
Citation: Poltronieri, F.; Stefanelli, C.;

Tortonesi, M.; Zaccarini, M.

Reinforcement Learning vs.

Computational Intelligence:

Comparing Service Management

Approaches for the Cloud

Continuum. Future Internet 2023, 15,

359. https://doi.org/10.3390/

fi15110359

Academic Editor: Alessandro

Pozzebon

Received: 22 September 2023

Revised: 27 October 2023

Accepted: 30 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Reinforcement Learning vs. Computational Intelligence:
Comparing Service Management Approaches for the
Cloud Continuum
Filippo Poltronieri 1 , Cesare Stefanelli 1 , Mauro Tortonesi 2,* and Mattia Zaccarini 1

1 Department of Engineering, University of Ferrara, 44122 Ferrara, Italy; filippo.poltronieri@unife.it (F.P.);
cesare.stefanelli@unife.it (C.S.); mattia.zaccarini@unife.it (M.Z.)

2 Department of Mathematics and Computer Science, University of Ferrara, 44121 Ferrara, Italy
* Correspondence: mauro.tortonesi@unife.it

Abstract: Modern computing environments, thanks to the advent of enabling technologies such as
Multi-access Edge Computing (MEC), effectively represent a Cloud Continuum, a capillary network
of computing resources that extend from the Edge of the network to the Cloud, which enables a
dynamic and adaptive service fabric. Efficiently coordinating resource allocation, exploitation, and
management in the Cloud Continuum represents quite a challenge, which has stimulated researchers
to investigate innovative solutions based on smart techniques such as Reinforcement Learning and
Computational Intelligence. In this paper, we make a comparison of different optimization algorithms
and a first investigation of how they can perform in this kind of scenario. Specifically, this comparison
included the Deep Q-Network, Proximal Policy Optimization, Genetic Algorithms, Particle Swarm
Optimization, Quantum-inspired Particle Swarm Optimization, Multi-Swarm Particle Optimization,
and the Grey-Wolf Optimizer. We demonstrate how all approaches can solve the service management
problem with similar performance—with a different sample efficiency—if a high number of samples
can be evaluated for training and optimization. Finally, we show that, if the scenario conditions
change, Deep-Reinforcement-Learning-based approaches can exploit the experience built during
training to adapt service allocation according to the modified conditions.

Keywords: Cloud Continuum; IT service management; service fabric management; resource man-
agement; Computational Intelligence; Reinforcement Learning

1. Introduction

In the last few years, the research community has observed a reshaping of network in-
frastructures, with a growing interest and adoption of the Cloud Continuum (CC) paradigm.
The CC brings together an assortment of computational and storage resources, spread-
ing them across different layers, resulting in the establishment of a unified ecosystem [1].
In this way, users would rely not only on the resources available at the Edge, but could also
exploit computing resources provided by Fog or Cloud providers. Consequentially, the
CC opens new possibilities for distributing the load of computationally intensive services
such as Machine Learning applications, online gaming, Big Data management, and so
on [2,3]. It is important to note that all these new innovative options and the inclusion
of a plethora of new devices in the ecosystem create a large number of potential threads,
which require the adoption of new effective strategies and countermeasures [4]. In such a
distributed and heterogeneous environment like the one that the CC brings to the table,
effective service management becomes crucial to ensure seamless service delivery and
resource optimization.

However, efficiently coordinating resource allocation, exploitation, and management
in the CC represents quite a challenge [5]. There is a need for service fabric management
solutions capable of efficiently allocating multiple service components using a limited pool

Future Internet 2023, 15, 359. https://doi.org/10.3390/fi15110359 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15110359
https://doi.org/10.3390/fi15110359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2860-4204
https://orcid.org/0000-0003-4617-1836
https://orcid.org/0000-0002-7417-4455
https://orcid.org/0009-0003-6679-5125
https://doi.org/10.3390/fi15110359
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15110359?type=check_update&version=2

Future Internet 2023, 15, 359 2 of 30

of devices distributed throughout the CC, also considering the peculiar characteristics of
the resources available at each layer. In addition, the significant dynamicity of the CC
scenario calls for adaptive/intelligent orchestrators that can autonomously learn the best
allocation for services.

The increasing use of Artificial Intelligence (AI) techniques has led to different and
potentially very promising approaches [6], including self-learning ones. Among those,
Reinforcement Learning (RL) is the one that for sure has accumulated most of the attention
in the research community [7]. RL is a promising Machine Learning area that has gained
popularity in a wide range of research fields such as Network Slicing [8], Network Function
Virtualization [9], and resource allocation [10]. More specifically, Deep Reinforcement
Learning (DRL) has recently emerged as a compelling technique increasingly proposed
in service management research [11]. DRL approaches aim to extensively train an intelli-
gent orchestrator to make it capable of effective service management decision-making in
various conditions.

Computational Intelligence (CI) solutions represent another promising approach,
leveraging smart and gradient-free optimization techniques that can explore a relatively
large solution space efficiently [12]. Leveraging CI, it is possible to realize orchestrators
that can explore relatively quickly even large solution spaces, thus being able to effectively
operate in dynamic conditions with a reactive posture with a minimal re-evaluation lag.
Advanced Computational Intelligence solutions seem to be well suited for expensive [13]
and dynamic optimization problems [14,15].

Although some metaheuristic performance analyses in Fog environments have been
conducted in recent times [16], establishing which of these solutions represents the most-
suitable one for service management in the Cloud Continuum is still an open research
question. In this paper, we aimed to investigate that question and, towards that goal,
compared two DRL techniques, namely the Deep Q-Network (DQN) and Proximal Policy
Optimization (PPO), with five Computational Intelligence techniques, namely Genetic
Algorithms (GAs), Particle Swarm Optimization (PSO), Quantum-inspired Particle Swarm
Optimization (QPSO), Multi-Swarm PSO (MPSO), and the Grey-Wolf Optimizer (GWO), to
evaluate their performance for service management purposes.

First, we conducted simulations to train and test these techniques in a realistic Cloud
Continuum scenario characterized by limited computing resources at the Edge and Fog
layers and unlimited resources at the Cloud. Then, we evaluated the same techniques with
a what-if scenario analysis that simulated the outage of Cloud resources. To find a new
service allocation, we exploited the experience of the DRL agents without retraining, while
for the CI approaches, we performed another optimization run. The results highlighted
that PPO was capable of dealing with the modified scenario by distributing the service
instances to the Edge and the Fog layer, without retraining the agent, while the DQN was
not capable of achieving comparable results. On the other hand, CI algorithms require a
cold restart to find an optimal relocation for service component instances.

The remainder of the paper is structured as follows. Section 2 lays out relevant efforts.
Section 3 discusses service management in the Cloud Continuum. Then, in Section 4, we
present the CI and DRL algorithms that we selected for the comparison outlined in this
work. Section 5 describes the methodologies used in this manuscript to solve the service
management problem. Then, Section 6 presents the experimental evaluation in which we
compared the selected CI and DRL algorithms. Finally, Section 7 concludes the manuscript
and outlines potential future works.

2. Related Work

Services and resource management in the Cloud Continuum comprise a challenging
research topic that calls for innovative solutions capable of managing the multiple layers
of computing resources. The work presented in [17] proposes a resource orchestration
framework called ROMA to manage micro-service-based applications in a multi-tier com-
puting and network environment that can save network and computing resources when

Future Internet 2023, 15, 359 3 of 30

compared to static deployment approaches. In [18], Pereira et al. propose a hierarchical
and analytical model to overwhelm the resource availability problem in Cloud Continuum
scenarios. They present multiple use cases to demonstrate how their model can improve
the availability and scalability in Edge–Cloud environments. Moreover, the authors in [19]
describe a model-based approach to automatically assign multiple software deployment
plans to hundreds of Edge gateways and connected Internet of Things (IoT) devices in a
continuously changing cyber–physical context.

In recent years, the advent of the Cloud Continuum paradigm has called for new
resource management proposals and methodologies to evaluate them. Currently, simula-
tion is one of the most-adopted evaluation techniques in the literature for evaluating the
performance of different techniques in Edge–Fog–Cloud scenarios. The authors in [20]
propose a simulation approach at different scales to evaluate their Quantum-inspired solu-
tion to optimize task allocation in an Edge–Fog scenario. Specifically, they use the iFogSim
simulation toolbox [21] for their experiments and make a comparison between their concept
and state-of-the-art strategies, showing improvement in prediction efficiency and error
reduction. In [22] Qafzezi et al. present an integrated system called Integrated Fuzzy-
based System for Coordination and Management of Resources (IFS-CMR), evaluating it by
simulation. Thanks to its three subsystems, it integrates Cloud–Fog–Edge computing in
Software-Defined Vehicular Ad hoc Networks with flexible and efficient management of
the abundance of resources available. The authors in [23] suggest STEP-ONE, a set of simu-
lation tools to manage IoT systems. Specifically, it relies on the Business Process Model and
Notation standards to handle IoT applications, defined as a plethora of processes executed
between different resources. After an in-depth analysis of the most-relevant simulators in
the Edge–Fog scenario and an accurate description of each component of STEP-ONE, they
define a hypothetical smart city scenario to evaluate its capabilities at choosing the right
process placement strategy. In [24], Tran-Dang et al. present Fog-Resource-aware Adaptive
Task Offloading (FRATO), a framework to select the best offloading policy adaptively
and collaboratively based on the system circumstances, represented by the number of
resources available. In their experiments, they conduct an expanded simulative analysis
adopting FRATO to compare several offloading strategies and determine their performance
by measuring the service provisioning delay in different scenarios.

Computational Intelligence and RL approaches have been widely adopted to solve ser-
vice and network management problems. In [25], the authors propose ETA-GA, a Genetic-
Algorithm-based Efficient Task Allocation technique, which aims at efficiently allocating
computing tasks—according to their data size—among a pool of virtual machines in accor-
dance with the Cloud environment. Furthermore, in [26], Nguyen et al. present a model of a
Fog–Cloud environment and apply different metaheuristics to optimize several constraints,
such as power consumption and service latency. Through simulation, they legitimize their
modeling and prove that approaches based on GAs and PSO are more effective than the
traditional ones in finding the best solution to their constraints. The authors in [27] use
PSO to solve a joint resource allocation and a computation offloading decision strategy
that minimizes the total computing overhead, completion time, and energy consumption.
In [28], Li et al. propose a custom PSO algorithm to decide on a computing offloading
strategy that aims at reducing system delay and energy consumption. Lan et al. adopt
a GA to solve a task caching optimization problem for Fog computing networks in [29].
The authors in [30] propose DeepCord, a model-free DRL approach to Coordinate network
traffic processing. They define their problem as a partially observable Markov decision
process to exploit their RL approach and demonstrate that it performs much better than
other state-of-the-art heuristics in a testbed created using real-world network topologies
and realistic traffic patterns. In [31], Sindhu et al. design an RL approach to overcome the
shortcomings of Task-Scheduling Container-Based Algorithms (CBTSAs) applied in the
Cloud–Fog paradigm to decide the scheduling workloads. By exploiting the Q-Learning,
State–Action–Reward–State–Action (SARSA) [32], and Expected SARSA (E-SARSA) [33]
schemes, they show that their enhanced version of the CBTSA with intelligent resource

Future Internet 2023, 15, 359 4 of 30

allocation achieves a good balance between cost savings and schedule length than previous
ones. In [34], the authors present an RL approach influenced by evolution strategies to
optimize real-time task assignment in Fog computing infrastructures. Thanks to its abil-
ity to avoid incorrect convergence to local optima and the parallelizable implementation,
the algorithm proposed overcomes greedy approaches and other conventional optimization
techniques. To better visualize the contributions of related efforts, we report a summary in
Table 1.

Table 1. Summary of related efforts.

Reference Main Contribution Evaluation/Results

[17] Resource orchestration for micro-service-
based 5G applications

Savings in network and computing re-
sources

[18] Hierarchical availability model for Edge–
Fog–Cloud continuum Demonstrated improved availability

[19] Model-based approach for software de-
ployment in Edge gateways

Support for software assignment and
deployment in IoT–Edge–Cloud contin-
uum through a fleet concept

[20] Quantum computing-inspired solution
for task allocation

Improvement in prediction efficiency
and error reduction

[22] IFS-CMR: Integrated Fuzzy logic System
for Cloud–Fog-Edge computing

Efficient coordination and management
in Software-Defined Vehicular Networks

[23] STEP-ONE: Simulation tools for IoT sys-
tems

Evaluation of a monitoring application
in a smart city scenario

[24] FRATO: Framework for Adaptive Task
Offloading

Comparative analysis of offload-
ing strategies

[25] ETA-GA: Genetic Algorithm approach
for Task Allocation

Efficient allocation in a simulated
Cloud environment

[26] Metaheuristics for multi-objective task-
scheduling problem

Metaheuristics outperformed more-
traditional methods

[27]
PSO for resource allocation and offload-
ing strategy for multi-user multi-MEC
servers in heterogeneous networks

Minimized computing overhead

[28] Custom PSO for computing offloading
strategy in MEC scenarios

Reduced delay and efficient load balanc-
ing of the MEC server

[29]

GA for task caching optimization and
mixed-integer nonlinear programming
for the maximization of the total utility
of the system in Fog computing

Effectiveness of the proposed scheme

[30] DeepCord: DRL for service Coordina-
tion based on real-world conditions

Superior throughput and network utility
on realistic network topologies

[31] RL for task scheduling in a Cloud–Fog
ecosystem

Enhanced CBTSA with intelligent re-
source allocation

[34] RL for real-time task assignment in Fog
computing

Overcomes greedy and conven-
tional methods

Although there are many other different works that analyze several CI and RL ap-
proaches in depth, there is still a lack of comparative studies that highlight their main
differences, advantages, and disadvantages. This work aimed to address this gap by using
a simulation-driven approach that brings together both the CI and RL methodologies to
find the best solution of a resource optimization problem in a CC scenario.

Future Internet 2023, 15, 359 5 of 30

3. Cloud Continuum

The Cloud Continuum is a term to indicate a plethora of interconnected computing
resources deployed at the Edge, Fog, and Cloud computing layer, such as the one shown
in Figure 1. Specifically, at the Edge layer, computing resources are mainly represented
by MEC servers at Base Stations (BSs), which are responsible for connecting users to the
MEC server and the rest of the core network. MEC servers are the closest resources to users
that can reach them in a short communication time, i.e., 1–10 ms, thus making them the
most-suitable resources for running latency-sensitive applications. On top, the Fog layer
can provide higher computing capabilities at a slightly increased communication latency.
Finally, at the top layer of the Cloud Continuum, the Cloud layer provides a possibly
unlimited amount of resources to run batch processing or applications that do not mandate
strict latency requirements.

Figure 1. A Cloud Continuum scenario shows computing resources deployed at the three layers.

Concerning the service management perspective, we assumed that there could be
multiple service providers that need to install one or more MEC applications using the
resources available in the Cloud Continuum. Service providers would ask an infrastructure
provider to deploy and manage their applications. Therefore, the infrastructure provider
needs to accommodate all provisioning requests using a pool of computing resources
distributed throughout the Cloud Continuum. To do so, the infrastructure provider needs
to find a proper allocation that can accommodate as many services as possible considering
the current conditions, e.g., the resource availability, and the heterogeneity of the computing
resources. In addition, the infrastructure provider should also find an allocation that can
maximize the performance of the given services.

This is a challenging problem that requires considering the different characteristics of
the computing layers, e.g., latency requirements of mission-critical applications, and the
limited resources available at the Edge.

The Computational Intelligence and Reinforcement Learning Approaches to Cloud
Continuum Optimization

CI and RL are well-used techniques to solve complex service management problems.
CI techniques, such as metaheuristics, represent a common solution to explore the search
space of NP-Hard problems. Within the resource-management field, these methods have
accomplished remarkable results thanks to their capability of efficiently exploring large
and complex spaces [35,36]. In particular, CI can provide feasible and robust solutions that

Future Internet 2023, 15, 359 6 of 30

are particularly advantageous compared to more-traditional ones [37], which have been
effective in some cases, but often struggled with barriers like scalability.

CI represents gradient-free (or black-box) optimization solutions, which perform on a
relatively large number of samples across a wide portion of the search space to identify the
global optimum. As a result, they cannot be directly applied to a real system, but instead,
require some sort of a system model that can be used for evaluation. This is depicted in
Figure 2, which provides a model of how CI solutions could be applied to optimize a Cloud
Continuum system. As one can see, the real system is paired with a system model, which
plays the role of the objective (or target) function to be provided to the CI method.

Figure 2. Optimizing a real system with a Computational-Intelligence-based approach.

Let us note that CI solutions play particularly well with the Digital Twin (In this
manuscript, we adopted the definition by Minerva et al. [38], which uses the term Digital
Twin to refer to the ensemble of the Physical Object (PO), the logical object(s), and the rela-
tionship between them.) concept and its application, which researchers and practitioners
are increasingly turning their attention to [39], effectively enabling a variant of the model
described above, which we depict in Figure 3 [40]. In these cases, the Digital Twin plays
the dual role of providing an accurate virtual representation of a physical system and of
automatically reconfiguring the real system to operate in the optimal configuration found
by the CI solution.

Figure 3. Optimizing a real system with a Computational-Intelligence-based approach and a Digi-
tal Twin.

Future Internet 2023, 15, 359 7 of 30

CI solutions essentially build the knowledge of the target function by collecting the
outcomes of their sampling in a memory pool that evolves over time to explore the most-
promising parts of the search space, usually through algorithms that leverage metaphors
from the evolutionary and biological world. This scheme has proven very effective in
the optimization of static systems, but requires some additional attention in systems with
strong dynamical components, as is often the case in the Cloud Continuum [36,41]. In fact,
applying CI solutions to solve dynamic and expensive optimization problems opens the
problem of which parts (if any) of the memory need to be invalidated and discarded. This
is an open problem that is receiving major attention in the scientific literature [14,15,42].

RL instead takes a significantly different approach. It implements a trial-and-error
training phase in which a software agent learns how to improve its behavior by interacting
with an environment through a series of actions and receiving a reward that measures how
much the decision made by the agent is beneficial to attaining the final goal. Each environment
is described as a set of possible states, which reflect all the observations of the agent.

The purpose of RL is to find the optimal policy to be used by the agent for selecting
which action to take in each given state. More specifically, we want to learn the set of
parameters θ for a policy πθ that maximizes the expected reward:

max
θ

J(πθ) = Eτ∼πθ
[R(τ)] (1)

As a result, the reward model is central to the performance of RL solutions, and its
correct definition represents a key challenge. Needless to say, there is an interesting ongoing
discussion about how to design effective reward models [7,43].

While it is not an optimization solution per se, RL is a rather flexible framework that
can be adapted to several different situations. It was developed by design to consider
changing environments and does not present the same memory invalidation issues of CI
methods in dynamic scenarios. The premise is that policies produced by robust and well-
trained RL solutions are applicable to a wide range of conditions. In case of changes in the
behavior of the real system, a simple re-evaluation of the policy in an updated state should
identify the actions that can be taken to optimize the system configuration—without the
need to invalidate (large portions or the entirety of) the acquired knowledge base, as might
be the case with CI solutions. RL also has the desirable property of being applicable to
directly interact with—and learn from—a real system, as depicted in Figure 4.

Figure 4. Optimizing a real system with Reinforcement Learning.

However, RL is notoriously considered to be sample-inefficient. In addition, traditional
RL algorithms, such as SARSA and Q-Learning, also present scalability issues. They are
particularly difficult to adopt in reasonably complex (and realistic) use cases, because of
their tabular representation of the functions that map the effectiveness of each possible
action in each possible state—which requires a very large amount of experience to be
effectively exploited.

Future Internet 2023, 15, 359 8 of 30

Modern Deep Reinforcement Learning (DRL) solutions were proposed to address
the scalability issues of traditional RL. With the introduction of neural networks, DRL is
capable of effectively dealing with high-dimensional or dynamic problems that are common
in most real-world scenarios. More specifically, neural networks act as approximators of
the policy (or, more precisely, of the value function V or of the state value function Q that
underlies the definition of an RL policy) and have been demonstrated to be very effective in
many approaches introduced in the last few years, such as Deep Q-Networks (DQNs) [44]
and Trust Region Policy Optimization (TRPO) [45].

Finally, let us note that the research community is paying ever-increasing attention to
offline Reinforcement Learning [46,47]. Offline RL represents a promising approach that
aims at increasing the sample efficiency of RL through the adoption of a two-phase learning
process. First, the RL solution learns in offline mode either from an existing knowledge
base of past experiences (such as a trace log) or from a system model (or a Digital Twin).
The offline learning phase generates a reasonably effective policy that represents a good
starting point to be later fine-tuned during an online training phase in which the RL
solution interacts directly with a real system, as depicted in Figure 5. Offline RL is outside
the scope of this paper because it is still maturing and the choice of the knowledge base
to adopt for a fair and meaningful evaluation, especially in comparison with CI-based
approaches, represents a non-trivial issue per se. Nevertheless, we are seriously considering
the evaluation of offline RL solutions in Cloud Continuum contexts for future work.

Figure 5. Optimizing a real system with offline Reinforcement Learning.

4. Selection of Computational Intelligence and Reinforcement Learning Solutions

There are many CI- and RL-based solutions in the literature, with different charac-
teristics and suitability to specific applications. In this section, we motivate and discuss
the selection of five different methods. More specifically, we will focus our investigation
on five CI-based solutions: GA, PSO, QPSO, a variant of PSO, MPSO, and GWO, and two
DRL-based approaches: DQN and PPO.

The GA represents a robust and flexible optimization solution that can be applied
to a wide range of problems, including service management ones [25,48]. While their
relatively slow convergence rate in some cases has made them less popular than other
CI solutions in recent years, we chose to consider GAs as they represent an important
baseline—a gold standard, so to speak. PSO is a simple CI solution that has proven
incredibly effective in a wide range of problems, despite requiring careful attention to the
parameter setting to facilitate convergence [49]. QPSO is a heavily revised version of PSO
inspired by Quantum mechanics, which in our experience has consistently demonstrated
solid performance [36,50]. We decided to include PSO and QPSO as relatively simple,
robust, and fast-converging CI solutions.

Also, due to the popularity of these approaches within the related literature, we
decided to consider the DQN and PPO as representative algorithms for the off-policy

Future Internet 2023, 15, 359 9 of 30

and on-policy approaches of RL, respectively. Considering both approaches allows a
comprehensive evaluation of RL and could provide valuable insights with respect to
different aspects, such as sample efficiency. In Section 6, we will give further details about
the specific implementations of the algorithms that we used.

4.1. Genetic Algorithms

The GA is a metaheuristic inspired by biological evolution. The GA considers a popu-
lation of individuals, which represent candidate solutions for the optimization problem.
Each individual has a genotype, which represents its specific coordinate on the search
space, and a phenotype, i.e., the evaluation of the objective function in the corresponding
coordinate, which represents a “fitness” value capturing how well the individual adapts to
the current environment. By evolving populations through selection and recombination,
which generate new individuals with better fitness values, the GA naturally explores the
search space in an attempt to discover global optima.

More specifically, as the pseudo-code in Algorithm 1 illustrates, the GA implements
several phases, beginning with the initial setup of a population. Then, the population
is evolved through a number of generations—each one created through a process that
involves the selection of individuals for mating and the recombination and mutation of
genetic material.

Algorithm 1 Genetic Algorithm.
1: procedure GA(target_function, conf)
2: P← initialize_random_population(con f)
3: generation← 1
4: f ittest← evaluate_population(P, target_ f unction)
5: repeat
6: Pnext ← ∅
7: parents← select_parents(P, con f)
8: for all p1, p2 ∈ parents do
9: c1, c2 ← crossover(p1, p2, con f)

10: Pnext ← mutate(c1, con f), mutate(c2, con f)
11: end for
12: P← Pnext
13: for all m ∈ P do
14: m. f itness← target_ f unction(m.genotype)
15: end for
16: f ittest← argmaxm∈P m. f itness
17: generation← generation + 1
18: until generation ≥ con f .max_generations
19: return f ittest.genotype, f ittest. f itness
20: end procedure

Newer generations have a different genetic material, which has the potential to create
fitter individuals. With an exchange or recombination of different genes, the evolutionary
processes implemented by the GA promote the generation of improved solutions, and their
propagation to future generations, at the same time introducing new genes, maintaining
a certain degree of diversity in the population—thus preventing premature convergence.
This enables the exploration of the search space in a relatively robust and efficient fashion.

The GA presents many customization and tuning opportunities. In fact, the genotype
of individuals can be represented in many different ways, such as bitstrings, integers,
and real values, and the choice of chromosome encoding represents a crucial aspect of the
search performance and convergence speed of the GA [48]. In addition, the GA can use
different selection, recombination, and mutation operators. The binary tournament is the
most-used selection scheme due to its easy implementation, minimal computational over-
head, and resilience to excessively exploitative behaviors, which other selection operators

Future Internet 2023, 15, 359 10 of 30

often exhibit [51]. Popular recombination operators include 1-point, 2-point, and uniform
crossover, and a plethora of random mutation operators have been proposed in the lit-
erature, ranging from bit flip mutation to geometrically distributed displacements with
hypermutation [35].

Choosing the specific operators and parameters that control the selection and muta-
tion processes, it is possible to easily modulate the behavior of GAs, making them more
explorative or exploitative. Both choices are dependent also on the problem domain and the
representation of the chromosomes. The final goal of the GA is to converge to an optimal
population, which means that it is not able to produce new offspring notably different from
the previous.

4.2. Particle Swarm Optimization and Quantum-Inspired Particle Swarm Optimization

PSO is another metaheuristic consisting of a particle swarm that moves in the search
space of an optimization problem and is attracted by global optima. PSO evaluates the
objective function at each particle’s current location in a process known as Swarm Intelli-
gence. Each member of the swarm can be a candidate solution, and the way to aggregate
the information between all members is the key to better guiding the search in the subse-
quent steps [52]. Through the years, PSO has drawn much attention thanks to its ease of
implementation and the relatively small number of parameters that have to be tuned to
obtain a very good balance between exploration and exploitation. However, finding the
proper value for each parameter is not a trivial assignment, and many research efforts have
been made to reach the current state-of-the-art [53,54].

More specifically, PSO is a relatively simple algorithm, inspired by the behavior of
bird flocks [50], based on the exploration of the search space by a swarm of M interacting
particles. At each iteration t, each particle i has:

• A current position vector Xi(t) = (Xi,1(t), . . . , Xi,N(t)), whose components represent
the decision variables of the problem;

• A velocity vector Vi(t) = (Vi,1(t), . . . , Vi,N(t)), which captures the movement of
the particles;

• A particle attractor Pi(t) = (Pi,1(t), . . . , Pi,N(t)), representing the “highest” (best)
position that the particle has encountered so far.

The particle movement is, therefore, governed by the following equations:

Vi,j(t + 1) =Vi,j(t)+

C1 ∗ ri,j(t) ∗ (Pi,j(t)− Xi,j(t))+

C2 ∗ Ri,j(t) ∗ (Gj(t)− Xi,j(t))

Xi,j(t + 1) =Xi,j(t) + Vi,j(t + 1)

(2)

in which G(t) is the swarm attractor, representing the “highest” (best) position that the
entire swarm has encountered so far, ri,j(t) and Ri,j(t) are random sequences uniformly
sampled in (0, 1), and C1 and C2 are constants.

A well-known evolution of PSO is represented by QPSO. In QPSO, all particles have
a quantum behavior instead of the classical Newtonian random walks considered by
classical PSO. QPSO significantly simplifies the configuration process of PSO, reducing the
number of configuration parameters required to only one, i.e., the α contraction–expansion
parameter [55], which represents a single “knob” that enables adjusting the balance between
the local and global search of the algorithm. Furthermore, QPSO has been demonstrated
to overcome the weaknesses of PSO in the resolution of several benchmarks [56], which
instead tends to be stuck in local minima. The steps required to implement QPSO are
illustrated in Algorithm 2.

Future Internet 2023, 15, 359 11 of 30

Algorithm 2 Quantum-inspired Particle Swarm Optimization.
1: procedure QPSO(target_function, conf)
2: particles← initialize_random_swarm(con f)
3: iteration← 1
4: best← null
5: repeat
6: for all p in particles do
7: p.val ← target_ f unction(p.pos)
8: if p.val > p.bestval then
9: p.bestpos← p.pos

10: p.bestval ← p.val
11: end if
12: if p.val > swarm_bestval then
13: swarm_bestpos← p.pos
14: swarm_bestval ← p.val
15: end if
16: end for
17: mean_bestpos← 1

M ∑M
i=1 particles[i].bestpos

18: ~φ← rand()
19: ~u← rand()
20: s← rand()
21: attr ← ~φ ∗ p.bestpos + (1− ~φ) ∗ swarm_bestpos
22: δ← α ∗ |p.pos−mean_bestpos| ∗ ln(1/~u)
23: p.pos← attr + sign(rand()− 0.5) ∗ δ
24: iteration← iteration + 1
25: until iteration > con f .max_iterations
26: return swarm_bestpos, swarm_bestval
27: end procedure

4.3. Multi-Swarm Particle Optimization

While PSO has been successfully applied in a wide range of applications, it has proven
to be less effective in dynamic environments, where it suffers from outdated memory
and lack of diversity issues [57]. To address these shortcomings, researchers have started
investigating Multi-Swarm PSO (MPSO) constructions [58].

More specifically, MPSO exploits two principle mechanisms for maintaining
diversification—and, as a result, avoiding premature convergence and implementing
effective exploration throughout the entire search space—in the optimization process:
multiple populations and repulsion. Instantiating more than one swarm allows MPSO to
simultaneously explore different portions of the search space, thus allowing it to achieve
very good performance in the case of multiple optima, i.e., for so-called multi-peak target
functions. In addition, MPSO adopts two layers of repulsion: among particles belonging
to the same swarm and among all the swarms, to maintain diversity in the exploration
process and to avoid premature convergence.

In this context, a particularly successful multi-swarm PSO construction has proven to
be the one based on the atom analogy [57]. Taking loose inspiration from the structure of
an atom, each swarm is divided into a relatively compact nucleus of neutral (or positively
charged) particles and a loose nebula of negatively charged particles that float around
the nucleus. This is obtained by moving the neutral portion of the particles according
to classical PSO dynamics, i.e., as defined in Equation (2), and the negatively charged
rest of the swarm according to quantum-inspired dynamics (Some versions of MPSO use
Coulomb-force-inspired repulsion between charged particles, but QPSO dynamics has
proven to be computationally simpler and at least just as effective [58]), i.e., as defined in
Lines 17–23 of Algorithm 2.

In addition, swarms have and their diversity is preserved by two mechanisms: ex-
clusion and anti-convergence, which lead to a continuous birth-and-death process for

Future Internet 2023, 15, 359 12 of 30

swarms. Exclusion implements local diversity, preventing swarms from converging to the
same optimum (or peak). If a swarm SA comes closer than a predefined exclusion radius
rexcl to another swarm SB, it is killed and a new randomly initialized swarm SC takes its
place. Anti-convergence, instead, implements global diversity, by ensuring that at least
one swarm is “free”, i.e., patrolling the search space instead of converging to an optimum.
Towards that goal, MPSO monitors the diameter of each swarm, and if all of them fall
below a threshold (which is typically dynamically estimated to suit the characteristics of
the optimization problem), it kills and replaces one swarm.

Since they have been specifically designed for dynamic optimization problems and are
currently considered state-of-the-art solutions in this context [14], MPSO techniques repre-
sent a particularly promising candidate for our investigation.

4.4. Grey-Wolf Optimization

GWO is another nature-inspired optimization algorithm based on the leadership
hierarchy and hunting mechanism of grey wolves in the wild [59]. The algorithm simulates
the social hierarchy and hunting behavior of grey wolves when searching for prey. In GWO,
the search agents are grey wolves, which are categorized into four groups: alpha, beta,
delta, and omega, which help to guide the pack’s movements.

From a mathematical perspective, the algorithm starts by initializing a population of
grey wolves, where each wolf represents a potential solution in the search space. The fitness
of each solution is evaluated using a problem-specific objective function. Based on their
fitness, the three best solutions are selected as the leading wolves: alpha is the best solution,
while beta and delta are the second- and the third-best ones, respectively.

All other candidate solutions are considered as omega, and they will follow the leading
wolves in their hunting process. Their position update equations are as follows:

A1 = 2a× rand()− a

C1 = 2× rand()

Dα = |C1 × α− Xi|
X1 = α− A1 × Dα

(3)

Similar equations are used to calculate X2 and X3 based on the positions of the beta
and delta wolves, respectively. The new position of each wolf is then updated as follows:

Xi = (X1 + X2 + X3)/3 (4)

Conceptually, the leading wolves delineate the boundaries of the search space, which
typically is defined as a circle. However, the same considerations are still valid if we
consider an n-dimensional search space, with a hyper-cube or hyper-sphere instead of a
circle. A and C are the components that encourage the wolves to search for fitter prey,
helping them avoid becoming stuck in local solutions. Different from A, C does not have
any component that decreases linearly, emphasizing (C > 1) or de-emphasizing (C < 1)
the exploration of each wolf not only during the initial iterations. The algorithm repeats
the hunting process for a predefined number of iterations or until convergence is achieved.
The alpha wolf represents the optimal solution found by the GWO algorithm. Readers can
find a description of the above steps in Algorithm 3.

Similar to PSO, this metaheuristic has no direct relationships between the search agents
and the fitness function [59]. This means that penalty mechanisms can be adopted effectively
for modeling constraints, thus making GWO particularly suitable for this investigation.

Future Internet 2023, 15, 359 13 of 30

Algorithm 3 Grey-Wolf Optimization (GWO).

1: Initialize the grey wolf population Xi (i = 1, 2, . . . , n)
2: Initialize a, A, and C,
3: Compute the fitness of each agent
4: Xα = best solution found by a wolf
5: Xβ = second-best solution found by a wolf
6: Xδ = third-best solution found by a wolf
7: while t < Max number of iterations do
8: for each wolf Xi do
9: Update the position of Xi by Equation (4)

10: end for
11: Update a, A, and C
12: Compute the fitness of each agent
13: Update Xα, Xβ, and Xδ

14: t = t + 1
15: end while
16: Return Xα

4.5. Deep Q-Networks

Traditionally, the Q-Learning algorithm builds a memory table, known as the Q-Table,
to store Q-Values for all possible state–action pairs. This value represents the return
obtained by executing the action At at the time step t, which differs from the one indicated
by the current policy, and then, following the policy from the next state onward. After each
iteration, the algorithm updates the table using the Bellman Equation:

Q(St, At) = (1− α)Q(St, At) + α× (Rt + λ×max
a

Q(St+1, a)) (5)

where S and A are, respectively, the state (or observation) and the action that the agent takes
at the time step t, R is the reward received by the agent by taking the action, α is the learning
rate, and λ is the discount factor, which assigns more value to the immediate rewards,
making them more important [60]. Basically, the agent updates the current Q-Value with
the best estimated future reward, which expects that the agent takes the best current known
action. Although this algorithm is simple and quite powerful to create an RL agent, it
struggles in dealing with complex problems composed of thousands of actions and states.
A simple Q-Table would not suffice to manage reliably thousands of Q-Values, especially
regarding memory requirements.

Deep Q-Learning overcomes the limitations of Q-Learning by approximating the
Q-Table with a deep neural network, which optimizes memory usage and gives a solution
to the curse-of-dimensionality problem, forming a more-advanced agent called the Deep
Q-Network (DQN) [44]. Specifically, the deep neural network receives a representation of
the current state as the input, approximates the value of the Q-Value function, and finally,
generates the Q-Value for all possible actions as the output. After each iteration, the agent
updates the network weights through the Bellman Equation (5). Towards that goal, the
DQN first calculates the loss between the optimal and predicted actions:

L(θ) = L(Rt + γ max
a

Q(St, a), Q(St, At))

where γ is the learning rate parameter. The policy parameters are then updated through
backpropagation:

θ = θ − α∇L(θ).

Several types of loss functions have been proposed in the literature, including the
mean-squared error and cross-entropy loss.

The trial-and-error mechanism of RL could make off-policy algorithms such as the
DQN relatively slow in the training process. To address this problem, the DQN usually

Future Internet 2023, 15, 359 14 of 30

relies on experience replay, a replay buffer where it stores experience from the past [61].
This approach collects the most-recent experiences gathered by the agent through its actions
in the previous time steps. After each training iteration, the agent randomly samples one or
more batches of data from the experience replay buffer, thus making the process more-stable
and prone to converge.

Several optimizations have been proposed for the DQN. To stabilize training, DQN
solutions often leverage a separate “target” network Qtar to evaluate the best actions to
take. Qtar is updated less frequently than the policy network Q, and often through soft
(Polyak) updates. Equally often, DQN solutions adopt prioritized experience replay, which
assigns higher probabilities to actions that lead to higher rewards when sampling from the
experience replay buffer. Finally, different DQN variants have been proposed to mitigate
the reward overestimation tendencies of the algorithm [62], such as the Dueling-DQN [63]
and Double-DQN [64].

Despite the DQN being one of the first Deep Q-Learning approaches, it is still very
widely proposed and highly regarded in the scientific literature, as it has consistently
demonstrated a remarkable effectiveness in solving a large number of problems at a
reduced implementation complexity.

4.6. Trust Region Policy Optimization and Proximal Policy Optimization

Different from the off-policy nature that characterizes the DQN, Trust Region Policy
Optimization (TRPO) is an on-policy RL algorithm that aims to identify the optimal step
size in policy gradient descent for convergence speed and robustness purposes [45]. Specif-
ically, TRPO searches for the best way to improve the policy by satisfying a constraint
(called the Trust Region), which defines the highest accepted distance between the updated
policy and the old one, thus tackling the problems of performance collapse and sample
inefficiency typical of policy gradient RL algorithms. To do so, it defines the following
surrogate objective:

max
θ

Et[
πθ(At|St)

πθold(At|At)
Âπθold (St, At)] (6)

where θold represents the vector of policy parameters before the update and Âπθold is an
estimator of the advantage function from the older policy πθold . It is possible to prove
that applying specific constraints to this equation, i.e., bounding the Kullback–Leibler
divergence between πθ and πθold , guarantees a monotonic policy improvement and allows
the reuse of off-policy data in the training process, making TRPO more-stable and sample-
efficient than previous policy-gradient-based RL algorithms [65].

Unfortunately, since TRPO requires a constrained optimization at every update, it
could become too complex and computationally expensive (Theoretically, it is possible
to transform the constrained optimization step into an unconstrained optimization one
through a penalty-based approach. However, in turn, this raises the need to identify a
proper penalty coefficient β to consider—which is very difficult in practice). These draw-
backs call for simpler and more-effective methods for policy gradient descent. Towards that
goal, Schulman et al. in [66] introduce the Proximal Policy Optimization (PPO) algorithm.
There are two main variants of PPO: PPO-Penalty and PPO-Clip [66–68]. PPO-Penalty
optimizes a regularized version of Equation (6), introducing an adaptive regularization
parameter λ that depends on πθ . On the other hand, PPO-Clip calculates a clipped version
of the term:

πθ(At|St)

πθold(At|St)

and considers as a learning objective the minimum between the clipped and the unclipped
versions. This ensures that the update from πθold to πθ remains controllable, preventing
excessively large parameter updates, which could cause massive changes to the current

Future Internet 2023, 15, 359 15 of 30

policy, resulting in a performance collapse. More specifically, PPO-Clip leverages a modified
version of the surrogate function in Equation (6) as follows:

max
θ

Et[min(
πθ(At|St)

πθold(At|At)
Âπθold (St, At), clip(

πθ(At|St)

πθold(At|At)
, 1− ε, 1 + ε)Âπθold (St, At))] (7)

where function clip(x, 1− ε, 1 + ε) clips x within the interval [1− ε, 1 + ε], with ε being a
hyperparameter that defines the clipping neighborhood.

Thanks to a more-elegant and -computationally efficient behavior than TRPO, PPO
is a particularly interesting solution for deep RL applications. PPO-Clip is arguably the
most-interesting variant of PPO: it has proven to be remarkably simple and stable and to
work consistently well in a wide range of scenarios, outperforming other algorithms, such
as Advantage Actor–Critic [66]. It, thus, represents a very solid candidate to consider in
our investigation. For simplicity, in the rest of the manuscript, we use the term PPO to refer
to the PPO-Clip algorithm.

5. Service Management in the Cloud Continuum

To address service management in the Cloud Continuum, we describe an optimization
problem that aims at finding the proper deployment for a pool of services with different
importance. Specifically, we need to activate multiple instances of these services on the
resources available throughout the CloudContinuum. Once these instances are activated
on a proper device, they will start processing requests. To evaluate the performance of a
given deployment configuration, this work adopted the Percentage of Satisfied Requests
(PSR), i.e., the ratio between the number of users’ requests that were successfully executed
and the total number of requests that were generated in a given time window t.

Specifically, C = {c1, c2, . . . , cn} is the set of application components that must be
allocated by the infrastructure provider on the Cloud Continuum. Each application compo-
nent has fixed resource requirements ares measured as the number of CPU or GPU cores
that should be available for processing on servers. For simplicity, this work assumed that
resource requirements for each application ci ∈ C are immutable. This assumption is con-
sistent with the related literature [69] and also with modern container-based orchestration
techniques, which allow users to specify the number of CPU and GPU cores to assign to
each container.

We modeled each application instance as an independent M/M/1 First-Come First-
Served (FCFS) queue that processes requests in a sequential fashion. In addition, we
considered that queues would have a maximum buffer size, i.e., queues can buffer up to a
maximum number of requests. As soon as the buffer is full, the queue will start dropping
incoming requests.

We define the computing resources with the set of devices D = {d1, d2, . . . , dn}, where
each dk

i ∈ D has an associated type k ∈ {Cloud, Fog, Edge} to described the server’s
characteristics and location. In addition, each device di ∈ D is assigned with Dres

i resources,
where res represents the number of computing CPU or GPU cores. Moreover, we assumed
that servers at the same computing layer would have an equal computing capacity; thus,
servers at the upper computing layers would have higher capacity. At a given time t,
the number of resources requested by applications allocated on servers cannot exceed the
servers’ capacity Dres

i .

5.1. Problem Formulation

In this work, we followed the infrastructure provider perspective, which needs to find
a deployment for the application components c ∈ C that maximizes their performance.
The infrastructure provider needs to solve the following optimization problem:

arg max
C, D

f (x) (8)

Future Internet 2023, 15, 359 16 of 30

where C represents the applications that need to be deployed, D is the set of devices where
to allocate applications, and x is the service component deployment. Finally, the objective
function f (x) is defined as follows:

f (x) =
n

∑
k=1

Θk × PSR(ck, x) (9)

where each Θi component is a weight factor that identifies the criticality of a specific
application ci ∈ C and PSR(ci, x) is the percentage of satisfied requests for application ci
using configuration x.

It is worth specifying that it is the responsibility of the infrastructure provider to select
proper values for the Θi components, which represent the utility that an infrastructure
provider gains for running a particular application component of type ci. Although it is a
relatively simple approach, we believe that it could be reasonably effective to treat several
service components with different priorities. Specifically, we envision the Θi values to be
fixed at a certain time t. To maximize the value of (9), the infrastructure provider needs
to improve the current service deployment configuration in a way that the percentage of
satisfied requests of the most-important services is prioritized.

To solve the above service management problem, we define a representation that
describes how the instances of applications ci ∈ C are deployed on device d ∈ D. Therefore,
we propose an array-like service configuration with integer values, which extends the one
presented in [70] as follows:

SC = {Xc1,d1 , Xc2,d1 , . . . , Xck−1,dn−1 , . . . , Xck ,dn} (10)

where the value of the element Xci ,dj
describes the number of application components of

type ci that are allocated on device dj for processing requests’ application ci, n is the number
of devices, and k the |C|. Finally, to improve the readability of the problem formulation, we
show in Table 2 a summary of the notation used.

Table 2. Summary of notation used for the service management problem.

Symbol Description

PSR Percentage of Satisfied Requests

t Time window in which requests are counted

C Set of application components

ares
Fixed resource requirements of an application component (number of
CPU/GPU cores)

ci An individual application in set C

M/M/1 FCFS queue Independent queue model for processing requests in First-Come First-
Served fashion

D Set of devices

dk
i Individual device with type k (Cloud, Fog, Edge)

Dres
i Number of computing resources (CPU/GPU cores) for device di

C Applications that need to be deployed

D Set of devices where applications are allocated

x Service component deployment

SC Array-like service configuration

Xci ,dj
Number of components of type ci allocated on device dj

n Number of devices

k Cardinality of set C

Future Internet 2023, 15, 359 17 of 30

5.2. Markov Decision Process for Reinforcement Learning Algorithms

Concerning the application of PPO and the DQN to the service management problem,
we need to formulate a decision-making problem using the Markov Decision Process (MDP)
framework [71]. Specifically, we define two slightly different MDP problems, one specific
to the DQN and the other one to PPO. The difference between the two MDPs is related
to the definition of possible actions, which can be more elaborated for PPO. Both MDPs
define a set of states S, each one defined as the above deployment array (10) to represent
the allocation of service components on devices Xci ,dj

∈ C, and a reward function R, which
is the immediate reward Ra(S, S′) received after performing an action a ∈ A in a state s.

The main difference between the MDPs is related to how the deployment array in (10)
is analyzed and, therefore, the actions that the agent can perform. For the DQN MDP,
the agent has to analyze each element of the deployment array sequentially. Specifically,
at each timestamp ti, the DQN agent analyzes an element of the deployment array SC[ti],
starting from the beginning to the end. When analyzing SC[ti], the agent performs an action
a ∈ A on the element SC[ti] to modify the active instances for application components ci
on dj, the value of Xci ,dj

∈ C. To do so, the agent can either (i) do nothing, (ii) activate up
to two new instances, or (iii) deactivate up to two instances. Let us note that we encoded
these actions as integer values in [0, 5].

Instead, for PPO, A has the shape of a multi-discrete action space, i.e., a vector that
extends the discrete action space over a space of independent discrete actions [72]. Our
proposal consists of two vectors of choices: to perform the first choice, the agent picks an
element of C, corresponding to the number of active instances for service component ci on
device dj. Then, for the second choice, the agent modifies the number of active instances
to improve the current allocation according to the three actions described for the DQN.
Therefore, according to this formulation, the PPO agent does not scan the deployment array
in a sequential fashion; instead, it can learn a smarter way to improve the overall value of (9).

Concerning the reward definition, we modeled the reward by performing an action a
in state S bringing to a new state S′, i.e., Ra(S, S′), as the difference in (9) calculated between
two consecutive time steps. Specifically, with this reward function, we want to verify if a
specific action can improve or not the value of (9).

Ra(S, S′) = R ∗a (S, S′)−Φ (11)

Specifically, R ∗a (S, S′) and Φ are defined as:

R ∗a (S, S′) = f (S′)− f (S) (12)

Φ = #in f easible ∗ γ (13)

where f (S′) and f (S) are the objective functions calculated, respectively, in states S′ and S
and Φ is the penalty quantified in the number of accumulated infeasible allocations during
the simulation multiplied by a facto γ, which we set to 0.1. If there is an improvement from
one time step to the next one (R ∗a (S, S′) > 0), the agent receives an additional bonus of
3.0 as compensation for its profitable move. Otherwise, the action taken is registered as
a wrong pass since it is not remunerative in improving the objective function calculated
previously. If the agent reaches an amount of 150 wrong passes, the training episode
terminates immediately and resets the environment to the initial state.

5.3. Target Function Formulation for Computational Intelligence Algorithms

CI techniques require their adopters to define a “fitness function” or “evaluation
function” to drive the optimization process. One of the advantages of these techniques
is that is possible to use the objective function directly as the fitness function. However,
it is common to add additional components, (e.g., a penalty component) to guide the
optimization process to better solutions.

Future Internet 2023, 15, 359 18 of 30

For this work, we adopted two different configurations for the Computational Intel-
ligence techniques. Specifically, we used a baseline configuration, namely “GA”, “PSO”,
“QPSO”, “MPSO”, and “GWO”, which uses as the fitness function the objective function
f (x), and another configuration called Enforced ConstrainT (ECT), namely “GA-ECT”,

“PSO-ECT”, “QPSO-ECT”, “MPSO-ECT”, and “GWO-ECT”, which instead takes into ac-
count the infeasible allocations generated at a given iteration as a penalty in the fitness
function J(x):

J(x) = f (x)−Φ (14)

where f (x) is the target function (i.e., the problem objective) and Φ is the penalty component
visible in Equation (13). Different from the baseline configuration, the ECT configuration
would also minimize the number of infeasible allocations while maximizing the PSR.
Finally, let us note that the ECT approach reconstructs the operating conditions of the RL
algorithms and forces both metaheuristics to respond to the same challenge, thus enabling
a fair comparison with the DQN and PPO.

6. Experiments

As part of this section, we want to compare the RL and Computational Intelligence
approaches in finding the best resource management solution in our proposed scenario.
As mentioned before, we argue that metaheuristic approaches could be very effective
tools in exploring the parameters’ search space and providing near-optimal configuration
solutions. Furthermore, these approaches are less inclined to suffer from the inefficient
sampling curse. RL methodologies instead provide autonomous learning and adaptation
at the expense of a superior sample inefficiency. Therefore, they do a better job in scenarios
characterized by high dynamicity and sudden variations, which often induce metaheuristics
to have poor performances, forcing them to a new training phase.

To compare the CI and RL approaches for service management, we define a use case for
a simulator capable of reenacting services running in a Cloud Continuum scenario. We built
this simulator by extending the Phileas simulator [73] (https://github.com/DSG-UniFE/
phileas (accessed on 21 September 2023)), a discrete event simulator that we designed
to reenact Value-of-Information (VoI)-based services in Fog computing environments.
However, even if, in this work, we did not consider the VoI-based management of services,
the Phileas simulator represented a good commodity to evaluate different optimization
approaches for service management in the Cloud Continuum. In fact, Phileas allows us to
accurately simulate the processing of service requests on top of a plethora of computing
devices with heterogeneous resources and to model the communication latency between
the parties involved in the simulation, i.e., from users to computing devices and vice versa.

To make this comparison, we evaluated the quality of the best solutions generated with
respect to the objective function (9), but also in terms of sample efficiency, i.e., the number
of evaluations of the objective function. Finally, we evaluated whether these approaches
can work properly when environmental conditions change, e.g., the sudden disconnection
of computing resources.

6.1. Use Case

For this comparison, we present a scenario to be simulated in Phileas that describes
a smart city that provides several applications to its citizens. Specifically, the use case
contains the description of a total of 13 devices distributed among the Cloud Continuum:
10 Edge devices, 2 Fog devices, and a Cloud device with unlimited resources to simulate
unlimited scalability. Along with the devices’ description, the use case defines 6 different
smart city applications, namely: healthcare, pollution-monitoring, traffic-monitoring, video-
processing, safety, and audio-processing applications, whose importance is described by
the Theta parameters shown in Table 3.

https://github.com/DSG-UniFE/phileas
https://github.com/DSG-UniFE/phileas

Future Internet 2023, 15, 359 19 of 30

Table 3. Weight parameters used for the objective function.

Θ Weight Service Type

1 Healthcare, Video, Safety
0.5 Pollution, Traffic, Audio

To simulate a workload for the described applications, we reenacted 10 different
groups of users located at the Edge that generate requests according to the configuration
values illustrated in Table 4. It is worth specifying that the request generation is a stochastic
process that we modeled using 10 different random variables with an exponential dis-
tribution, i.e., one for each user group. Furthermore, Table 4 also reports the computed
latency for each service type. As for the time between message generation, we modeled
the processing time of a task by sampling from a random variable with an exponential
distribution. Let us also note that the “compute latency” value does not include queuing
time, i.e., the time that a request spends before being processed. Finally, the resource
occupancy indicates the number of cores that each service instance requires to be allocated
on a computing device.

Table 4. Service description: time between request generation and compute latency modeled as
exponential random variables with rate parameter λ for each service type and resource occupancy.

Service Type Time Between Req.
Gen. (λ) Compute Latency (λ) Resource

Consumption

Healthcare 1/120 (ms) 1/150 (ms) 4.5 (cores)
Pollution 1/45 (ms) 1/250 (ms) 3.5 (cores)

Traffic 1/40 (ms) 1/300 (ms) 3.5 (cores)
Video 1/100 (ms) 1/225 (ms) 6.0 (cores)
Safety 1/100 (ms) 1/150 (ms) 4.0 (cores)
Audio 1/25 (ms) 1/200 (ms) 3.0 (cores)

We set the simulation to be 10 s long, including 1 s of warmup, to simulate the
processing of approximately 133 requests per second. Finally, we report the intra-layer
communication model in Table 5, where each element is the configuration for a normal
random variable that we used to simulate the transfer time between the different layers of
the Cloud Continuum.

Table 5. Communication latency configuration for the Cloud Continuum use case.

Layers Edge Fog Cloud

Edge µ = 5.00 (ms) µ = 15.00 (ms) µ = 100 (ms)
σ = 3.00 (ms) σ = 5.00 (ms) σ = 6.00 (ms)

Fog µ = 5.00(ms) µ = 80.00 (ms)
σ = 3.00 (ms) σ = 8.00 (ms)

Cloud µ = 17.00 (ms)
σ = 7.00 (ms)

Concerning the optimization approaches, we compared the open-source and state-of-
the-art DQN and PPO algorithms provided by Stable Baselines3 (https://github.com/DLR-
RM/stable-baselines3 (accessed on 21 September 2023)) with the GA, PSO, QPSO, MPSO,
and GWO. For the metaheuristics, we used the implementations of a Ruby metaheuristic
library called ruby-mhl, which is available on GitHub (https://github.com/mtortonesi/
ruby-mhl (accessed on 21 September 2023)).

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://github.com/mtortonesi/ruby-mhl
https://github.com/mtortonesi/ruby-mhl

Future Internet 2023, 15, 359 20 of 30

6.2. Algorithms Configurations

To collect statically significant results from the evaluation of the CI approaches, we
decided to collect the log of 30 optimization runs. Each optimization run consisted of
50 iterations of the metaheuristic algorithm. This was to ensure the interpretability of the
results and to verify if the use of different seeds can significantly change the outcome of the
optimization process. At the end of the 30 optimization runs, we measured the average
best value found by each approach to verify which one performed better in terms of the
value of the objective function and sample efficiency.

Delving into the configuration details of each metaheuristic, for the GA, we used a
population of 128 randomly initialized individuals, an integer genotype space, a mutation
operator implemented as an independent perturbation of all the individual’s chromosomes
sampled from a geometric distribution random variable with a probability of success of 50%,
and an extended intermediate recombination operator controlled by a random variable
with a uniform distribution in [0.5, 1.5] [74]. Moreover, we set a lower and an upper bound
of 0 and 15, respectively. At each iteration, the GA generates the new population using
a binary tournament selection mechanism, in which we applied the configured mutation
and recombination. For PSO, we set a swarm size of 40 individuals randomly initialized
in the float search space [0, 15] and the acceleration coefficients C1 and C2 to 2.05. Then,
for QPSO, we configured a swarm of 40 individuals randomly initialized in [0, 15] and a
contraction–expansion coefficient α of 0.75. These particular parameter configurations have
shown very promising results in different analyses made in the past [36,75], so we decided
to keep them also for this one.

For GWO, we set the population size to 30 individuals and the same lower and
upper bounds of 0 and 15. Then, a different configuration was used for MPSO, where we
set the initial number of swarms to 4, each one with 50 individuals, and the maximum
number of non-converging swarms to 3. Readers can find a summary table containing the
configuration for each CI algorithm provided in Table 6.

Table 6. CI algorithms configuration for the experiments.

Parameter/Setting Description

General
Optimization runs 30 runs
Iterations per run 50 iterations
Objective Average best value and sample efficiency
Bounds [0, 15]

GA
Population size 128 individuals
Genotype Integer
Mutation operator Random perturbation
Mutation probability Geometric random variable with a probability of success of 50%
Recombination operator Extended intermediate recombination
Recombination probability Uniform random variable in [0.5, 1.5]
Recombination threshold 40%
Selection mechanism Binary tournament

PSO
Swarm size 40 individuals
Search space Float
Acceleration coefficients C1 and C2 2.05

QPSO
Swarm size 40 individuals
Contraction–expansion coefficient (α) 0.75

GWO
Population size 30 individuals
Bounds [0, 15]

MPSO
Initial swarms 4 swarms
Individuals per swarm 50 individuals
Maximum non-converging swarms 3

Future Internet 2023, 15, 359 21 of 30

Regarding the DRL algorithms, we implemented two different environments to ad-
dress the different MDP formulations described above. Specifically, the DQN scans the
entire allocation array sequentially twice for 156 time steps, while PPO uses a maximum
of 200 time steps, which correspond to their respective episode length. Since the DQN
implementation of Stable Baselines3 does not support the multi-discrete action space as
PPO does, we chose this training model to ensure the training conditions were as similar as
possible for both algorithms. As previously mentioned, during a training episode, the agent
modifies how service instances are allocated on top of the Cloud Continuum resources.
Concerning the DRL configurations, we followed the guidelines of Stable Baseline3 for
one-dimensional observation spaces to define a neural network architecture with 2 fully
connected layers with 64 units each and a Rectified Linear Unit (ReLU) activation function
for the DQN and PPO. Furthermore, we set for both the DQN and PPO a training period of
100,000 time steps long. Then, to collect statistically significant results comparable to the
ones of the CI algorithms, we tested the trained models 30 times.

6.3. Results

For each optimization algorithm, we took note of the solution that maximized the value
of (9), also paying particular attention to the percentage of satisfied requests and service
latency. Firstly, let us report the average reward during the training process obtained by
PPO and the DQN in Figure 6. Both algorithms showed a progression, in terms of average
reward, during the training process. Furthermore, Figure 6 shows that the average reward
converged to a stable value before the end of the training process, thus confirming the
validity of the reward structure presented in Section 3. In this regard, PPO showed a better
reward improvement, reaching a maximum near 200. Differently, the DQN remained stuck
in negative values despite a rapid reward increase (around Iteration 50,000) during the
training session.

Figure 6. The DQN and PPO mean reward during the training process.

Aside from the DRL training, let us show the convergence process of the CI algorithms
in Figure 7, which is an illustrative snapshot of the progress of the optimization process.
Specifically, Figure 7 shows the convergence process of one of the 30 optimization runs and
visualizes on the top the GA, PSO, QPSO, MPSO, and GWO, while on the bottom their
constrained versions the GA-ECT, PSO-ECT, QPSO-ECT, MPSO-ECT, and GWO-ECT. For
all metaheuristics displayed in the top row, it is easy to note how they can converge very
quickly except for QPSO, which showed an increasing trend throughout all 50 iterations.
Instead, considering their ECT variants, the GA, PSO, and GWO struggled a bit in dealing
with their imposed constraints. In contrast, QPSO-ECT and MPSO-ECT demonstrated very
similar performance compared to the previous case. Notably, these two algorithms did
not appear to be negatively affected by the introduction of the penalty factor, and they
were still able to find the best solution overall without significant difficulty. In this regard,
it is worth noting that MPSO makes use of four large swarms of 50 particles, i.e., at each
iteration, the number of evaluations of the objective function was even larger than the GA,
which was configured with 128 individuals.

Future Internet 2023, 15, 359 22 of 30

0 10 20 30 40 50
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50
GA

0 10 20 30 40 50
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50
PSO

0 10 20 30 40 50
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50
QPSO

0 10 20 30 40 50
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50
MPSO

0 10 20 30 40 50
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50
GWO

0 10 20 30 40 50

30

20

10

0

10
GA-ECT

0 10 20 30 40 50

30

20

10

0

10
PSO-ECT

0 10 20 30 40 50

30

20

10

0

10
QPSO-ECT

0 10 20 30 40 50

30

20

10

0

10
MPSO-ECT

0 10 20 30 40 50

30

20

10

0

10
GWO-ECT

Fi
tn

es
s

Fu
nc

tio
n

Iteration

Figure 7. An illustrative snapshot of the optimization process using CI. The GA, PSO, QPSO, MPSO,
GWO (on the top) and their constrained (ECT) versions (on the bottom). The constrained versions
take into account a penalty component in the fitness function.

To give a complete summary of the performance of the adopted methodologies (CI
and DRL), we report in Table 7 the average and the standard deviation we collected along
the 30 optimization runs. More specifically, Table 7 reports the results for the objective
function, the number of generations needed to find the best objective function, and the
average number of infeasible allocations associated with the best solutions found. Let us
specify that the “Sample efficiency” column in Table 7 represents for the CI algorithms
the average number of samples that were evaluated in order to find the best solution.
Specifically, this was approximated by multiplying the number of the average generations
with the number of samples evaluated at each generation, e.g, the number of samples at
each generation for the GA would be 128 (readers can find this information in Table 6).
Instead, for the DRL algorithms, the “Sample Efficiency” represents the average number
of steps, i.e., an evaluation of the objective function that the agent took to achieve the best
result—in terms of the objective function—during the 30 episodes.

Table 7. Comparison of the average best solutions and the sample efficiency for the chosen algorithms.

Algorithm
Objective Function Generation

Sample Efficiency
Infeasible Allocation

Avg Std Avg Std Avg Std

PPO 4.1004 0.1567 _ _ 21.43 (18) 18.83 6.39
DQN 3.7895 0.51762 _ _ 24.17 (40.95) 448.43 83.27
GA 4.4288 0.0027 28.07 14.9088 3593 476.27 34.20
PSO 4.3221 0.0051 34.73 10.4977 1389 425.67 38.67

QPSO 4.4255 0.0074 30.9 14.1941 1236 482.53 204.10
MPSO 4.4313 0.0060 32.3667 12.7617 6473 406.07 209.89
GWO 4.4279 0.00600 31.17 14.1326 935 287.03 32.66

GA-ECT 4.1467 0.2829 39.7 8.0049 5082 204.40 11.83
PSO-ECT 4.3325 0.1014 49.57 0.6789 1983 31.97 8.28

QPSO-ECT 4.3589 0.0560 44.63 6.4513 1785 0.0 0.0
MPSO-ECT 4.3981 0.0254 41.9 7.8052 8380 0.0 0.0
GWO-ECT 4.3856 0.0324 46.9 2.3540 1407 0.0 0.0

With regard to the objective function, Table 7 shows that MPSO was the algorithm that
achieved the highest average score for this specific experiment, as opposed to the GA-ECT,
which confirmed the poor trend shown in Figure 7. However, the two versions of MPSO
required the highest number of samples to achieve high-quality solutions. It is important
to note that all ECT algorithms delivered great solutions in terms of balancing the objective

Future Internet 2023, 15, 359 23 of 30

function against the number of infeasible allocations. This trend highlights that using a
penalty component to guide the optimization process of CI algorithms can provide higher
efficiency in exploring the search space.

On the other hand, the RL algorithms exhibited competitive results compared to the CI
algorithms in terms of maximizing the objective function. Specifically, PPO was the quickest
to reach its best result, with a great objective function alongside a particularly low number
of infeasible allocations (the lowest if we exclude the ECT variants). The DQN was demon-
strated to not be as effective as the PPO. Despite requiring the second-fewest generations to
find its best solution, all metaheuristic implementations in this analysis outperformed it in
both the objective function value and total infeasible allocations. In our opinion, the main
reason behind this lies in the implementation of the DQN provided by Stable Baselines3,
which does not integrate any prioritized experience replay or improved versions like the
Double-DQN. Consequentially, it was not capable of dealing with more-complex observa-
tion spaces, such as the multi-discrete action space of PPO. With a sophisticated problem like
the one we are dealing with in this manuscript, the Stable Baseline3 DQN implementation
appeared to lack the tools to reach the same performance as PPO.

The last step of this experimentation was to analyze the performance of the best
solutions presented previously, thus showing how the different solutions perform in terms
of the PSR and average latency. Even if the problem formulation does not take into
account latency minimization, it is still interesting to analyze how the various algorithms
can distribute the service load across the Cloud Continuum and to see which offers the
highest-quality solution. It is expected that solutions that make use of Edge and Fog
computing devices should be capable of reducing the overall latency. However, given
the limited computing resources, there is a need to exploit the Cloud layer for deploying
service instances.

Specifically, for each algorithm and each measure, we report both the average and the
standard deviation of the best solutions found during the 30 optimization runs grouped
by service in Table 8. From these data, it is easy to note that most of the metaheuristic
approaches can find an allocation that nearly maximizes the PSR of the mission-critical
services (identified in healthcare, video, and safety as mentioned in Table 3) and the other
as well. Contrarily, both DRL approaches cannot reach PSR performance as competitively
as the CI methodologies. This aspect explains why their objective functions visible in
Table 7 ranked among the lowest. Nevertheless, both PPO and the DQN provided very
good outcomes in terms of the average latency for each micro-service. Despite certain
shortcomings in the PSR of specific services, particularly Audio and Video, PPO consistently
outperformed most of them in terms of latency.

On the other hand, looking at the average service latency of the other approaches,
Table 8 shows that the algorithms performed quite differently. Indeed, it is clear how the
ECT methodologies consistently outperformed their counterparts in the majority of cases.
Among them, QPSO-ECT emerged as the most-efficient overall in minimizing the average
latency, particularly for mission-critical services. Specifically, QPSO-ECT overcame the GA-
ECT by an average of 50%, PSO-ECT by 37%, GWO-ECT by 48%, and MPSO-ECT by 19%
for these services. Oppositely, both variants of the GA registered the worst performance,
with a significant number of micro-services registering a latency between 100 and 200 ms.

However, let us specify that minimizing the average service latency was not within
the scope of this manuscript, which instead aimed at maximizing the PSR, as is visible
in (9). To conclude, we can suggest that PPO emerged as the best DRL algorithm. It can
find a competitive value in terms of the objective function along with the best results in
terms of sample efficiency and latency at the price of a longer training procedure—when
compared to the CI algorithms. While the ECT variants of the metaheuristics included in
this comparison demonstrated great performance as well, they require much more samples
to find the best solution.

Future Internet 2023, 15, 359 24 of 30

Table 8. Comparison of the average PSR and latency of the best solutions; the standard deviation is
enclosed in ().

Algorithm Service PSR Latency (ms) Algorithm Service PSR Latency (ms)

PPO pollution 0.9322 (0.1861) 41.699 (37.578) DQN pollution 1.0000 (0.0000) 41.563 (21.946)
traffic 0.6303 (0.2630) 22.390 (20.021) traffic 0.9265 (0.0745) 62.047 (38.366)
video 0.4759 (0.2532) 34.654 (30.153) video 0.7167 (0.3301) 104.146 (63.440)
audio 0.4836 (0.2363) 34.923 (29.224) audio 0.5717 (0.3301) 94.377 (69.742)

healthcare 0.8292 (0.1988) 46.039 (39.383) healthcare 0.7126 (0.3940) 131.042 (83.048)
safety 0.6888 (0.3481) 27.036 (23.118) safety 0.6614 (0.3990) 128.983 (84.511)

GA pollution 1.0000 (0.0000) 36.542 (17.653) GA-ECT pollution 0.9977 (0.0087) 56.154 (12.727)
traffic 0.9782 (0.0063) 91.651 (16.812) traffic 0.9348 (0.0502) 77.907 (32.266)
video 0.9803 (0.0032) 186.576 (14.379) video 0.9120 (0.1100) 139.462 (45.334)
audio 0.9677 (0.0056) 181.024 (20.870) audio 0.8486 (0.2023) 143.043 (43.213)

healthcare 0.9856 (0.0034) 197.765 (7.608) healthcare 0.9089 (0.2094) 170.903 (45.813)
safety 0.9900 (0.0018) 200.084 (0.558) safety 0.9353 (0.1367) 183.715 (29.278)

PSO pollution 1.0000 (0.0000) 48.604 (23.354) PSO-ECT pollution 0.9966 (0.0105) 89.264 (32.947)
traffic 0.9800 (0.0080) 84.547 (27.796) traffic 0.9420 (0.0272) 82.745 (44.222)
video 0.9817 (0.0026) 175.397 (24.286) video 0.9459 (0.0632) 130.181 (39.578)
audio 0.9677 (0.0079) 176.532 (21.542) audio 0.9260 (0.0958) 93.592 (47.109)

healthcare 0.9869 (0.0030) 194.759 (10.162) healthcare 0.9716 (0.0187) 123.029 (47.805)
safety 0.9897 (0.0020) 198.726 (7.039) safety 0.9827 (0.0091) 134.197 (49.649)

QPSO pollution 1.0000 (0.0000) 45.283 (23.729) QPSO-ECT pollution 1.0000 (0.0000) 53.558 (42.932)
traffic 0.9753 (0.0084) 123.400 (60.420) traffic 0.9382 (0.0788) 52.321 (39.729)
video 0.9808 (0.0028) 180.819 (24.175) video 0.9516 (0.0386) 92.175 (56.982)
audio 0.9626 (0.0100) 173.387 (31.088) audio 0.9387 (0.0288) 68.207 (48.671)

healthcare 0.9864 (0.0031) 195.133 (13.832) healthcare 0.9811 (0.0105) 74.372 (44.875)
safety 0.9894 (0.0025) 199.692 (2.996) safety 0.9877 (0.0045) 78.016 (45.059)

MPSO pollution 1.0000 (0.0000) 44.521 (22.414) GWO-ECT pollution 1.0000 (0.0000) 98.519 (43.305)
traffic 0.9787 (0.0092) 99.434 (55.462) traffic 0.9512 (0.0198) 85.091 (39.502)
video 0.9826 (0.0023) 170.505 (27.502) video 0.9696 (0.0201) 143.977 (38.012)
audio 0.9667 (0.0076) 163.055 (40.848) audio 0.9465 (0.0285) 115.383 (38.881)

healthcare 0.9864 (0.0028) 193.474 (16.269) healthcare 0.9803 (0.0097) 109.571 (38.221)
safety 0.9897 (0.0020) 198.251 (8.628) safety 0.9868 (0.0060) 109.936 (39.572)

GWO pollution 1.0000 (0.0000) 40.328 (19.224) MPSO-ECT pollution 1.0000 (0.0000) 62.636 (48.652)
traffic 0.9686 (0.0117) 59.856 (27.934) traffic 0.9629 (0.0139) 51.580 (33.526)
video 0.9784 (0.0059) 173.643 (14.832) video 0.9705 (0.0194) 127.305 (39.538)
audio 0.9600 (0.0120) 177.200 (20.083) audio 0.9481 (0.0251) 79.533 (41.704)

healthcare 0.9849 (0.0034) 197.027 (6.136) healthcare 0.9847 (0.0083) 89.203 (39.785)
safety 0.9867 (0.0052) 197.478 (5.968) safety 0.9874 (0.0057) 76.074 (45.580)

6.4. What-If Scenario

To verify the effectiveness of DRL algorithms in dynamic environments, we conducted
a what-if scenario analysis in which the Cloud Computing layer is suddenly deactivated.
Therefore, the service instances that were previously running in the Cloud need to be
reallocated on the over devices available if there is enough resource availability.

To generate a different service component allocation that takes into account the modi-
fied availability of computing resources, we leveraged the same models—trained on the
previous scenario—for the DQN and PPO and we used the same models trained on the
previous scenario and tested them for 30 episodes. Instead, for the CI algorithms, we used
a cold restart technique, consisting of running another 30 optimization runs, each one with
50 iterations. This was to ensure the statistical significance of these experiments. After the
additional optimization runs, all CI algorithms should be capable of finding optimized
allocations that consider the different availability of computing resources in the modified
scenario, i.e., exploiting only the Edge and Fog layers.

Future Internet 2023, 15, 359 25 of 30

As for the previous experiment, we report the statistics collected during the opti-
mization runs to compare the best values of the objective function (9) and the PSR of
services in Tables 9 and 10. Looking at Table 9, it is easy to note how PPO can still find
service component allocations that achieve an objective function score close to 4, with-
out re-training the model. This seems to confirm the good performance of PPO for the
service management problem discussed in this manuscript. Moreover, PPO can achieve
this result after an average of 36 steps, i.e., each one corresponding to an evaluation of the
objective function. This was the result of the longer training procedures that on-policy DRL
algorithms require. On the other hand, as is visible in Table 7, the DQN showed a strong
performance degradation, as the best solutions found during the 30 test episodes had an
average of 1.60. Therefore, the DQN demonstrated lower adaptability when compared to
PPO in solving the problem discussed in this work.

Table 9. Comparison of the average best solutions and the sample efficiency for the chosen algorithms
in the what-if scenario.

Algorithm
Objective Function Generation

Sample Efficiency
Infeasible Allocation

Avg Std Avg Std Avg Std

PPO 3.9320 0.1915 - - 36.27 (46.82) 16.67 6.42
DQN 1.6071 0.3228 - - 128.5 (25.37) 293.13 52.55
GA 3.4371 0.1398 33.5 11.0383 4288 398.87 11.04
PSO 4.1917 0.0927 46.0667 4.4793 1843 340.47 36.15

QPSO 4.3677 0.0159 37.0 10.017 1480 64.43 19.67
MPSO 4.3771 0.0123 37.16 8.3463 7432 66.40 18.53
GWO 4.0910 0.2003 48.2 3.4780 1446 230.33 32.38

GA-ECT 2.2287 0.4854 36.6633 10.2166 4693 199.97 30.69
PSO-ECT 3.9613 0.2053 49.33 0.9222 1973.20 33.90 14.16

QPSO-ECT 4.1593 0.1512 45.7333 4.1848 1829 0.0 0.0
MPSO-ECT 4.2681 0.0313 47.3333 7.4664 1493 0.0 0.0
GWO-ECT 4.1297 0.0727 48.9667 1.16078 1469 0.7 0.88

With regard to the CI algorithms, the GA was the worst in terms of the average values
of the objective functions, while all the other algorithms achieved average scores higher
than 4.0. As for the average number of infeasible allocations, the constrained versions
achieved remarkable results, especially QPSO-ECT and MSPO-ECT, where the number
of infeasible allocations was zero or close to zero for GWO-ECT. Differently, the GA-ECT
and PSO-ECCT could not minimize the number of infeasible allocations to zero. Overall,
MPSO was the algorithm that achieved the highest score at the cost of a higher number
of iterations.

From a sample efficiency perspective, Table 9 shows that QPSO was the CI algorithm
that achieved the best result in terms of the number of evaluations of the objective function.
At the same time, MPSO-ECT showed that it found its best solution with an average of
1493 steps, which was considerably lower than the 7432 steps required by MPSO, which,
in turn, found the average best solution overall. Finally, the GA and GA-ECT were the CI
algorithms that required a larger number of steps to find their best solutions.

Furthermore, looking at Table 10, we can see the reasons for the poor performance of
the DQN: four out of six services had a PSR less than 50%. More specifically, the PSR for the
safety service was 0%, and the one for healthcare was 5%. Even PPO was not great in terms
of the PSR in the what-if scenario. On the other hand, all the CI algorithms, excluding the
GA and GA-ECT, recorded PSR values above 90% for all services, thus demonstrating that
the cold restart technique was effective at exploring the optimal solutions in the modified
search space.

Finally, we can conclude that PPO was demonstrated to be effective in exploiting the
experience built upon the previous training even in the modified computing scenario. Con-
trarily, the DQN did not seem to be as effective as PPO in reallocating services’ instances in

Future Internet 2023, 15, 359 26 of 30

the what-if experiment. On the other hand, the training of CI algorithms does not create
a knowledge base that these algorithms can exploit when the scenario changes remark-
ably. However, the cold restart technique was effective in re-optimizing the allocation of
service instances.

Table 10. Comparison of the average PSR and latency for different services across approaches; the
standard deviation is enclosed in ().

Algorithm Service PSR Latency (ms) Algorithm Service PSR Latency (ms)

PPO pollution 0.9092 (0.2510) 16.929 (8.925) DQN pollution 1.0000 (0.0000) 18.800 (3.552)
traffic 0.6037 (0.2537) 14.089 (4.625) traffic 0.9335 (0.0735) 18.752 (5.177)
video 0.4093 (0.2435) 13.389 (6.672) video 0.4570 (0.2538) 14.515 (7.992)
audio 0.4238 (0.2254) 15.970 (6.959) audio 0.2176 (0.2675) 6.757 (7.608)

healthcare 0.7596 (0.2658) 19.998 (5.111) healthcare 0.0506 (0.1311) 1.957 (5.075)
safety 0.6733 (0.3500) 18.847 (8.432) safety 0.0000 (0.0000) 0.000 (0.000)

GA pollution 1.0000 (0.0000) 15.095 (2.902) GA-ECT pollution 1.0000 (0.0000) 17.594 (4.274)
traffic 0.8969 (0.1368) 15.577 (4.969) traffic 0.9186 (0.1173) 19.508 (5.038)
video 0.7074 (0.1483) 19.829 (5.943) video 0.4649 (0.2382) 14.773 (7.649)
audio 0.3040 (0.2825) 13.186 (10.116) audio 0.3663 (0.3046) 10.784 (9.727)

healthcare 0.8463 (0.0935) 28.601 (2.959) healthcare 0.3560 (0.3829) 12.226 (12.308)
safety 0.7830 (0.1848) 26.993 (4.832) safety 0.2653 (0.3548) 9.790 (12.113)

PSO pollution 1.0000 (0.0000) 16.036 (5.071) PSO-SCT pollution 0.9989 (0.0063) 17.583 (5.460)
traffic 0.9508 (0.0197) 15.932 (4.600) traffic 0.8813 (0.0963) 17.434 (4.598)
video 0.8904 (0.0600) 17.843 (5.272) video 0.7103 (0.1975) 16.125 (5.028)
audio 0.8593 (0.0665) 22.128 (6.267) audio 0.8277 (0.1554) 19.306 (5.618)

healthcare 0.9448 (0.0298) 28.411 (3.748) healthcare 0.9420 (0.0551) 24.155 (3.118)
safety 0.9514 (0.0341) 28.314 (4.622) safety 0.9550 (0.0410) 25.412 (3.341)

QPSO pollution 0.9989 (0.0063) 17.025 (7.470) QPSO-SCT pollution 0.9989 (0.0063) 18.324 (7.581)
traffic 0.9671 (0.0148) 18.050 (4.928) traffic 0.9348 (0.0308) 17.828 (5.072)
video 0.9600 (0.0210) 18.709 (3.730) video 0.7955 (0.1674) 17.478 (4.990)
audio 0.9195 (0.0192) 17.775 (4.858) audio 0.8723 (0.0635) 18.059 (6.186)

healthcare 0.9782 (0.0104) 26.267 (2.678) healthcare 0.9775 (0.0099) 23.524 (2.742)
safety 0.9868 (0.0066) 26.947 (3.765) safety 0.9833 (0.0083) 24.247 (2.500)

MPSO pollution 1.0000 (0.0000) 16.858 (6.956) MPSO-ECT pollution 1.0000 (0.0000) 18.106 (7.762)
traffic 0.9616 (0.0129) 16.570 (3.616) traffic 0.9335 (0.0299) 17.946 (4.343)
video 0.9657 (0.0099) 18.448 (3.985) video 0.8975 (0.0333) 18.336 (4.390)
audio 0.9283 (0.0152) 19.242 (5.559) audio 0.8971 (0.0419) 17.381 (4.954)

healthcare 0.9782 (0.0069) 25.115 (3.005) healthcare 0.9729 (0.0103) 25.198 (3.423)
safety 0.9883 (0.0059) 27.484 (3.909) safety 0.9824 (0.0105) 24.545 (2.724)

GWO pollution 1.0000 (0.0000) 15.126 (3.246) GWO-ECT pollution 0.9851 (0.0450) 20.656 (5.850)
traffic 0.9442 (0.0269) 14.525 (4.240) traffic 0.8705 (0.0938) 16.759 (3.854)
video 0.8600 (0.0568) 17.532 (4.250) video 0.8342 (0.0659) 16.513 (4.259)
audio 0.7614 (0.2039) 23.213 (5.385) audio 0.8590 (0.0609) 18.126 (4.120)

healthcare 0.9261 (0.0685) 28.298 (2.851) healthcare 0.9593 (0.0258) 24.544 (2.087)
safety 0.9452 (0.0317) 30.556 (2.023) safety 0.9789 (0.0124) 24.834 (2.296)

7. Conclusions and Future Works

In this work, we presented a service-management problem in which an infrastructure
provider needs to manage a pool of services in the Cloud Continuum by maximizing the
percentage of satisfied requests considering the criticality of the different services. We solved
this service management problem by comparing the performance of CI algorithms (GA, PSO,
QPSO, MPSO, GWO, and their variations) with DRL algorithms (DQN and PPO).

To solve the service-management problem using DRL algorithms, we proposed an
MDP in which an agent learns how to distribute service instances throughout the Cloud
Continuum by using a custom reward that takes into account the percentage of satis-
fied requests and a penalty for infeasible allocations. To compare the metaheuristics and
DRL algorithms, we ran the comparison in a simulated Cloud Continuum scenario. The

Future Internet 2023, 15, 359 27 of 30

experimental results showed that, given an adequate number of training steps, all ap-
proaches can find good-quality solutions in terms of the objective function. Furthermore,
the adoption of a penalty component in the fitness function of the CI algorithms was an
effective methodology to drive the convergence of the CI algorithms and to improve the
overall results

Then, we conducted a what-if experiment in which we simulated the sudden discon-
nection of the Cloud layer. Here, PPO retained its effectiveness even without performing
another training round, presenting consistency with the first experimentation, while the
DQN was not capable of achieving good results. Among the CI approaches, both versions
of the GA had a significant drop in the maximization of the objective function. On the other
hand, all variants of PSO found competitive solutions compared with the DRL algorithms.
However, all of them needed a new training phase to achieve that performance, making
them more costly and less adaptive in highly dynamic scenarios. In future works, we will
aim to improve this study with the introduction of other RL algorithms, such as Multi-
Agent Reinforcement Learning (MARL), for coordinating multiple orchestration entities
and offline RL. Finally, adding features such as device mobility could add remarkable
value to this analysis, making the environment more realistic and challenging for both
metaheuristics and RL solutions.

Author Contributions: Conceptualization, F.P. and M.T.; methodology, F.P. and M.T.; software, F.P.,
M.T. and M.Z.; validation, F.P. and M.T.; formal analysis, F.P.; investigation, F.P.; resources, C.S.; data
curation, M.Z.; writing—original draft preparation, F.P., M.T. and M.Z.; writing—review and editing,
F.P., C.S. and M.T.; visualization, F.P. and M.Z.; supervision, C.S. and M.T.; project administration,
C.S. and M.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the Spoke 1 “FutureHPC & BigData” of the
Italian Research Center on High-Performance Computing, Big Data and Quantum Computing (ICSC)
funded by MUR Missione 4—Next Generation EU (NGEU).

Data Availability Statement: The data presented in this study are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
API Application Programming Interface
CI Computational Intelligence
DOAJ Directory of Open Access Journals
DQN Deep Q-Network
DRL Deep Reinforcement Learning
E-SARSA Expected SARSA
FCFS First-Come First-Served
GA Genetic Algorithm
GA-ECT Genetic Algorithm-Enforced ConstrainT
GWO Grey-Wolf Optimizer
GWO-ECT Grey-Wolf Optimizer-Enforced ConstrainT
IoT Internet-of-Things
LD Linear Dichroism
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
MEC Multi-Access Edge Computing
MPSO Multi-Swarm PSO
MPSO-ECT MPSO-Enforced ConstrainT
PPO Proximal Policy Optimization
PSO Particle Swarm Optimization
PSO-ECT Particle Swarm Optimization-Enforced ConstrainT

Future Internet 2023, 15, 359 28 of 30

PSR Percentage of Satisfied Requests
QPSO Quantum-inspired Particle Swarm Optimization
QPSO-ECT Quantum-inspired Particle Swarm Optimization-Enforced ConstrainT
ReLU Rectified Linear Unit
RL Reinforcement Learning
VoI Value of Information
SAC Soft Actor–Critic
TRPO Trust Region Policy Optimization
SARSA State–Action–Reward–State–Action

References
1. Moreschini, S.; Pecorelli, F.; Li, X.; Naz, S.; Hästbacka, D.; Taibi, D. Cloud Continuum: The Definition. IEEE Access 2022,

10, 131876–131886. [CrossRef]
2. Cavicchioli, R.; Martoglia, R.; Verucchi, M. A Novel Real-Time Edge-Cloud Big Data Management and Analytics Framework for

Smart Cities. J. Univers. Comput. Sci. 2022, 28, 3–26. [CrossRef]
3. Kimovski, D.; Matha, R.; Hammer, J.; Mehran, N.; Hellwagner, H.; Prodan, R. Cloud, Fog, or Edge: Where to Compute? IEEE

Internet Comput. 2021, 25, 30–36. [CrossRef]
4. Chang, V.; Golightly, L.; Modesti, P.; Xu, Q.A.; Doan, L.M.T.; Hall, K.; Boddu, S.; Kobusińska, A. A Survey on Intrusion Detection

Systems for Fog and Cloud Computing. Future Internet 2022, 14, 89. [CrossRef]
5. Bittencourt, L.; Immich, R.; Sakellariou, R.; Fonseca, N.; Madeira, E.; Curado, M.; Villas, L.; DaSilva, L.; Lee, C.; Rana, O. The

Internet of Things, Fog and Cloud continuum: Integration and challenges. Internet Things 2018, 3–4, 134–155. [CrossRef]
6. Papidas, A.G.; Polyzos, G.C. Self-Organizing Networks for 5G and Beyond: A View from the Top. Future Internet 2022, 14, 95.

[CrossRef]
7. Silver, D.; Singh, S.; Precup, D.; Sutton, R.S. Reward is enough. Artif. Intell. 2021, 299, 103535. [CrossRef]
8. Wei, F.; Feng, G.; Sun, Y.; Wang, Y.; Liang, Y.C. Dynamic Network Slice Reconfiguration by Exploiting Deep Reinforcement Learn-

ing. In Proceedings of the 2020 IEEE International Conference on Communications (ICC 2020), Dublin, Ireland, 7–11 June 2020;
pp. 1–6. [CrossRef]

9. Quang, P.T.A.; Hadjadj-Aoul, Y.; Outtagarts, A. A Deep Reinforcement Learning Approach for VNF Forwarding Graph
Embedding. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1318–1331. [CrossRef]

10. Kaur, A.; Kumar, K. Energy-Efficient Resource Allocation in Cognitive Radio Networks Under Cooperative Multi-Agent
Model-Free Reinforcement Learning Schemes. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1337–1348. [CrossRef]

11. Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. Reinforcement Learning for Service Function Chain Allocation in Fog Computing.
In Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning; John Wiley & Sons, Ltd.:
Hoboken, NJ, USA, 2021; Chapter 7, pp. 147–173. [CrossRef]

12. Alonso, J.; Orue-Echevarria, L.; Osaba, E.; López Lobo, J.; Martinez, I.; Diaz de Arcaya, J.; Etxaniz, I. Optimization and Prediction
Techniques for Self-Healing and Self-Learning Applications in a Trustworthy Cloud Continuum. Information 2021, 12, 308.
[CrossRef]

13. Ji, X.; Zhang, Y.; Gong, D.; Sun, X.; Guo, Y. Multisurrogate-Assisted Multitasking Particle Swarm Optimization for Expensive
Multimodal Problems. IEEE Trans. Cybern. 2021, 53, 2516–2530. [CrossRef] [PubMed]

14. Yazdani, D.; Cheng, R.; Yazdani, D.; Branke, J.; Jin, Y.; Yao, X. A Survey of Evolutionary Continuous Dynamic Optimization Over
Two Decades—Part A. IEEE Trans. Evol. Comput. 2021, 25, 609–629. [CrossRef]

15. Yazdani, D.; Cheng, R.; Yazdani, D.; Branke, J.; Jin, Y.; Yao, X. A Survey of Evolutionary Continuous Dynamic Optimization Over
Two Decades—Part B. IEEE Trans. Evol. Comput. 2021, 25, 630–650. [CrossRef]

16. Canali, C.; Gazzotti, C.; Lancellotti, R.; Schena, F. Placement of IoT Microservices in Fog Computing Systems: A Comparison of
Heuristics. Algorithms 2023, 16, 441. [CrossRef]

17. Gholami, A.; Rao, K.; Hsiung, W.P.; Po, O.; Sankaradas, M.; Chakradhar, S. ROMA: Resource Orchestration for Microservices-
based 5G Applications. In Proceedings of the 2022 IEEE/IFIP Network Operations and Management Symposium (NOMS 2022),
Budapest, Hungary, 25–29 April 2022; pp. 1–9. [CrossRef]

18. Pereira, P.; Melo, C.; Araujo, J.; Dantas, J.; Santos, V.; Maciel, P. Availability model for Edge–Fog–Cloud continuum: An evaluation
of an end-to-end infrastructure of intelligent traffic management service. J. Supercomput. 2021, 78, 4421–4448. [CrossRef]

19. Song, H.; Dautov, R.; Ferry, N.; Solberg, A.; Fleurey, F. Model-based fleet deployment in the IoT–Edge–Cloud continuum. Softw.
Syst. Model. 2022, 21, 1931–1956. [CrossRef]

20. Ahanger, T.A.; Dahan, F.; Tariq, U.; Ullah, I. Quantum Inspired Task Optimization for IoT Edge Fog Computing Environment.
Mathematics 2023, 11, 156. [CrossRef]

21. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]

22. Qafzezi, E.; Bylykbashi, K.; Ampririt, P.; Ikeda, M.; Matsuo, K.; Barolli, L. An Intelligent Approach for Cloud–Fog-Edge
Computing SDN-VANETs Based on Fuzzy Logic: Effect of Different Parameters on Coordination and Management of Resources.
Sensors 2022, 22, 878. [CrossRef]

http://doi.org/10.1109/ACCESS.2022.3229185
http://dx.doi.org/10.3897/jucs.71645
http://dx.doi.org/10.1109/MIC.2021.3050613
http://dx.doi.org/10.3390/fi14030089
http://dx.doi.org/10.1016/j.iot.2018.09.005
http://dx.doi.org/10.3390/fi14030095
http://dx.doi.org/10.1016/j.artint.2021.103535
http://dx.doi.org/10.1109/ICC40277.2020.9148848
http://dx.doi.org/10.1109/TNSM.2019.2947905
http://dx.doi.org/10.1109/TNSM.2020.3000274
http://dx.doi.org/10.1002/9781119675525.ch7
http://dx.doi.org/10.3390/info12080308
http://dx.doi.org/10.1109/TCYB.2021.3123625
http://www.ncbi.nlm.nih.gov/pubmed/34780343
http://dx.doi.org/10.1109/TEVC.2021.3060014
http://dx.doi.org/10.1109/TEVC.2021.3060012
http://dx.doi.org/10.3390/a16090441
http://dx.doi.org/10.1109/NOMS54207.2022.9789821
http://dx.doi.org/10.1007/s11227-021-04033-7
http://dx.doi.org/10.1007/s10270-022-01006-z
http://dx.doi.org/10.3390/math11010156
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.3390/s22030878

Future Internet 2023, 15, 359 29 of 30

23. Mass, J.; Srirama, S.N.; Chang, C. STEP-ONE: Simulated testbed for Edge–Fog processes based on the Opportunistic Network
Environment simulator. J. Syst. Softw. 2020, 166, 110587. [CrossRef]

24. Tran-Dang, H.; Kim, D.S. FRATO: Fog Resource Based Adaptive Task Offloading for Delay-Minimizing IoT Service Provisioning.
IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2491–2508. [CrossRef]

25. Rekha, P.M.; Dakshayini, M. Efficient task allocation approach using genetic algorithm for Cloud environment. Clust. Comput.
2019, 22, 1241–1251. [CrossRef]

26. Nguyen, T.; Doan, K.; Nguyen, G.; Nguyen, B.M. Modeling Multi-constrained Fog–Cloud Environment for Task Scheduling
Problem. In Proceedings of the 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA),
Cambridge, MA, USA, 24–27 November 2020; pp. 1–10. [CrossRef]

27. Huynh, L.N.T.; Pham, Q.V.; Pham, X.Q.; Nguyen, T.D.T.; Hossain, M.D.; Huh, E.N. Efficient Computation Offloading in Multi-Tier
Multi-Access Edge Computing Systems: A Particle Swarm Optimization Approach. Appl. Sci. 2020, 10, 203. [CrossRef]

28. Li, S.; Ge, H.; Chen, X.; Liu, L.; Gong, H.; Tang, R. Computation Offloading Strategy for Improved Particle Swarm Optimization
in Mobile Edge Computing. In Proceedings of the 2021 IEEE 6th International Conference on Cloud Computing and Big Data
Analytics (ICCCBDA), Chengdu, China, 24–26 April 2021; pp. 375–381. [CrossRef]

29. Lan, Y.; Wang, X.; Wang, D.; Liu, Z.; Zhang, Y. Task Caching, Offloading, and Resource Allocation in D2D-Aided Fog Computing
Networks. IEEE Access 2019, 7, 104876–104891. [CrossRef]

30. Schneider, S.; Khalili, R.; Manzoor, A.; Qarawlus, H.; Schellenberg, R.; Karl, H.; Hecker, A. Self-Learning Multi-Objective Service
Coordination Using Deep Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3829–3842. [CrossRef]

31. Sindhu, V.; Prakash, M. Energy-Efficient Task Scheduling and Resource Allocation for Improving the Performance of a Cloud–Fog
Environment. Symmetry 2022, 14, 2340. [CrossRef]

32. Rummery, G.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; Technical Report CUED/F-INFENG/TR 166;
University of Cambridge, Department of Engineering: Cambridge, UK, 1994.

33. van Seijen, H.; van Hasselt, H.; Whiteson, S.; Wiering, M. A theoretical and empirical analysis of Expected Sarsa. In Pro-
ceedings of the 2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning, Nashville, TN, USA,
30 March–2 April 2009; pp. 177–184. [CrossRef]

34. Mai, L.; Dao, N.N.; Park, M. Real-Time Task Assignment Approach Leveraging Reinforcement Learning with Evolution Strategies
for Long-Term Latency Minimization in Fog Computing. Sensors 2018, 18, 2830. [CrossRef]

35. Tortonesi, M.; Foschini, L. Business-driven service placement for highly dynamic and distributed Cloud systems. IEEE Trans.
Cloud Comput. 2018, 6, 977–990. [CrossRef]

36. Cerroni, W.; Foschini, L.; Grabarnik, G.Y.; Poltronieri, F.; Shwartz, L.; Stefanelli, C.; Tortonesi, M. BDMaaS+: Business-Driven and
Simulation-Based Optimization of IT Services in the Hybrid Cloud. IEEE Trans. Netw. Serv. Manag. 2022, 19, 322–337. [CrossRef]

37. Kruse, R.; Mostaghim, S.; Borgelt, C.; Braune, C.; Steinbrecher, M. Computational Intelligence: A Methodological Introduction;
Springer: Cham, Switzerland, 2022.

38. Minerva, R.; Lee, G.M.; Crespi, N. Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural
Models. Proc. IEEE 2020, 108, 1785–1824. [CrossRef]

39. Qian, C.; Liu, X.; Ripley, C.; Qian, M.; Liang, F.; Yu, W. Digital Twin—Cyber Replica of Physical Things: Architecture, Applications
and Future Research Directions. Future Internet 2022, 14, 64. [CrossRef]

40. Fogli, M.; Giannelli, C.; Poltronieri, F.; Stefanelli, C.; Tortonesi, M. Chaos Engineering for Resilience Assessment of Digital Twins.
IEEE Trans. Ind. Inform. 2023, 1–9. [CrossRef]

41. Borsatti, D.; Cerroni, W.; Foschini, L.; Grabarnik, G.Y.; Poltronieri, F.; Scotece, D.; Shwartz, L.; Stefanelli, C.; Tortonesi, M.;
Zaccarini, M. Modeling Digital Twins of Kubernetes-Based Applications. In Proceedings of the 2023 IEEE Symposium on
Computers and Communications (ISCC), Gammarth, Tunisia, 9–12 July 2023; pp. 219–224. [CrossRef]

42. Yazdani, D.; Omidvar, M.N.; Cheng, R.; Branke, J.; Nguyen, T.T.; Yao, X. Benchmarking Continuous Dynamic Optimization:
Survey and Generalized Test Suite. IEEE Trans. Cybern. 2022, 52, 3380–3393. [CrossRef] [PubMed]

43. Vamplew, P.; Smith, B.J.; Källström, J.; Ramos, G.; Rădulescu, R.; Roijers, D.M.; Hayes, C.F.; Heintz, F.; Mannion, P.; Li-
bin, P.J.K.; et al. Scalar reward is not enough: A response to Silver, Singh, Precup and Sutton (2021). Auton. Agents Multi-Agent
Syst. 2022, 36, 41. [CrossRef]

44. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

45. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.I.; Abbeel, P. Trust Region Policy Optimization. In Proceedings of the International
Conference on Machine Learning (PMLR), Lille, France, 6–11 July 2015. [CrossRef]

46. Levine, S.; Kumar, A.; Tucker, G.; Fu, J. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems.
arXiv 2020, arXiv:2005.01643.

47. Nair, A.; Dalal, M.; Gupta, A.; Levine, S. Accelerating Online Reinforcement Learning with Offline Datasets. arXiv 2020,
arXiv:2006.09359.

48. Chahar, V.; Katoch, S.; Chauhan, S. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80,
8091–8126. [CrossRef]

49. Grassi, S.; Huang, H.; Pareschi, L.; Qiu, J. Mean-field Particle Swarm Optimization. In Modeling and Simulation for Collective
Dynamics; World Scientific: Singapore, 2023; pp. 127–193. [CrossRef]

http://dx.doi.org/10.1016/j.jss.2020.110587
http://dx.doi.org/10.1109/TPDS.2021.3067654
http://dx.doi.org/10.1007/s10586-019-02909-1
http://dx.doi.org/10.1109/NCA51143.2020.9306718
http://dx.doi.org/10.3390/app10010203
http://dx.doi.org/10.1109/ICCCBDA51879.2021.9442609
http://dx.doi.org/10.1109/ACCESS.2019.2929075
http://dx.doi.org/10.1109/TNSM.2021.3076503
http://dx.doi.org/10.3390/sym14112340
http://dx.doi.org/10.1109/ADPRL.2009.4927542
http://dx.doi.org/10.3390/s18092830
http://dx.doi.org/10.1109/TCC.2016.2541141
http://dx.doi.org/10.1109/TNSM.2021.3110139
http://dx.doi.org/10.1109/JPROC.2020.2998530
http://dx.doi.org/10.3390/fi14020064
http://dx.doi.org/10.1109/TII.2023.3264101
http://dx.doi.org/10.1109/ISCC58397.2023.10217853
http://dx.doi.org/10.1109/TCYB.2020.3011828
http://www.ncbi.nlm.nih.gov/pubmed/32795975
http://dx.doi.org/10.1007/s10458-022-09575-5
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.48550/ARXIV.1502.05477
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1142/9789811266140_0003

Future Internet 2023, 15, 359 30 of 30

50. Sun, J.; Lai, C.H.; Wu, X.J. Particle Swarm Optimisation: Classical and Quantum Perspectives; CRC Press: Boca Raton, FL, USA, 2011.
51. Blickle, T.; Thiele, L. A Comparison of Selection Schemes Used in Genetic Algorithms. 1995. Available online: https://tik-old.ee.

ethz.ch/file/6c0e384dceb283cd4301339a895b72b8/TIK-Report11.pdf (accessed on 21 September 2023).
52. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A

Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]
53. Ratnaweera, A.; Halgamuge, S.; Watson, H. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration

coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]
54. Piotrowski, A.P.; Napiorkowski, J.J.; Piotrowska, A.E. Population size in Particle Swarm Optimization. Swarm Evol. Comput. 2020,

58, 100718. [CrossRef]
55. Yang, S.; Wang, M.; Jiao, L. A quantum particle swarm optimization. In Proceedings of the 2004 Congress on Evolutionary

Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 320–324.
56. Fang, W.; Sun, J.; Ding, Y.; Wu, X.; Xu, W. A Review of Quantum-behaved Particle Swarm Optimization. IETE Tech. Rev. 2010,

27, 336–348. [CrossRef]
57. Blackwell, T. Particle Swarm Optimization in Dynamic Environments. In Evolutionary Computation in Dynamic and Uncertain

Environments; Studies in Computational Intelligence Series; Springer: Berlin/Heidelberg, Germany, 2007; pp. 29–49. [CrossRef]
58. Blackwell, T.; Branke, J. Multi-swarm Optimization in Dynamic Environments. In Applications of Evolutionary Computing:

Proceedings of the EvoWorkshops 2004, Coimbra, Portugal, 5–7 April 2004; Lecture Notes in Computer Science Series; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 489–500. [CrossRef]

59. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
60. Watkins, C.J.C.H.; Dayan, P. Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
61. Lin, L.J. Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching. Mach. Learn. 1992, 8, 293–321.

[CrossRef]
62. Sabry, M.; Khalifa, A.M.A. On the Reduction of Variance and Overestimation of Deep Q-Learning. arXiv 2019, arXiv:1910.05983.
63. Cevallos Moreno, J.F.; Sattler, R.; Caulier Cisterna, R.P.; Ricciardi Celsi, L.; Sánchez Rodríguez, A.; Mecella, M. Online Service

Function Chain Deployment for Live-Streaming in Virtualized Content Delivery Networks: A Deep Reinforcement Learning
Approach. Future Internet 2021, 13, 278. [CrossRef]

64. Fang, Y.; Huang, C.; Xu, Y.; Li, Y. RLXSS: Optimizing XSS Detection Model to Defend Against Adversarial Attacks Based on
Reinforcement Learning. Future Internet 2019, 11, 177. [CrossRef]

65. Achiam, J.; Held, D.; Tamar, A.; Abbeel, P. Constrained Policy Optimization. In Proceedings of the 34th International Conference
on Machine Learning (PMLR), Sydney, NSW, Australia, 6–11 August 2017. [CrossRef]

66. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

67. Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.M.A.; et al. Emergence of
Locomotion Behaviours in Rich Environments. arXiv 2017, arXiv:1707.02286.

68. Dong, H.; Ding, Z.; Zhang, S. (Eds.) Deep Reinforcement Learning: Fundamentals, Research and Applications; Springer: Singapore,
2020. [CrossRef]

69. Bendechache, M.; Svorobej, S.; Takako Endo, P.; Lynn, T. Simulating Resource Management across the Cloud-to-Thing Continuum:
A Survey and Future Directions. Future Internet 2020, 12, 95. [CrossRef]

70. Poltronieri, F.; Stefanelli, C.; Suri, N.; Tortonesi, M. Value is King: The MECForge Deep Reinforcement Learning Solution for
Resource Management in 5G and Beyond. J. Netw. Syst. Manag. 2022, 30, 63. [CrossRef]

71. van Otterlo, M.; Wiering, M. Reinforcement Learning and Markov Decision Processes. In Reinforcement Learning: State-of-the-Art;
Wiering, M., van Otterlo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–42. [CrossRef]

72. Kanervisto, A.; Scheller, C.; Hautamäki, V. Action Space Shaping in Deep Reinforcement Learning. In Proceedings of the 2020
IEEE Conference on Games (CoG), Osaka, Japan, 24–27 August 2020. [CrossRef]

73. Poltronieri, F.; Stefanelli, C.; Suri, N.; Tortonesi, M. Phileas: A Simulation-based Approach for the Evaluation of Value-based
Fog Services. In Proceedings of the 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), Barcelona, Spain, 17–19 September 2018; pp. 1–6. [CrossRef]

74. Luke, S. Essentials of Metaheuristics, 2nd ed.; Lulu: Morrisville, NC, USA, 2015. Available online:http://cs.gmu.edu/~sean/book/
metaheuristics/ (accessed on 21 September 2023).

75. Poltronieri, F.; Tortonesi, M.; Morelli, A.; Stefanelli, C.; Suri, N. Value of Information based Optimal Service Fabric Management
for Fog Computing. In Proceedings of the 2020 IEEE/IFIP Network Operations and Management Symposium (NOMS 2020),
Budapest, Hungary, 20–24 April 2020; pp. 1–9.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://tik-old.ee.ethz.ch/file/6c0e384dceb283cd4301339a895b72b8/TIK-Report11.pdf
https://tik-old.ee.ethz.ch/file/6c0e384dceb283cd4301339a895b72b8/TIK-Report11.pdf
http://dx.doi.org/10.1109/ACCESS.2022.3142859
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1016/j.swevo.2020.100718
http://dx.doi.org/10.4103/0256-4602.64601
http://dx.doi.org/10.1007/978-3-540-49774-5_2
http://dx.doi.org/10.1007/978-3-540-24653-4_50
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992699
http://dx.doi.org/10.3390/fi13110278
http://dx.doi.org/10.3390/fi11080177
http://dx.doi.org/10.48550/ARXIV.1705.10528
http://dx.doi.org/10.1007/978-981-15-4095-0
http://dx.doi.org/10.3390/fi12060095
http://dx.doi.org/10.1007/s10922-022-09672-6
http://dx.doi.org/10.1007/978-3-642-27645-3_1
http://dx.doi.org/10.48550/ARXIV.2004.00980
http://dx.doi.org/10.1109/CAMAD.2018.8514969
http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/

	Introduction
	Related Work
	Cloud Continuum
	Selection of Computational Intelligence and Reinforcement Learning Solutions
	Genetic Algorithms
	Particle Swarm Optimization and Quantum-Inspired Particle Swarm Optimization
	Multi-Swarm Particle Optimization
	Grey-Wolf Optimization
	Deep Q-Networks
	Trust Region Policy Optimization and Proximal Policy Optimization

	Service Management in the Cloud Continuum
	Problem Formulation
	Markov Decision Process for Reinforcement Learning Algorithms
	Target Function Formulation for Computational Intelligence Algorithms

	Experiments
	Use Case
	Algorithms Configurations
	Results
	What-If Scenario

	Conclusions and Future Works
	References

