.frontiersin.org 5
some extent and therefore represent potential clinical significance.
The identification of novel PTMs may improve early MCC
diagnosis and therapy monitoring. MCC onset, progression and
metastasis is often rapid (32) and early tumor identification, as well
as expeditious diagnostic workup and therapy initiation are crucial.
Thus, research for novel PTMs to be employed in the clinic should
be a priority (106). Since MCC is considered an aggressive and
deadly tumor, there is an urgent need to identify novel effective
therapies for its management. As themalignant behaviour ofMCC
cells can be reverted with iHDACs (17, 69, 71, 72, 77), combination
multidrug therapies with hypomethylating agents should be
considered (45, 107, 108), as has successfully been demonstrated
in treating other tumors (109–111). We therefore recommend
further rigorous preclinical/clinical studies in this direction (112).

In conclusion, while promising data have been obtained for
PTMs and modifying enzymes, the clinical application of most is
still to be verified. Further studies are needed for identifying novel
PTMs that could be employed as clinical tools. Gaining a deeper
understanding of PTM dysregulations is of paramount importance
for understanding the molecular basis of MCC and improving the
diagnosis, prognosis, and therapeutic options for this tumor.
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