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1 Introduction

1.1 Aim of the paper

Let Ω ⊂ ℝN be an open bounded set and I ⊂ ℝ an open bounded interval. We study the gradient regularity of
local weak solutions to the following parabolic equation:

ut =
N
∑
i=1
(|uxi |p−2 uxi )xi in I × Ω. (1.1)

Evolution equations of this type have been studied since the 1960s, especially by the Soviet school, see
for example the paper [27] by Vishik. Equation (1.1) also explicitly appears in the monographs [21],
[23, Example 4.A, Chapter III] and [29, Example 30.8], among others.

In this paper, we will focus on the case p ≥ 2. We first observe that (1.1) looks quite similar to the more
familiar one

ut = ∆pu in I × Ω, (1.2)
which involves the p-Laplace operator

∆pu =
N
∑
i=1
(|∇u|p−2 uxi )xi .

Indeed, both parabolic equations are particular instances of equations of the type

ut = div∇F(∇u)
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with F : ℝN → ℝ a convex function which satisfies the structural conditions

⟨∇F(z), z⟩ ≥ 1
C
|z|p and |∇F(z)| ≤ C |z|p−1 for every z ∈ ℝN .

Then the basic regularity theory equally applies to both (1.1) and (1.2). The standard reference in the field
is DiBenedetto’s monograph [13], where one can find boundedness results for the solution u (see [13, Chap-
ter V]), Hölder continuous estimates for u (see [13, Chapter III]), as well as Harnack inequality for positive
solutions (see [13, Chapter VI]). At a technical level, there is nodistinction to bemadebetween (1.1) and (1.2).

In contrast,when coming to the regularity of∇u (i.e. boundedness and continuity), the situation becomes
fairlymore complicated. Let us start from (1.2).DiBenedetto andFriedman [14] haveproved that the gradients
of solutions to this equation are bounded. This is the starting point to obtain the continuity of the gradients
for any

p > 2N
N + 2 .

We refer again to DiBenedetto’s book for a comprehensive collection of results on the subject, notably to
[13, Chapter VIII]. Since then, there has been a growing literature concerning the regularity for nonlinear,
possibly degenerate or singular, parabolic equations (or systems), the main model of which is given by the
evolutionary p-Laplacian equation (1.2). Without any attempt to completeness, we can just mention some
classical references [8, 9, 12, 15, 28], up to themost recent contributions on the subject, given by [2, 18, 19],
among others.

However, none of these results apply to our equation (1.1). Indeed, all of them rely on the fact that the
loss of ellipticity of the operator div∇F is restricted to a single point, since the Hessian D2F behaves as in the
model case (1.2)

⟨D2F(z) ξ, ξ⟩ ≥ 1
C
|z|p−2 |ξ|2,

where the elliptic character is lost only for z = 0. Such a property dramatically breaks down for our equa-
tion (1.1). Indeed, in this case, the function F has the following orthotropic structure:

F(z) = 1
p

N
∑
i=1
|zi|p for every z ∈ ℝN . (1.3)

The Hessian matrix of F now degenerates on an unbounded set, namely the set of those z ∈ ℝN such that one
component zi is 0. As a consequence, the aforementioned references do not provide any regularity results for
the gradients of the solutions.

Themain goal of the present paper is to prove the L∞ bound on∇u for our equation (1.1), thus extending
the result by DiBenedetto and Friedman to this more degenerate setting. In order to do this, we will need to
adapt to the parabolic setting the machinery that we developed in [3–6] and [7], for degenerate equations
with orthotropic structure. Indeed, the operator

N
∑
i=1
(|uxi |p−2 uxi )xi ,

that we called orthotropic p-Laplacian, is the prominent example of this kind of equations. We also refer
to [11] for an approach to this operator, based on viscosity techniques.

1.2 Main result

In this paper, we establish the following regularity result which can be seen as the parabolic counterpart of
our previous result [5, Theorem 1.1] for the elliptic case. In the statement below, the notation ∇u refers to the
spatial variables, i.e. ∇u = (ux1 , . . . , uxN ).

Main Theorem. Let p > 2 and let u ∈ Lploc(I;W
1,p
loc (Ω)) be a local weak solution of (1.1). Then ∇u ∈ L

∞
loc(I × Ω).

More precisely, for every parabolic cube

Qτ,R(t0, x0) := (t0 − τ, t0) × (x0 − R, x0 + R)N ⋐ I × Ω,
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and every 0 < σ < 1, we have

‖∇u‖L∞(Qστ,σR(t0 ,x0)) ≤ C
1

(1 − σ) N+22 ( τR2 )
1
2
( −∫

Qτ,R(t0 ,x0)

|∇u|p dt dx)
1
2

+ C((1 − σ) R
2

τ )
1
p−2

(1.4)

for a constant C = C(N, p) > 0.

Remark 1.1 (Scalings). We observe that equation (1.1) is invariant with respect to the “horizontal” and “ver-
tical” scale changes

uλ,μ(t, x) = μ u(μp−2 λp t, λ x)

for every λ, μ > 0. Then it is easily seen that the a priori estimate (1.4) is invariant with respect to these scale
changes. We point out that such estimate is the exact analogue of that for the evolutionary p-Laplacian, see
[13, Theorem 5.1, Chapter VIII]. Occasionally, in the paper we will work with anisotropic parabolic cubes of
the type

QR(t0, x0) = (t0 − Rp , t0) × (x0 − R, x0 + R)N .

The choice of cubes of this type could be loosely justified by a dimensional analysis of the equation. Indeed,
by considering the quantity u as dimensionless and using the family of scalings

(t, x) → (λp t, λ x) for every λ > 0,

we get the relation
time ∼ (length)p .

However, as is well known, estimates on cubes of the type QR are too restrictive when looking at C0,α esti-
mates for∇u. Indeed, in light of the so-called intrinsic geometry, it is muchmore important to work with local
estimates on cubes Qτ,R, where the time scale τ is adapted to the solution itself: roughly speaking, we can
take

τ ∼ R2 |∇u|p−2.

This explains the importance of having (1.4) with two independent scales R and τ. We refer to [13, Chap-
ter VIII] for a description of the method of intrinsic scalings, where these heuristics are clarified.

Remark 1.2 (Case 1 < p ≤ 2). When p = 2, the orthotropic parabolic equation (1.1) boils down to the stan-
dard heat equation, for which solutions are well known to be smooth. For this reason, in our statement we
restrict our attention to the case p > 2. However, we point out that by making the choice τ = R2 and taking
the limit as p goes to 2 in (1.4), we formally end up with the classical gradient estimate for solutions of the
heat equation

‖∇u‖L∞(QσR2 ,σR(t0 ,x0)) ≤
C

(1 − σ) N+22 ( −∫
QR2 ,R(t0 ,x0)

|∇u|2 dt dx)
1
2

.

In light of the previous remark, in the case p = 2 the relation

time ∼ (length)2

is now the natural one.
As for the singular case p < 2, this is somehow simpler than its degenerate counterpart. In this case,

the local Lipschitz regularity of solutions to (1.1) can be directly inferred from [22, Theorem 1], under the
restriction

p > 2N
N + 2 .

Indeed, the result of [22] covers (among others) the case of parabolic equations of the form

ut = div∇F(∇u),

under the following assumptions on the convex function F:

|∇F(z)| ≤ C |z|p−1 and ⟨D2F(z) ξ, ξ⟩ ≥ 1
C
|z|p−2 |ξ|2 for every ξ ∈ ℝN , z ∈ ℝN \ {0}.
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It is not difficult to see that the orthotropic function (1.3) for p < 2 matches both requirements. Indeed,
observe that

⟨D2F(z) ξ, ξ⟩ = (p − 1)
N
∑
i=1
|zi|p−2 |ξ|2 ≥ (p − 1) |z|p−2 |ξ|2,

thanks to the fact that p − 2 < 0. Thus in the subquadratic case, the orthotropic structure helps more than it
hurts, in a sense.

Remark 1.3 (Anisotropic diffusion). We conclude this part by observing that, more generally, one could con-
sider the following parabolic equation:

ut =
N
∑
i=1
(|uxi |pi−2 uxi )xi in Ω × I,

which still has an orthotropic structure. Nowwehave awhole set of exponents 1 < p1 ≤ p2 ≤ ⋅ ⋅ ⋅ ≤ pN , one for
each coordinate direction.We cite the paper [24],where some globalLipschitz regularity results are proven for
solutions of the relevant Cauchy–Dirichlet problem, under appropriate regularity assumptions on the data.
We point out that in light of their global nature, for p1 = ⋅ ⋅ ⋅ = pN = p > 2 such results are not comparable to
ours. We also refer to [10] for a sophisticated Harnack inequality for positive local weak solutions, as well as
for some further references on the problem. Finally, the very recent paper [16] contains a thorough study of
the Cauchy problem in the case pi < 2, together with some regularity results.

However, as for the counterpart of our Main Theorem for local solutions of this equation, this is still an
open problem, to the best of our knowledge.

1.3 Technical aspects of the proof

The core of the proof of the Main Theorem is an a priori Lipschitz estimate for smooth solutions of the
orthotropic parabolic equation, see Proposition 4.1 below. More precisely, we introduce the regularized
problem

(uε)t = div∇Fε(∇uε),

where Fε is a smooth uniformly convex approximation of the orthotropic function (1.3). By the classical reg-
ularity theory, the maps uε are regular enough to justify all the calculations below. The goal is to establish
a local uniform Lipschitz estimate on uε, which does not depend on the regularization parameter ε. Finally,
we let ε go to 0 and prove that the family uε converges to the original solution u. This allows to obtain the
Lipschitz estimate for u itself.

In the subsequent part of this subsection, we emphasize the main difficulties to get such a Lipschitz
estimate on uε. In order to simplify the presentation, we drop the index ε both for Fε and uε. The strategy
is apparently quite classical: we rely on a Moser iterative scheme of reverse Hölder’s inequalities, resulting
from the interplay between Caccioppoli estimates and the Sobolev embeddings.

To bemore specific, we first differentiate the equation with respect to a spatial variable xj, so as to get the
equation solved by the j-th component of the gradient. This is given by

∬
I×Ω

(uxj )t φ dt dx +∬
I×Ω

⟨(∇F(∇u))xj , ∇φ⟩ dt dx = 0 for every φ ∈ C∞0 (I × Ω). (1.5)

More generally, the composition of the component uxj with a non-negative convex function h is a subsolution
of this equation. Accordingly, the map h(uxj ) satisfies the Caccioppoli inequality which is naturally attached
to (1.5) (see Lemma 3.1 below). If I = (T0, T1) and τ ∈ (T0, T1), this reads as follows:

χ(τ) ∫
{τ}×Ω

h2(uxj ) η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇h(uxj ), ∇h(uxj )⟩ χ η2 dt dx

≲ ∬
(T0 ,τ)×Ω

χ η2 h2(uxj ) dt dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ h2(uxj ) χ dt dx.
(1.6)
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Here, the maps χ ∈ C∞0 (I) and η ∈ C
∞
0 (Ω) are non-negative cut-off functions in the time and space variables,

respectively. We have used the following expedient notation: given f ∈ L1(I × Ω),

∫
{τ}×Ω

f dx := ∫
Ω

f(τ, x) dx for a.e. τ ∈ I.

When F is a uniformly elliptic integrand, in the sense that

1
C
|ξ|2 ≤ ⟨D2F(∇u) ξ, ξ⟩ ≤ C |ξ|2 for every ξ ∈ ℝN ,

one caneasily obtain from (1.6) a crucial “unnatural” feature of the subsolution h(uxj ); that is, a sort of reverse
Poincaré inequality where the Sobolev norm of h(uxj ) is controlled by the L2 norm of the subsolution itself. In
conjunctionwith the Sobolev inequality, this is the cornerstonewhich eventually leads to the classical version
of the Moser iterative scheme. It should be noticed that this strategy still works even in the degenerate case,
provided the Hessian behaves like

1
C
|∇u|p−2 |ξ|2 ≤ ⟨D2F(∇u) ξ, ξ⟩ ≤ C |∇u|p−2 |ξ|2 for every ξ ∈ ℝN ,

as for the evolutionary p-Laplace equation (1.2). It is sufficient to use the “absorption of degeneracy” trick,
where the degenerate weight |∇u|p−2 is recombined with the subsolution h(uxj ) by means of simple alge-
braic manipulations. This still permits to infer from (1.6) a control on the Sobolev norm of a suitable convex
function of uxj . This is nowadays a standard technique in the field; for the elliptic case, it goes back to the
pioneering works by Ural’tseva [26] and Uhlenbeck [25].

As we explained above, due to the severe degeneracy of D2F in our orthotropic situation, it is not possible
to follow the same path. In order to rely on such an absorption trick, we have to go through a tour de force and
to introduce a new family of weird Caccioppoli inequalities (see Lemma 3.2 below). These are the parabolic
counterparts of a corresponding estimate introduced in the elliptic setting in [3] and then fruitfully exploited
in [5].

The crucial idea is tomix together the components of the gradientwith respect to 2 orthogonal directions.
This compensates the lack of ellipticity of D2F and allows to rely on the Sobolev embeddings in the iterative
scheme. We do not detail these Caccioppoli-type estimates here, but instead explain the main additional
difficulties with respect to the elliptic framework.

Let us come back for one instant to the standard Caccioppoli inequality (1.6). It follows from (1.5) by
taking φ = h h(uxj ) χ η2. In particular, the parabolic term is given by

∬
I×Ω

(uxj )t φ dt dx =
1
2 ∬
I×Ω

(h2(uxj ))t χ η2 dt dx.

Then an integration by parts yields

∬
I×Ω

(uxj )t φ dt dx = −
1
2 ∬
I×Ω

h2(uxj ) χ η2 dt dx.

The latter yields the “time slice” term on the left-hand side of (1.6). This way, the time derivative is transferred
to χ and one can handle the factor h2(uxj ) as in the elliptic framework.

For the weird Caccioppoli inequalities, the test function is now φ = uxj Φ(u2xj )Ψ(u
2
xk ) χ η

2, for some
1 ≤ j, k ≤ N. The corresponding parabolic term becomes

∬
I×Ω

(uxj )t φ dt dx =
1
2 ∬
I×Ω

(Φ(u2xj ))t Ψ(u
2
xk ) χ η

2 dt dx.

In contrast to the previous situation,we cannot performan integration by parts to get rid of the timederivative
on Φ(u2xj ), since it would affect the factor Ψ(u2xk ). In order to overcome this difficulty, which does not arise
in the elliptic setting, we need a new approach, aimed at “symmetrizing” the above quantity containing uxj
and uxk .



710 | P. Bousquet et al., Gradient estimates for an orthotropic nonlinear diffusion equation

Basically, we merge together two weird Caccioppoli inequalities, where the spatial variables xj and xk
play symmetric roles. More specifically, we insert into (1.5) the test functions

φ = uxj Φ(u2xj )Ψ(u
2
xk ) χ η

2, φ̃ = uxk Ψ(u2xk )Φ(u
2
xj ) χ η

2,

and then add the two resulting inequalities. The parabolic term is now replaced by the following quantity:
1
2 ∬
I×Ω

(Φ(u2xj )Ψ(u
2
xk ))t χ η

2 dt dx.

This allows to integrate by parts and transfer the time derivative on the test function. It turns out that by
a suitable adaptation of the arguments that we used in the elliptic case, one can incorporate this new term in
the iterative Moser scheme. This finally leads to the desired local L∞ estimate on ∇u.

1.4 Plan of the paper

The paper is organized as follows: after collecting the basic terminology and some preliminaries on Steklov
averages in Section 2, we present in Section 3 the proofs of the new Caccioppoli inequalities in the parabolic
setting.We detail the iterativeMoser scheme in Section 4 and finally establish theMain Theorem in Section 5,
by transferring to the original solution u the a priori estimates obtained on the approximating solutions uε.

2 Preliminaries

2.1 Local solutions

Let Ω ⊂ ℝN be an open bounded set and I ⊂ ℝ an open bounded interval. Fix p > 2 and take A : ℝN → ℝN
a continuous function such that

⟨A(z) −A(w), z − w⟩ ≥ 0 for every z, w ∈ ℝN

and
⟨A(z), z⟩ ≥ 1

C
|z|p and |A(z)| ≤ C |z|p−1 for every z ∈ ℝN .

We say that u ∈ Lploc(I;W
1,p
loc (Ω)) is a local weak solution of the quasilinear diffusion equation

ut = divA(∇u) in I × Ω (2.1)

if for every φ ∈ C∞0 (I × Ω) we have

−∬
I×Ω

u φt dt dx +∬
I×Ω

⟨A(∇u), ∇φ⟩ dt dx = 0.

2.2 Steklov averages

Throughout the paper, we denote by T0 < T1 the endpoints of the time interval I. Let v ∈ L1loc(I × Ω). For every
0 < σ < T1 − T0, we define its so-called
∙ forward Steklov average

v+σ(t, x) =
t+σ−∫
t

v(τ, x) dτ for every (t, x) ∈ (T0, T1 − σ) × Ω,

∙ backward Steklov average

v−σ(t, x) =
t−∫
t−σ

v(τ, x) dτ for every (t, x) ∈ (T0 + σ, T1) × Ω.
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We shall use some standard properties of the Steklov averages. Let 0 < σ < T1 − T0 and ψ ∈ L∞(I × Ω) such
that ψ is compactly supported in (T0, T1 − σ) × Ω. We extend ψ by 0 on (ℝ \ I) × Ω, so that ψ−σ is well defined
on I × Ω and compactly supported therein. By the Fubini theorem, we have

∬
(T0 ,T1−σ)×Ω

v+σ ψ dt dx = ∬
I×Ω

v ψ−σ dt dx. (2.2)

Moreover, if v ∈ Lqloc(I × Ω) for some 1 ≤ q <∞, then v+σ converges to v in L
q
loc(I × Ω), as σ goes to 0, see e.g.

[13, Chapter I, Lemma 3.2].
Finally, we can derive from (2.2) the following regularity properties of the Steklov averages:

Lemma 2.1. Let v ∈ L1loc(I × Ω). Then for every 0 < σ < T1 − T0,
(1) the map v+σ belongs toW

1,1
loc ((T0, T1 − σ); L

1
loc(Ω)) and

(v+σ)t(t, x) =
v(t + σ, x) − v(t, x)

σ
for a.e. (t, x) ∈ (T0, T1 − σ) × Ω, (2.3)

(2) if one further assumes that v ∈ L1loc(I;W
1,1
loc (Ω)), then ∇(v

+
σ) ∈ L1loc((T0, T1 − σ) × Ω) and

∇(v+σ) = (∇v)+σ . (2.4)

Proof. Fix 0 < σ < T1 − T0. Let ψ ∈ C∞0 ((T0, T1 − σ) × Ω). Then by (2.2),

∬
(T0 ,T1−σ)×Ω

v+σ ψt dt dx = ∬
I×Ω

v(ψt)−σ dt dx = ∬
I×Ω

v(t, x) ψ(t, x) − ψ(t − σ, x)
σ

dt dx.

By an obvious change of variables, this yields

∬
(T0 ,T1−σ)×Ω

v+σ ψt dt dx = − ∬
(T0 ,T1−σ)×Ω

v(t + σ, x) − v(t, x)
σ

ψ(t, x) dt dx,

which gives the desired identity (2.3).
In order to prove (2.4), we rely again on (2.2), this time tested with ψxj in place of ψ, for some 1 ≤ j ≤ N,

∬
(T0 ,T1−σ)×Ω

v+σ ψxj dt dx = ∬
I×Ω

v (ψxj )−σ dt dx = ∬
I×Ω

v (ψ−σ)xj dt dx.

In the last equality, we have derived under the integral sign the smooth function ψ. Hence, by integrating by
parts the last integral and using (2.2) again, one gets

∬
I×Ω

v+σ ψxj dt dx = − ∬
(T0 ,T1−σ)×Ω

(vxj )+σψ dt dx,

from which (2.4) follows.

3 Energy estimates for a regularized equation

3.1 An approximating equation

We denote by
G(ξ) = 1

p
(1 + |ξ|2)

p
2 for every ξ ∈ ℝN ,

and for every ε ∈ (0, 1), we consider the convex function

Fε(ξ) =
1
p

N
∑
i=1
|ξi|p + ε G(ξ) for every ξ ∈ ℝN . (3.1)
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We consider a local weak solution uε ∈ Lploc(I;W
1,p
loc (Ω)) of equation (2.1) with the choice

A(z) = ∇Fε(z).

This means that uε verifies

−∬
I×Ω

uε φt dt dx +∬
I×Ω

⟨∇Fε(∇uε), ∇φ⟩ dt dx = 0 (3.2)

for every φ ∈ C∞0 (I × Ω). Observe that the map Fε belongs to C2(ℝN) and satisfies

ε (1 + |ξ|2)
p−2
2 |ζ|2 ≤ ⟨D2Fε(ξ) ζ, ζ⟩ ≤ (1 + ε)(p − 1)(1 + |ξ|2)

p−2
2 |ζ|2 for every ξ, ζ ∈ ℝN .

Hence, one can rely on the classical regularity theory for quasilinear parabolic equations, see e.g. [13, Theo-
rem 5.1, Chapter VIII] and [1, Lemma 3.1], to get

∇uε ∈ L∞loc(I × Ω) and uε ∈ L2loc(I;W
2,2
loc (Ω)). (3.3)

In the following computations, we delete the index ε both for u and F.

3.2 An equation for the spatial gradient

In order to establish a Lipschitz bound on our solution u, we need to differentiate (3.2) with respect to the
spatial variables xj, 1 ≤ j ≤ N.

Fix 0 < σ < T1 − T0. Let ψ ∈ C∞0 ((T0, T1 − σ) × Ω). As already observed, the backward Steklov average

φ(t, x) = ψ−σ(t, x) for (t, x) ∈ I × Ω

is compactly supported in I × Ω. We can thus insert it into (3.2):

−∬
I×Ω

u (ψ−σ)t dt dx +∬
I×Ω

⟨∇F(∇u), ∇ψ−σ⟩ dt dx = 0.

Since (ψ−σ)t = (ψt)−σ, equation (2.2) implies that

−∬
I×Ω

u(ψ−σ)t dt dx = − ∬
(T0 ,T1−σ)×Ω

u+σ ψt dt dx = ∬
(T0 ,T1−σ)×Ω

(u+σ)t ψ dt dx.

One thus gets
∬

(T0 ,T1−σ)×Ω

(u+σ)t ψ dt dx +∬
I×Ω

⟨∇F(∇u), ∇ψ−σ⟩ dt dx = 0 (3.4)

for every ψ ∈ C∞0 ((T0, T1 − σ) × Ω).
Let j ∈ {1, . . . , N} and φ ∈ C∞0 ((T0, T1 − σ) × Ω). The map

(u+σ)t(t, x) =
u(t + σ, x) − u(t, x)

σ
belongs to Lploc((T0, T1 − σ);W

1,p
loc (Ω)) and ((u

+
σ)t)xj = ((uxj )+σ)t. By derivation under the integral sign, one also

has
∇((φxj )−σ) = (∇(φ−σ))xj .

We insert ψ = φxj in equation (3.4). An integration by parts in the spatial variable leads to

∬
(T0 ,T1−σ)×Ω

((uxj )+σ)tφ dt dx +∬
I×Ω

⟨(∇F(∇u))xj , ∇φ−σ⟩ dt dx = 0.

Finally, using (2.2) in the second term, one gets

∬
(T0 ,T1−σ)×Ω

((uxj )+σ)tφ dt dx + ∬
(T0 ,T1−σ)×Ω

⟨((∇F(∇u))xj )+σ , ∇φ⟩ dt dx = 0. (3.5)
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We observe that, since F ∈ C2(ℝN) and ∇u ∈ L∞loc(I × Ω) ∩ L
2
loc(I;W

1,2
loc (Ω)), one has

∇F(∇u) ∈ L2loc((0, T);W
1,2
loc (Ω)).

We can thus appeal to a density argument to get that (3.5) remains true for every φ ∈ L2(I;W1,2(Ω)), with
compact support in (T0, T1 − σ) × Ω.

3.3 Caccioppoli-type inequalities

Asexplained in the introduction, thefirst technical tool in theproof of theLipschitz boundof u is the following
Caccioppoli inequality which provides aW1,2 estimate on h(uxj ), where h is any smooth convex function.

Lemma 3.1 (Standard Caccioppoli inequality). Let η ∈ C∞0 (Ω) and χ ∈ C
∞
0 ((T0, T1]) be two non-negative func-

tions, with χ non-decreasing. Let h : ℝ→ ℝ be a C1 convex non-negative function. Then, for almost every τ ∈ I
and every j = 1, . . . , N, we have

χ(τ) ∫
{τ}×Ω

h2(uxj ) η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇h(uxj ), ∇h(uxj )⟩ χ η2 dt dx

≤ ∬
(T0 ,τ)×Ω

χ η2 h2(uxj ) dt dx + 4 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇η, ∇η⟩ h2(uxj ) χ dt dx.
(3.6)

Proof. Wefirst assume that h is a C2 convex non-negative function. Let ζ ∈ C∞0 (I) and η ∈ C
∞
0 (Ω). There exists

0 < σ1 < 1
2 (T1 − T0) such that ζ is compactly supported in (T0 + σ1, T1 − σ1). Given 0 < σ < σ1, Lemma 2.1

and (3.3) imply that (uxj )+σ ∈ W
1,1
loc ((T0, T1 − σ); L

1
loc(Ω)) ∩ L

∞
loc((T0, T1 − σ) × Ω). Hence, the map h2((uxj )+σ)

belongs toW1,1
loc ((T0, T1 − σ); L

1
loc(Ω)) and we have

1
2 (h

2((uxj )+σ))t = (h h
)((uxj )+σ)((uxj )+σ)t . (3.7)

We insert into (3.5) the test function
φ = (h h)((uxj )+σ)ζ η2,

which has compact support in (T0 + σ1, T1 − σ1) × Ω and belongs to L∞((T0 + σ1, T1 − σ1) × Ω) ∩ L2((T0 + σ1,
T1 − σ1);W1,2(Ω)). By (3.7),

((uxj )+σ)tφ =
1
2 (h

2((uxj )+σ))tζ η
2.

We use the above identity to infer
1
2 ∬
(T0+σ1 ,T1−σ1)×Ω

(h2((uxj )+σ))t ζ η
2 dt dx + ∬

(T0+σ1 ,T1−σ1)×Ω

⟨((∇F(∇u))xj )+σ , ∇φ⟩ dt dx = 0.

We then perform an integration by parts with respect to the time variable in the first term

−
1
2 ∬
(T0+σ1 ,T1−σ1)×Ω

h2((uxj )+σ)ζ η2 dt dx + ∬
(T0+σ1 ,T1−σ1)×Ω

⟨((∇F(∇u))xj )+σ , ∇φ⟩ dt dx = 0.

We now want to take the limit as σ goes to 0. Let Ω1 ⋐ Ω such that η is compactly supported in Ω1. Since
uxj ∈ L2loc(I × Ω), we have

lim
σ→0+ ‖(uxj )+σ − uxj‖L2((T0+σ1 ,T1−σ1)×Ω1) = 0.

Moreover, we know that uxj ∈ L∞loc(I × Ω) which guarantees that there exists C1 > 0 such that for every
σ ∈ (0, σ1),

|(uxj )+σ | ≤ C1 a.e. on (T0 + σ1, T1 − σ1) × Ω1.

It then follows from the Dominated Convergence Theorem that

lim
σ→0+ −12 ∬

(T0+σ1 ,T1−σ1)×Ω

h2((uxj )+σ)ζ η2 dt dx = −
1
2 ∬
I×Ω

h2(uxj )ζ η2 dt dx. (3.8)
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Next, by recalling the choice of φ above, we have

∇φ = (h h)((uxj )+σ) ∇((uxj )+σ) ζ η2 + (h h)((uxj )+σ) ζ ∇(η2).

By Lemma 2.1, we know that
∇((uxj )+σ) = (∇uxj )+σ .

This implies that ∇((uxj )+σ) converges to ∇uxj in L2((T0 + σ1, T1 − σ1) × Ω). Hence, a similar argument to the
one leading to (3.8) implies that

lim
σ→0+ ∇φ − ∇((h h)(uxj ) ζ η2)L2((T0+σ1 ,T1−σ1)×Ω) = 0.

Finally, by using that (∇F(∇u))xj ∈ L2loc(I × Ω), we can infer that

lim
σ→0+ ((∇F(∇u))xj )+σ − (∇F(∇u))xjL2((T0+σ1 ,T1−σ1)×Ω1)

= 0.

It follows that

lim
σ→0+ ∬
(T0+σ1 ,T1−σ1)×Ω

⟨((∇F(∇u))xj )+σ , ∇φ⟩ dt dx = ∬
I×Ω

⟨(∇F(∇u))xj , ∇((h h)(uxj ) ζ η2)⟩ dt dx.

Up to now, we have thus proved

−
1
2 ∬
I×Ω

h2(uxj ) ζ  η2 dt dx +∬
I×Ω

⟨(∇F(∇u))xj , ∇((h h)(uxj ) ζ η2)⟩ dt dx = 0. (3.9)

We now choose ζ as follows. Let χ ∈ C∞0 ((T0, T1]) be as in the statement. Given τ ∈ I and δ > 0 such that
T0 < τ < τ + δ < T1, we define

χ̃δ(t) :=
{{{{
{{{{
{

1 if t ≤ τ,

1 − t − τ
δ

if τ < t < τ + δ,

0 if t ≥ τ + δ.

We then insert
ζ(t) = χ̃δ(t) χ(t) (3.10)

into (3.9). Then, for almost every τ ∈ I, we can let δ go to 0 and obtain

χ(τ)
2 ∫
{τ}×Ω

h2(uxj ) η2 dx + ∬
(T0 ,τ)×Ω

⟨(∇F(∇u))xj ,∇((h h)(uxj ) χ η2)⟩ dt dx =
1
2 ∬
(T0 ,τ)×Ω

χ η2 h2(uxj ) dt dx. (3.11)

Since χ does not depend on the spatial variable, we have

⟨(∇F(∇u))xj , ∇((hh)(uxj ) χ η2)⟩ = ⟨D2F(∇u) ∇h(uxj ), ∇h(uxj )⟩ χ η2

+ ⟨D2F(∇u) ∇uxj , ∇uxj⟩ h(uxj ) h(uxj ) χ η2

+ 2 ⟨D2F(∇u) ∇uxj , ∇η⟩ (h h)(uxj ) χ η.

Since the second term is non-negative, by dropping it, we get from (3.11)

χ(τ)
2 ∫
{τ}×Ω

h2(uxj ) η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇h(uxj ), ∇h(uxj )⟩ χ η2 dt dx

≤
1
2 ∬
(T0 ,τ)×Ω

χ η2 h2(uxj ) dt dx − 2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇η⟩ (h h)(uxj ) χ η dt dx.

In order to estimate the last term, we use the Cauchy–Schwarz inequality

|⟨D2F(∇u) ∇uxj , ∇η⟩| ≤ (⟨D2F(∇u) ∇uxj , ∇uxj⟩)
1
2 (⟨D2F(∇u) ∇η, ∇η⟩)

1
2 .
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A further application of Young inequality leads to

−2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇η⟩(h h)(uxj ) χ η dt dx


≤
1
2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ h(uxj )2 χ η2 dt dx + 2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ h2(uxj ) χ dt dx.

In this way, the integral containing ∇uxj can be absorbed on the left-hand side. Let us finally observe that we
can remove the C2 assumption on the function h, by a standard approximation argument.

We next establish the key tool for the proof of our main result, namely a Caccioppoli-type inequality, where
two different partial derivatives uxj and uxk come into play.

Lemma 3.2 (Weird Caccioppoli inequality). Let η ∈ C∞0 (Ω) and χ ∈ C
∞
0 ((T0, T1]) be two non-negative func-

tions, with χ non-decreasing. Let Φ : ℝ+ → ℝ and Ψ : ℝ+ → ℝ be two C1 non-decreasing and non-negative
convex functions. Then, for almost every τ ∈ I, every k, j = 1, . . . , N and every θ ∈ [0, 1], we have

χ(τ) ∫
{τ}×Ω

Φ(u2xj )Ψ(u
2
xk ) η

2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩Φ(u2xj )Ψ(u
2
xk ) χ η

2 dt dx

≤ ∬
(T0 ,τ)×Ω

χ η2 Φ(u2xj )Ψ(u
2
xk ) dt dx

+ 4 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩(u2xj Φ
(u2xj )Ψ(u

2
xk ) + u

2
xk Ψ
(u2xk )Φ(u

2
xj )) χ dt dx

+ 8( ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ u2xj Φ
(u2xj )

2 Ψ(u2xk )
θ χ η2 dt dx)

1
2

× (
1
4 ∬
(T0 ,τ)×Ω

χη2|uxk |2θ Ψ(u2xk )
2−θ dt dx

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ |uxk |2θ Ψ(u2xk )
2−θ χ dt dx)

1
2

.

Proof. It is convenient to divide the proof into two steps.

Step 1: An identity involving uxj and uxk . We first assume that Φ and Ψ are two C2 non-decreasing and non-
negative convex functions. We fix k, j ∈ {1, . . . , N}. Given 0 < σ1 < 1

2 (T1 − T0) and ζ ∈ C
∞
0 (T0 + σ1, T1 − σ1),

we consider (3.5) with the index j and for every 0 < σ < σ1, we insert the test function

φ = (u+σ)xjΦ(((u+σ)xj )2)Ψ(((u+σ)xk )2)ζη2.

Symmetrically, we consider (3.5) with the index k and insert the test function

φ̃ = (u+σ)xkΨ(((u+σ)xk )2)Φ(((u+σ)xj )2) ζ η2.

The functions φ and φ̃ are compactly supported in (T0 + σ1, T1 − σ1) × Ω and belong to L∞((T0 + σ1, T1 −
σ1) × Ω) ∩ L2((T0 + σ1, T1 − σ1);W1,2(Ω)). Thus they are admissible test functions. We observe that

((u+σ)xj )t φ =
1
2 (Φ(((u

+
σ)xj )

2))t Ψ(((u
+
σ)xk )

2) ζ η2,

and similarly
((u+σ)xk )t φ̃ =

1
2 (Ψ(((u

+
σ)xk )

2))t Φ(((u
+
σ)xj )

2) ζ η2.

Thus we obtain
((u+σ)xj )tφ + ((u+σ)xk )tφ̃ =

1
2 [Φ(((u

+
σ)xj )

2)Ψ(((u+σ)xk )2)]t ζ η
2. (3.12)
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By summing the two equations obtained from (3.5) as described above, and using the identity (3.12), we get

1
2 ∬
(T0+σ1 ,T1−σ1)×Ω

[Φ(((u+σ)xj )2)Ψ(((u+σ)xk )2)]
t
ζ η2 dt dx + ∬

(T0+σ1 ,T1−σ1)×Ω

⟨((∇F(∇u))xj )+σ , ∇φ⟩ dt dx

+ ∬
(T0+σ1 ,T1−σ1)×Ω

⟨((∇F(∇u))xk )+σ , ∇φ̃⟩ dt dx = 0.

We then perform an integration by parts in the time variable in the first integral, which gives

−
1
2 ∬
(T0+σ1 ,T1−σ1)×Ω

Φ(((u+σ)xj )2)Ψ(((u+σ)xk )2)ζ η2 dt dx + ∬
(T0+σ1 ,T1−σ1)×Ω

⟨((∇F(∇u))xj )+σ , ∇φ⟩ dt dx

+ ∬
(T0+σ1 ,T1−σ1)×Ω

⟨((∇F(∇u))xk )+σ , ∇φ̃⟩ dt dx = 0.

Finally, we let σ go to 0. In the same vein as in the proof of (3.9), theDominated Convergence Theorem implies
that

−
1
2 ∬
I×Ω

Φ((uxj )2)Ψ((uxk )2)ζ η2 dt dx +∬
I×Ω

⟨(∇F(∇u))xj ,∇φ0⟩ dt dx +∬
I×Ω

⟨(∇F(∇u))xk ,∇φ̃0⟩ dt dx = 0, (3.13)

where
φ0 = uxjΦ(u2xj )Ψ(u

2
xk )ζη

2 and φ̃0 = uxkΨ(u2xk )Φ(u
2
xj )ζη

2.

We now choose ζ as in (3.10) and insert it in (3.13). By letting δ go to 0, we obtain for almost every τ ∈ I

χ(τ)
2 ∫
{τ}×Ω

Φ(u2xj )Ψ(u
2
xk )η

2 dx + ∬
(T0 ,τ)×Ω

⟨(∇F(∇u))xj , ∇ψ0⟩ dt dx + ∬
(T0 ,τ)×Ω

⟨(∇F(∇u))xk , ∇ψ̃0⟩ dt dx

=
1
2 ∬
(T0 ,τ)×Ω

χη2Φ(u2xj )Ψ(u
2
xk ) dt dx,

(3.14)

where ψ0 and ψ̃0 are defined as φ0 and φ̃0, except that ζ is now replaced by χ.

Step 2: Completion of the proof. We first observe that

⟨(∇F(∇u))xj , ∇ψ0⟩ = ⟨D2F(∇u) ∇uxj , ∇ψ0⟩, ⟨(∇F(∇u))xk , ∇ψ̃0⟩ = ⟨D2F(∇u)∇uxk , ∇ψ̃0⟩.

Taking into account the definition of ψ0 and ψ̃0, we thus get from (3.14)

χ(τ)
2 ∫
{τ}×Ω

Φ(u2xj )Ψ(u
2
xk )η

2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩(Φ(u2xj ) + 2u
2
xjΦ
(u2xj ))Ψ(u

2
xk ) χ η

2 dt dx

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxk , ∇uxk⟩(Ψ(u2xk ) + 2u
2
xkΨ
(u2xk ))Φ(u

2
xj ) χ η

2 dt dx

=
1
2 ∬
(T0 ,τ)×Ω

χ η2 Φ(u2xj )Ψ(u
2
xk ) dt dx

− 4 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇uxk⟩ uxj Φ(u2xj ) uxk Ψ
(u2xk ) χ η

2 dt dx

− 2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇η⟩ uxj Φ(u2xj )Ψ(u
2
xk ) χ η dt dx

− 2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxk , ∇η⟩ uxk Φ(u2xj )Ψ
(u2xk ) χ η dt dx.

(3.15)
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We first estimate the two last terms. We use the Cauchy–Schwarz inequality

|⟨D2F(∇u) ∇uxj , ∇η⟩| ≤ (⟨D2F(∇u)∇uxj , ∇uxj⟩)
1
2 (⟨D2F(∇u)∇η, ∇η⟩)

1
2 .

By the Young inequality, this implies

−2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇η⟩uxjΦ(u2xj )Ψ(u
2
xk ) χ η dt dx



≤
1
2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩Φ(u2xj )Ψ(u
2
xk ) χ η

2 dt dx

+ 2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ u2xj Φ
(u2xj )Ψ(u

2
xk ) χ dt dx.

A similar inequality holds true for the last term in (3.15). Hence,

χ(τ)
2 ∫
{τ}×Ω

Φ(u2xj )Ψ(u
2
xk )η

2 dx

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩(
1
2Φ
(u2xj ) + 2 u

2
xj Φ
(u2xj ))Ψ(u

2
xk ) χ η

2 dt dx

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxk , ∇uxk⟩(
1
2Ψ
(u2xk ) + 2 u

2
xk Ψ
(u2xk ))Φ(u

2
xj ) χ η

2 dt dx

≤
1
2 ∬
(T0 ,τ)×Ω

χ η2 Φ(u2xj )Ψ(u
2
xk ) dt dx

− 4 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇uxk⟩uxj Φ(u2xj ) uxkΨ
(u2xk ) χ η

2 dt dx

+ 2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ (u2xj Φ
(u2xj )Ψ(u

2
xk ) + u

2
xkΨ
(u2xk )Φ(u

2
xj ))χ dt dx.

(3.16)

On the left-hand side of (3.16), in the second term, we drop 2 u2xj Φ
(u2xj )which is non-negative.We also drop

the whole last term of the left-hand side for the same reason. This yields

χ(τ)
2 ∫
{τ}×Ω

Φ(u2xj )Ψ(u
2
xk )η

2 dx + 12 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩Φ(u2xj )Ψ(u
2
xk )χη

2 dt dx

≤
1
2 ∬
(T0 ,τ)×Ω

χη2Φ(u2xj )Ψ(u
2
xk ) dt dx

− 4 ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇uxk⟩ uxj Φ(u2xj ) uxk Ψ
(u2xk ) χ η

2 dt dx

+ 2 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩(u2xjΦ
(u2xj )Ψ(u

2
xk ) + u

2
xkΨ
(u2xk )Φ(u

2
xj ))χ dt dx.

(3.17)

We next estimate the second term of the right-hand side of (3.17), that we denote by

A = ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇uxk⟩ uxj Φ(u2xj ) uxk Ψ
(u2xk ) χ η

2 dt dx.

We first use the Cauchy–Schwarz inequality to get

|⟨D2F(∇u) ∇uxj , ∇uxk⟩| ≤ (⟨D2F(∇u)∇uxj , ∇uxj⟩)
1
2 (⟨D2F(∇u) ∇uxk , ∇uxk⟩)

1
2 .
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We then introduce a parameter θ ∈ [0, 1]. By writing Ψ(u2xk ) = Ψ
(u2xk )

θ
2 Ψ(u2xk )

1− θ2 , one gets by using the
Cauchy–Schwarz inequality again

A ≤ ( ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ u2xj Φ
(u2xj )

2 Ψ(u2xk )
θ χ η2 dt dx)

1
2

× ( ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxk , ∇uxk⟩Ψ(u2xk )
2−θ u2xk χ η

2 dt dx)
1
2

.

(3.18)

We define

G(t) =
t2

∫
0

Ψ(s)1−
θ
2 ds.

Then G is a C1 non-negative convex function. Moreover, by its definition

∇G(uxk ) = 2 uxk Ψ(u2xk )
1− θ2 ∇uxk .

Hence, by the standard Caccioppoli inequality (3.6) with h = G and k in place of j, this yields

∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxk , ∇uxk⟩Ψ(u2xk )
2−θu2xk χ η

2 dt dx

=
1
4 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇G(uxk ), ∇G(uxk )⟩ χ η2 dt dx

≤
1
4 ∬
(T0 ,τ)×Ω

χ η2 G2(uxk ) dt dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩G2(uxk ) χ dt dx.

By using the Jensen inequality with the concave function y → y1− θ2 , we obtain

0 ≤ G(uxk ) ≤ |uxk |θ Ψ(u2xk )
1− θ2 .

This implies

∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxk , ∇uxk⟩Ψ(u2xk )
2−θ u2xk χ η

2 dt dx

≤
1
4 ∬
(T0 ,τ)×Ω

χ η2 |uxk |2θ Ψ(u2xk )
2−θ dt dx + ∬

(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ |uxk |2θ Ψ(u2xk )
2−θ χ dt dx.

Coming back to (3.18), it follows that

A ≤ ( ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ u2xj Φ
(u2xj )

2 Ψ(u2xk )
θ χ η2 dt dx)

1
2

× (
1
4 ∬
(T0 ,τ)×Ω

χ η2 |uxk |2θ Ψ(u2xk )
2−θ dt dx + ∬

(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ |uxk |2θ Ψ(u2xk )
2−θ χ dt dx)

1
2

.

Togetherwith (3.17), this yields thedesired inequality. Finally, the C2 assumptiononΦ andΨ canbe removed
by a standard approximation argument.

4 Uniform Lipschitz estimate for the regularized equation
This section is devoted to the proof of the following uniform estimate. For simplicity, we will work with
anisotropic parabolic cubes of the form

QR(t0, x0) = (t0 − Rp , t0) × (x0 − R, x0 + R)N .

As in the previous section, we drop the index ε and simply write u and F, in place of uε and Fε.
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Proposition 4.1. There exist constants α = α(N) > 2 and C = C(N, p) > 0 such that for every ε > 0 and for every
Qr(x0, t0) ⊂ QR(t0, x0) ⋐ I × Ω with R ≤ 1, one has

‖∇uε‖L∞(Qr(x0 ,t0)) ≤ C
(R − r)α p [( ∬

QR(t0 ,x0)

|∇uε|p dt dx)
1
2

+ 1]. (4.1)

Proof. Wewill limit ourselves for simplicity to the case N ≥ 3. This allows to use the Sobolev inequality valid
for every f ∈ W1,2

0 (Ω)
‖f‖L2∗ (Ω) ≤ CN ‖∇f‖L2(Ω) with 2∗ = 2N

N − 2 .

Here CN is a constant which depends only on N. The case N = 2 follows with minor modifications and we
omit the details.

The proof is quite involved and for ease of readability, we divide it into several steps.

Step 1: The choices of Φ and Ψ. We apply Lemma 3.2 with the following choices:

Φ(t) = ts and Ψ(t) = tm for t ≥ 0,

with 1 ≤ s ≤ m. We also take

θ =
{
{
{

m − s
m − 1 ∈ [0, 1] if m > 1,

1 if m = 1.

This gives

χ(τ) ∫
{τ}×Ω

|uxj |2s |uxk |2m η2 dx + s ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |2s−2 |uxk |2mχ η2 dt dx

≤ ∬
(T0 ,τ)×Ω

χ η2 |uxj |2s |uxk |2m dt dx + 4 ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩(s |uxj |2s |uxk |2m + m |uxk |2m |uxj |2s)χ dt dx

+ 8 s m
θ
2( ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩|uxj |4s−2|uxk |2m−2sχη2 dt dx)
1
2

× (
1
4 ∬
(T0 ,τ)×Ω

χη2|uxk |2(s+m) dt dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩|uxk |2(s+m)χ dt dx)
1
2

.

On the product of the two last integrals, we use the Young inequality in the form

a b ≤ a2 + b
2

4 .

This gives

χ(τ) ∫
{τ}×Ω

|uxj |2s |uxk |2m η2 dx + s ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |2s−2 |uxk |2m χ η2 dt dx

≤ ∬
(T0 ,τ)×Ω

χ η2|uxj |2s |uxk |2m dt dx + 4(s + m) ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ |uxj |2s |uxk |2m χ dt dx

+ 16 s2 mθ(
1
4 ∬
(T0 ,τ)×Ω

χ η2 |uxk |2(s+m) dt dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ |uxk |2(s+m) χ dt dx)

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |4s−2 |uxk |2m−2s χ η2 dt dx.

By the Young inequality again, we can estimate

|uxj |2s |uxk |2m ≤ |uxj |2m+2s + |uxk |2m+2s .
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Using that s ≥ 1 on the left-hand side and mθ ≤ m on the right-hand side, we thus obtain

χ(τ) ∫
{τ}×Ω

|uxj |2s |uxk |2m η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |2s−2 |uxk |2m χ η2 dt dx

≤ ∬
(T0 ,τ)×Ω

χ η2 (|uxj |2(s+m) + |uxk |2(s+m)) dt dx

+ 4(s + m) ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ (|uxj |2(s+m) + |uxk |2(s+m)) χ dt dx

+ 16 s2 m(14 ∬
(T0 ,τ)×Ω

χ η2 |uxk |2(s+m) dt dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩|uxk |2(s+m) χ dt dx)

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩|uxj |4s−2 |uxk |2m−2s χ η2 dt dx.

This finally implies

χ(τ) ∫
{τ}×Ω

|uxj |2s |uxk |2m η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |2s−2 |uxk |2m χ η2 dt dx

≤ 16(s + m + s2 m) ∬
(T0 ,τ)×Ω

(χ η2 + χ ⟨D2F(∇u)∇η, ∇η⟩)(|uxj |2(s+m) + |uxk |2(s+m)) dt dx

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |4s−2|uxk |2m−2s χ η2 dt dx.

(4.2)

Step 2: The staircase. Let ℓ0 ∈ ℕ \ {0} and set q = 2ℓ0 − 1. We define the two families of indices

sℓ = 2ℓ and mℓ = q + 1 − 2ℓ for ℓ ∈ {0, . . . , ℓ0}.

We observe that by construction, for every 0 ≤ ℓ ≤ ℓ0 − 1,

sℓ + mℓ = q + 1, 4sℓ − 2 = 2sℓ+1 − 2 and 2mℓ − 2sℓ = 2mℓ+1.

We also use that sℓ + mℓ + s2ℓ mℓ ≤ 2(q + 1)3. Then the above inequality (4.2) written for s = sℓ and m = mℓ
with 0 ≤ ℓ ≤ ℓ0 − 1 gives

χ(τ) ∫
{τ}×Ω

|uxj |2sℓ |uxk |2mℓ η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |2sℓ−2 |uxk |2mℓ χ η2 dt dx
≤ 32(q + 1)3 ∬

(T0 ,τ)×Ω

(χ η2 + χ ⟨D2F(∇u)∇η, ∇η⟩)(|uxj |2(q+1) + |uxk |2(q+1)) dt dx

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |2sℓ+1−2 |uxk |2mℓ+1 χ η2 dt dx.
Observe that we used that 2 sℓ + 2mℓ = 2(q + 1) on the first term on the right-hand side. By summing from
ℓ = 0 up to ℓ = ℓ0 − 1, one gets

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

|uxj |2sℓ |uxk |2mℓ η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxk |2q χ η2 dt dx

≤ C q3 ℓ0 ∬
(T0 ,τ)×Ω

(χη2 + χ ⟨D2F(∇u)∇η, ∇η⟩)(|uxj |2(q+1) + |uxk |2(q+1)) dt dx

+ ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩ |uxj |2q χ η2 dt dx.
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For the last term, we apply Lemma 3.1 with the choice

h(t) = |t|
q+1

q + 1 , t ∈ ℝ.

We thus get

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

|uxj |2sℓ |uxk |2mℓ η2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u) ∇uxj , ∇uxj⟩ |uxk |2q χ η2 dt dx

≤ C q4 ∬
(T0 ,τ)×Ω

(χ η2 + χ ⟨D2F(∇u)∇η, ∇η⟩) (|uxj |2(q+1) + |uxk |2(q+1)) dt dx

+
1
(q + 1)2

∬
(T0 ,τ)×Ω

χ η2 |uxj |2(q+1) dt dx +
4
(q + 1)2

∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇η, ∇η⟩ |uxj |2(q+1) χ dt dx.

This in turn implies that

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

|uxj |2sℓ |uxk |2mℓη2 dx + ∬
(T0 ,τ)×Ω

⟨D2F(∇u)∇uxj , ∇uxj⟩|uxk |2qχη2 dt dx

≤ C q4 ∬
(T0 ,τ)×Ω

(χη2 + χ ⟨D2F(∇u)∇η, ∇η⟩)(|uxj |2(q+1) + |uxk |2(q+1)) dt dx,
(4.3)

possibly for a different constant C > 0.

Step 3: Weak ellipticity and boundedness of D2F . We now use the explicit expression of F. We recall that

F(ξ) = 1
p

N
∑
i=1
|ξi|p + ε G(ξ) for every ξ ∈ ℝN ,

where
G(ξ) = 1

p
(1 + |ξ|2)

p
2 for every ξ ∈ ℝN .

It follows that for every ξ, λ ∈ ℝN , we have

(p − 1)
N
∑
i=1
|ξi|p−2 λ2i ≤ ⟨D

2F(ξ)λ, λ⟩ ≤ C(|ξ|p−2 + 1) |λ|2.

By inserting these estimates into (4.3), one gets

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

|uxj |2sℓ |uxk |2mℓ η2 dx + (p − 1) N∑
i=1
∬
(T0 ,τ)×Ω

|uxi |p−2 u2xixj |uxk |
2q χ η2 dt dx

≤ C q4 ∬
(T0 ,τ)×Ω

(χ η2 + χ(|∇u|p−2 + 1) |∇η|2) (|uxj |2(q+1) + |uxk |2(q+1)) dt dx.

We consider the second term on the left-hand side: observe that by keeping in the sum only the term with
i = k and dropping the others, we get

N
∑
i=1
∬
(T0 ,τ)×Ω

|uxi |p−2 u2xixj |uxk |
2q χ η2 dt dx ≥ ∬

(T0 ,τ)×Ω

|uxk |p−2 u2xkxj |uxk |
2q χ η2 dt dx

=
1
(q + p2 )

2 ∬
(T0 ,τ)×Ω

(|uxk |
q+ p−22 uxk )xj 2 χ η2 dt dx.

When we sum over j = 1, . . . , N the resulting estimate, we thus get

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

N
∑
j=1
|uxj |2sℓ |uxk |2mℓ η2 dx + p − 1

(q + p2 )
2 ∬
(T0 ,τ)×Ω

∇(|uxk |
q+ p−22 uxk )


2 χ η2 dt dx

≤ Cq4 ∬
(T0 ,τ)×Ω

(χη2 + χ(|∇u|p−2 + 1)|∇η|2)(
N
∑
j=1
|uxj |2(q+1) + N |uxk |2(q+1)) dt dx,
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which in turn implies

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

N
∑
j=1
|uxj |2sℓ |uxk |2mℓ η2 dx + ∬

(T0 ,τ)×Ω

∇(|uxk |
q+ p−22 uxk )2 χ η2 dt dx

≤ Cq6 ∬
(T0 ,τ)×Ω

(χη2 + χ(|∇u|p−2 + 1)|∇η|2) |∇u|2(q+1) dt dx,

up to redefine the constant C > 0. We now add the term

∬
(T0 ,τ)×Ω

|uxk |2q+p χ |∇η|2 dt dx

on both sides of the above inequality. With some algebraic manipulations, this gives

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

N
∑
j=1
|uxj |2sℓ |uxk |2mℓ η2 dx + ∬

(T0 ,τ)×Ω

∇(|uxk |
q+ p−22 uxk η)


2 χ dt dx

≤ C q6 ∬
(T0 ,τ)×Ω

(χ η2 + χ (|∇u|p−2 + 1)|∇η|2) |∇u|2(q+1) dt dx + ∬
(T0 ,τ)×Ω

|uxk |2q+pχ|∇η|2 dt dx

≤ C q6 ∬
(T0 ,τ)×Ω

(χη2 + χ(|∇u|p−2 + 1)|∇η|2)|∇u|2(q+1) dt dx.

By using the Sobolev inequality in the spatial variable for the second term of the left-hand side, one obtains

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

N
∑
j=1
|uxj |2sℓ |uxk |2mℓ η2 dx + τ

∫
T0

χ(∫
Ω

(|uxk |2q+pη2)
2∗
2 dx)

2
2∗
dt

≤ C q6 ∬
(T0 ,τ)×Ω

(χ η2 + χ(|∇u|p−2 + 1)|∇η|2) |∇u|2(q+1) dt dx.

We now finally sum over k = 1, . . . , N and use the Minkowski inequality for the second term of the left-hand
side. This gives

χ(τ)
ℓ0−1
∑
ℓ=0
∫
{τ}×Ω

N
∑
j=1
|uxj |2sℓ N

∑
k=1
|uxk |2mℓ η2 dx + τ

∫
T0

χ(∫
Ω

(
N
∑
k=1
|uxk |2q+pη2)

2∗
2

dx)
2
2∗
dt

≤ C q6 ∬
(T0 ,τ)×Ω

(χη2 + χ(|∇u|p−2 + 1)|∇η|2)|∇u|2(q+1) dt dx.

We introduce the expedient function
U = max

1≤k≤N
|uxk |.

We observe that for every s ≥ 0, one has

Us ≤
N
∑
k=1
|uxk |s ≤ N Us .

In particular for s = 2, we get U ≤ |∇u| ≤ √N U. Hence, we get

χ(τ) ∫
{τ}×Ω

U2(q+1) η2 dx +
τ

∫
T0

χ(∫
Ω

U(2q+p)
2∗
2 η2∗ dx) 2

2∗
dt

≤ C q6 ∬
(T0 ,τ)×Ω

(χ η2 + χ (Up−2 + 1) |∇η|2)U2(q+1) dt dx

≤ C q6 ∬
(T0 ,τ)×Ω

(χ η2 + χ |∇η|2)(1 + U2q+p) dt dx.

(4.4)
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Step 4: Choice of the cut-off functions. Let (t0, x0) ∈ I × Ω and 0 < r < R ≤ 1 such that the cube

QR(x0) = (x0 − R, x0 + R)N

is compactly contained in Ω. We further require that

(t0 − Rp , t0) ⋐ I,

so that wemust have T0 < t0 < T1 and Rp < t0 − T0. Let χ : [T0, T1]→ ℝ be a non-decreasing Lipschitz func-
tion such that

χ(t) = 0 on [T0, t0 − Rp], χ(t) = 1 on [t0 − rp , t0] and |χ(t)| ≤ C
(R − r)p

.

Let η ∈ C∞0 (QR(x0)) be such that

0 ≤ η ≤ 1, η = 1 on Qr(x0) and |∇η| ≤ C
R − r

.

We recall the notation for the anisotropic parabolic cube

Qρ(t0, x0) = (t0 − ρp , t0) × Qρ(x0).

With such a choice of χ and η, we use (4.4) twice:
∙ firstly, by dropping the second term on the left-hand side, and taking the supremum in τ over the interval
(t0 − rp , t0),

∙ secondly, by dropping the first term on the left-hand side and taking τ = t0.
By summing up the two resulting contributions, this gives

sup
τ∈(t0−rp ,t0)

∫
{τ}×Qr(x0)

U2(q+1) dx +
t0

∫
t0−rp
( ∫
Qr(x0)

U(2q+p)
2∗
2 dx)

2
2∗
dt ≤ C q6

(R − r)p ∬
QR(t0 ,x0)

(1 + U2q+p) dt dx. (4.5)

Observe that we also used that (R − r)p ≤ (R − r)2, since R ≤ 1 and p > 2. By the Hölder inequality, one has

∬
Qr(t0 ,x0)

U2q+p+ 4(q+1)N dt dx ≤
t0

∫
t0−rp
( ∫
Qr(x0)

U(2q+p)
2∗
2 dx)

2
2∗
( ∫
Qr(x0)

U2(q+1) dx)
2
N

dt

≤ ( sup
τ∈(t0−rp ,t0)

∫
{τ}×Qr(x0)

U2(q+1) dx)
2
N

t0

∫
t0−rp
( ∫
Qr(x0)

U(2q+p)
2∗
2 dx)

2
2∗
dt.

Using (4.5), this implies

∬
Qr(t0 ,x0)

U2q+p+ 4(q+1)N dt dx ≤ (C q6

(R − r)p ∬
QR(t0 ,x0)

(1 + U2q+p) dt dx)
2
N +1

. (4.6)

Step 5: The local L∞ estimate on ∇u. Take q = qj = 2j+1 − 1 with j ∈ ℕ. We set

γj := 2 qj + p = 2j+2 − 2 + p, δj := 2 qj + p +
4
N
(qj + 1) = 2j+2 − 2 + p +

4
N
2j+1

and
τj =

δj − γj
δj − γj−1

γj−1
γj

.

We observe that γj−1 < γj < δj and τj ∈ (0, 1) is defined in a such a way that
1
γj
=

τj
γj−1
+
1 − τj
δj

.

Estimate (4.6) can be rewritten as

∬
Qr(t0 ,x0)

Uδj dt dx ≤ (C
q6j
(R − r)p ∬

QR(t0 ,x0)

(1 + Uγj ) dt dx)
2
N +1

.



724 | P. Bousquet et al., Gradient estimates for an orthotropic nonlinear diffusion equation

By interpolation in Lp spaces, we obtain

∬
Qr(t0 ,x0)

Uγj dt dx ≤ ( ∬
Qr(t0 ,x0)

Uγj−1 dt dx)τj
γj
γj−1
( ∬
Qr(t0 ,x0)

Uδj dt dx)
(1−τj)

γj
δj
.

By lengthy but elementary computations, we see that

(1 − τj)
γj
δj
=

N
N + 4 and τj

γj
γj−1
=

4
N + 4 ,

thus the combination of the two previous inequalities leads to

∬
Qr(t0 ,x0)

Uγj dt dx ≤ ( ∬
Qr(t0 ,x0)

Uγj−1 dt dx) 4
N+4
(C

q6j
(R − r)p ∬

QR(t0 ,x0)

(1 + Uγj ) dt dx)
N+2
N+4

.

We now use the Young inequality

( ∬
QR(t0 ,x0)

Uγj−1 dt dx) 4
N+4
(C

q6j
(R − r)p ∬

QR(t0 ,x0)

(1 + Uγj ) dt dx)
N+2
N+4

≤
N + 2
N + 4 ∬

QR(t0 ,x0)

(1 + Uγj ) dt dx + 2
N + 4(C

q6j
(R − r)p )

N+2
2
( ∬
QR(t0 ,x0)

Uγj−1 dt dx)2.
Thus we have proved the estimate

∬
Qr(t0 ,x0)

Uγj dt dx ≤ N + 2
N + 4 ∬

QR(t0 ,x0)

(1 + Uγj ) dt dx + 2
N + 4(C

q6j
(R − r)p )

N+2
2
( ∬
QR(t0 ,x0)

Uγj−1 dt dx)2. (4.7)

Next, we observe that

|Qr(t0, x0)|
|QR(t0, x0)|2

≤ C( rR)
N+p 1

RN+p
≤

C
(R − r)N+p

≤
C

(R − r)p N+2
2
,

where the last inequality relies on the two facts: R ≤ 1 and p > 2. Hence, using that qj ≥ 1, one gets

|Qr(t0, x0)| ≤ C(
q6j
(R − r)p )

N+2
2
|QR(t0, x0)|2

≤ C(
q6j
(R − r)p )

N+2
2
( ∬
QR(t0 ,x0)

(1 + Uγj−1 ) dt dx)2.
By summing |Qr(t0, x0)| on both sides of (4.7), this implies

∬
Qr(t0 ,x0)

(1 + Uγj ) dt dx ≤ N + 2
N + 4 ∬

QR(t0 ,x0)

(1 + Uγj ) dt dx + C(
q6j
(R − r)p )

N+2
2
( ∬
QR(t0 ,x0)

(1 + Uγj−1 ) dt dx)2.
We can now appeal to [17, Lemma 6.1] and absorb the term on the right-hand side containing 1 + Uγj , in
a standard way. By using the definition of qj, this leads to

∬
Qr(t0 ,x0)

(1 + Uγj ) dt dx ≤ C 23(N+2)j

(R − r)p N+2
2
( ∬
QR(t0 ,x0)

(1 + Uγj−1 ) dt dx)2. (4.8)

We want to iterate the previous estimate on a sequence of shrinking parabolic cylinders. We fix two radii
0 < r < R ≤ 1, then we consider the sequence

Rj = r +
R − r
2j−1

, j ∈ ℕ \ {0},
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and we apply (4.8) with Rj+1 < Rj in place of r < R. We introduce the notation

Yj = ∬
QRj (t0 ,x0)

(1 + Uγj−1 ) dt dx.
Thus we get

Yj+1 ≤ C 22 p(N+2) j(R − r)−
p
2 (N+2) Y2j .

By iterating the previous estimate starting from j = 1, we obtain for every n ∈ ℕ \ {0},

Yn+1 ≤ (C 22 p(N+2)(R − r)−
p
2 (N+2))∑

n−1
j=0 (n−j)2j Y2n1

possibly for a different constant C > 1. We now take the power 2−n on both sides

Y2−nn+1 ≤ (C 22 p(N+2)(R − r)−
p
2 (N+2))∑

n−1
j=0 (n−j)2j−n Y1 ≤ C(R − r)−p(N+2) Y1,

where the last inequality relies on the fact that
n−1
∑
j=0
(n − j)2j−n ≤

∞

∑
j=1

j
2j
= 2.

We thus get

‖U‖L∞(Qr(t0 ,x0)) = lim
n→∞
( ∬
QRn+1 (t0 ,x0)

Uγn dt dx)
1
γn

≤ lim sup
n→+∞
(Y2−nn+1)

2n
γn

≤ lim sup
n→+∞
(C(R − r)−p(N+2) Y1)

2n
γn

≤ C (R − r)−p
N+2
4 ( ∬

QR(t0 ,x0)

(1 + Up+2) dt dx)
1
4

.

(4.9)

Here, we have also used that γ0 = p + 2 and γn ∼ 2n+2, for n going to ∞. Finally, in order to remove the
dependence on the Lp+2 norm of the gradient, we use a standard interpolation trick. We write

( ∬
QR(t0 ,x0)

(1 + Up+2) dt dx)
1
4

≤ (‖U‖2L∞(QR(t0 ,x0)) ∬
QR(t0 ,x0)

Up dt dx + |QR(t0, x0)|)
1
4

≤ ‖U‖
1
2
L∞(QR(t0 ,x0))( ∬

QR(t0 ,x0)

Up dt dx)
1
4

+ C R
N+p
4 .

Inserting this estimate into (4.9), we get

‖U‖L∞(Qr(t0 ,x0)) ≤ C
(R − r)p N+2

4
[‖U‖

1
2
L∞(QR(t0 ,x0))( ∬

QR(t0 ,x0)

Up dt dx)
1
4

+ R
N+p
4 ]

≤
1
2 ‖U‖L

∞(QR(t0 ,x0)) + C
(R − r)p N+2

2
( ∬
QR(t0 ,x0)

Up dt dx)
1
2

+
C R

N+p
4

(R − r)p N+2
4

≤
1
2 ‖U‖L

∞(QR(t0 ,x0)) + C
(R − r)p N+2

2
[( ∬

QR(t0 ,x0)

Up dt dx)
1
2

+ 1],

where in the last line, we have used that R ≤ 1. By [17, Lemma 6.1] again, we get

‖U‖L∞(Qr(t0 ,x0)) ≤ C
(R − r)p N+2

2
[( ∬

QR(t0 ,x0)

Up dt dx)
1
2

+ 1].

Since U ≤ |∇u| ≤ √NU, this completes the proof.
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Remark 4.2. An inspection of the proof reveals that the exponent α in (4.1) can be taken to be

α =
{{
{{
{

N + 2
2 if N ≥ 3,

any number > 2 if N = 2.

In the case N = 2, the constant C blows-up as α tends to 2.

5 Proof of the Main Theorem
We take u ∈ Lploc(I;W

1,p
loc (Ω)) to be a local weak solution of equation (1.1), i.e. it satisfies

−∬
I×Ω

u φt dt dx +∬
I×Ω

⟨∇F0(∇u), ∇φ⟩ dt dx = 0 (5.1)

for every φ ∈ C∞0 (I × Ω). We recall that F0 indicates the convex function

F0(ξ) =
1
p

N
∑
i=1
|ξi|p for every ξ ∈ ℝN .

Our program is as follows:
∙ we approximate u by solutions uε of the regularized equation,
∙ we transfer the Lipschitz estimate of Proposition 4.1 from uε to u,
∙ we use a scaling argument to “rectify” the local estimate and obtain (1.4).
We start by recalling that u has the following additional properties: for every subinterval J ⋐ I and every open
set O ⋐ Ω, we have

ut ∈ Lp

(J;W−1,p (O)) and u ∈ C(J; L2(O)). (5.2)

HereW−1,p (O) is the topological dual space ofW1,p
0 (O) and the latter is the completion of C∞0 (O)with respect

to the Lp norm of the gradient.
We briefly recall the argument to get (5.2), for completeness. Fix J and O as above, by using equation

(5.1) and the fact that ∇F0(∇u) ∈ Lp


loc(I × Ω), we get

∬
J×O

u ψt dt dx

=

∬
J×O

⟨∇F0(∇u), ∇ψ⟩ dt dx


≤ C ‖∇ψ‖Lp(J×O) = ‖ψ‖Lp(J;W1,p
0 (O))

for every ψ ∈ C∞0 (J × O).

By density, we can extend the linear functional

Λ : ψ → ∬
J×O

u ψt dt dx

to the whole space Lp(J;W1,p
0 (O)). This implies that (see for example [23, Theorem 1.5, Chapter III])

Λ ∈ (Lp(J;W1,p
0 (O)))

∗ = Lp (J;W−1,p (O)).
By the definition of Λ and of weak derivative, we get the first property in (5.2).

The second property in (5.2) follows by recalling that for every open set E ⊂ ℝN , we have (see [23, Propo-
sition 1.2, Chapter III])

Wp(J × E) := {φ ∈ Lp(J;W1,p
0 (E)) : φt ∈ L

p (J;W−1,p (E))} ⊂ C(J; L2(E)).
Indeed, it is sufficient to takeO ⋐ O ⋐ Ω and use the previous inclusion for the function θu, where θ ∈ C∞0 (O)
is such that θ ≡ 1 on O. Thanks to the first property in (5.2) (used with O in place of O) and the properties
of θ, we have that

θu ∈Wp(J × O) ⊂ C(J; L2(O)).
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Since θ ≡ 1 on O, the last fact entails that u ∈ C(J; L2(O)), as claimed. In light of (5.2) and since we are only
interested in a local result, it is not restrictive to assume from the beginning that

u ∈ Lp(I;W1,p(Ω)) ∩ C(I; L2(Ω)) and ut ∈ Lp

(I;W−1,p (Ω)).

Part 1: Convergence of the approximation scheme. We remember the definition (3.1) of Fε for every ε ≥ 0.
We then consider the approximating initial boundary value problem parametrized by ε > 0

{{{
{{{
{

vt = div∇Fε(∇v) in I × Ω,
v = u on I × ∂Ω,

v(T0, ⋅ ) = u(T0, ⋅ ) in Ω.

By [23, Propositon 4.1, Chapter III], there exists a unique weak solution uε ∈ Lp(I;W1,p(Ω)) to this problem
such that

(uε)t ∈ Lp

(I;W−1,p (Ω)) and thus uε ∈ C(I; L2(Ω)).

The boundary value condition is taken in the sense that

uε − u ∈ Lp(I;W1,p
0 (Ω)),

and the initial condition is taken in the L2 sense, which is feasible thanks to the continuity properties of
both uε and u. The function uε verifies

−∬
I×Ω

uε φt dt dx +∬
I×Ω

⟨∇Fε(∇uε), ∇φ⟩ dt dx = 0 (5.3)

for every φ ∈ C∞0 (I × Ω). An integration by parts in (5.3) leads to

∫
I

((uε)t , φ)(W−1,p ,W1,p
0 )

dt +∬
I×Ω

⟨∇Fε(∇uε), ∇φ⟩ dt dx = 0.

By density, the above identity remains true for every φ ∈ Lp(I;W1,p
0 (Ω)). Then the choice φ = uε − u yields

∫
I

((uε)t , uε − u)(W−1,p ,W1,p
0 )

dt +∬
I×Ω

⟨∇Fε(∇uε), ∇uε − ∇u⟩ dt dx = 0.

By recalling the expression (3.1) of Fε, the previous integral identity can be rewritten as

∫
I

((uε)t , uε − u)(W−1,p ,W1,p
0 )

dt +∬
I×Ω

⟨∇F0(∇uε), ∇uε − ∇u⟩ dt dx + ε∬
I×Ω

⟨∇G(∇uε), ∇uε − ∇u⟩ dt dx = 0.

Starting from (5.1), we have similarly

∫
I

(ut , uε − u)(W−1,p ,W1,p
0 )

dt +∬
I×Ω

⟨∇F0(∇u), ∇uε − ∇u⟩ dt dx = 0.

Upon subtracting the two identities above, we get

∫
I

((uε)t − ut , uε − u)(W−1,p ,W1,p
0 )

dt +∬
I×Ω

⟨∇F0(∇uε) − ∇F0(∇u), ∇uε − ∇u⟩ dt dx

+ ε∬
I×Ω

⟨∇G(∇uε), ∇uε − ∇u⟩ dt dx = 0.
(5.4)

For the first term, we rely on

∫
I

((uε)t − ut , uε − u)(W−1,p ,W1,p
0 )

dt = 12 ∫
{T1}×Ω

|uε − u|2 dx,

which follows from the fact that

t → 1
2 ∫

Ω

|uε(t, x) − u(t, x)|2 dx
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is absolutely continuous on I, with derivative given exactly by

((uε)t − ut , uε − u)(W−1,p ,W1,p
0 )

for a.e. t ∈ I,

see [23, Proposition 1.2].
For the second term in (5.4), we can use that for every ξ, ζ ∈ ℝN , we have

⟨∇F0(ξ) − ∇F0(ζ), ξ − ζ⟩ =
N
∑
i=1
(|ξi|p−2 ξi − |ζi|p−2 ζi) (ξi − ζi)

≥ 22−p
N
∑
i=1
|ξi − ζi|p ≥

1
C
|ξ − ζ|p

for some C = C(N, p) > 0. The first inequality can be found in [20, Section 10]. On the other hand, the con-
vexity of G implies that ∇G is a monotone map and thus

⟨∇G(∇uε), ∇uε − ∇u⟩ ≥ ⟨∇G(∇u), ∇uε − ∇u⟩.

By using these two pointwise estimates in (5.4), we thus get

1
2 ∫
{T1}×Ω

|uε − u|2 dx +
1
C ∬
I×Ω

|∇uε − ∇u|p dt dx ≤ ε∬
I×Ω

|⟨∇G(∇u), ∇uε − ∇u⟩| dt dx.

By the Cauchy–Schwarz inequality and the inequality |∇G(ξ)| ≤ (1 + |ξ|)p−1, the right-hand side is not larger
than

ε∬
I×Ω

(1 + |∇u|)p−1|∇uε − u| dt dx,

which, by the Young inequality, in turn can be bounded from above by

p − 1
p

ε∬
I×Ω

|∇uε − ∇u|p dt dx +
ε
p ∬
I×Ω

(1 + |∇u|)p dt dx.

Then for every ε > 0, we have

1
2 ∫
{T1}×Ω

|uε − u|2 dx + (
1
C
−
p − 1
p

ε) ∬
I×Ω

|∇uε − ∇u|p dt dx ≤
ε
p ∬
I×Ω

(1 + |∇u|)p dt dx.

This estimate guarantees that the family {∇uε}ε>0 is strongly convergent to ∇u in Lp(I × Ω). This is now suf-
ficient to pass to the limit in the uniform Lipschitz estimate (4.1), which will be still valid for u, as well. By
a covering argument, this in turn implies

∇u ∈ L∞loc(I × Ω),

as claimed.

Part 2: Scale invariant estimate. We finally focus on obtaining estimate (1.4). We fix

Qτ,R(t0, x0) = (t0 − τ, t0) × (x0 − R, x0 + R)N ⋐ I × Ω

as in the statement of the Main Theorem. By recalling Remark 1.1, we know that for every R > 0 and μ > 0
the function

UR(t, x) = μ u(t0 + μp−2 Rp t, x0 + R x)

is still a local weak solution of our parabolic equation, this time in the rescaled set

Ĩ × Ω̃ := ( T0 − t0
μp−2 Rp

, T1 − t0
μp−2 Rp

) ×
Ω − x0
R

.
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We consider the compactly contained cube Q τ
μp−2Rp ,1(0, 0) ⋐ Ĩ × Ω̃ and make the choice

μp−2 Rp = τ that is, μ = ( τRp )
1
p−2

,

so that
Q τ

μp−2Rp ,1(0, 0) = Q1,1(0, 0) = Q1(0, 0).

From Part 1, we know that we can use the a priori estimate (4.1) for UR on the anisotropic parabolic cubes

Q 1
2
(0, 0) = (− 12p , 0) × (−

1
2 ,

1
2)

N
and Q1(0, 0) = (−1, 0) × (−1, 1)N .

This gives

‖∇UR‖L∞(Q 1
2
(0,0)) ≤ C( ∬

Q1(0,0)

|∇UR|p dt dx)
1
2

+ C.

If we scale back, we get

‖∇u‖L∞(Q τ
2p , R2
(t0 ,x0)) ≤ C(

τ
R2
)

1
2
( −∫

Qτ,R(t0 ,x0)

|∇u|p dt dx)
1
2

+ C(R
2

τ )
1
p−2

. (5.5)

This already proves the claimed a priori estimate (1.4) for 0 < σ ≤ 1
2p .

For any σ ∈ (0, 1), we can take (t1, x1) ∈ Qστ,σR(t0, x0) such that

‖∇u‖L∞(Qστ,σR(t0 ,x0)) ≤ ‖∇u‖L∞(Q 1−σ
2p τ, 1−σ2 R(t1 ,x1)).

Observe that for every (s, y) ∈ Qστ,σR(t0, x0), we have

Q 1−σ
2p τ,

1−σ
2 R(s, y) ⊂ Q(1−σ) τ,(1−σ) R(s, y) ⋐ Qτ,R(t0, x0).

By applying (5.5) on this parabolic cylinder, we get

‖∇u‖L∞(Qστ,σR(t0 ,x0)) ≤ ‖∇u‖L∞(Q 1−σ
2p τ, 1−σ2 R(t1 ,x1))

≤
C
√1 − σ
(
τ
R2
)

1
2
( −∫

Q(1−σ)τ,(1−σ)R(t1 ,x1) |∇u|
p dt dx)

1
2

+ C(1 − σ)
1
p−2 (R2τ )

1
p−2

.

By observing that −∫
Q(1−σ)τ,(1−σ)R(t1 ,x1) |∇u|

p dt dx = 1
(1 − σ)N+1(2 R)N τ

∬
Q(1−σ)τ,(1−σ)R(t1 ,x1) |∇u|

p dt dx

≤
1

(1 − σ)N+1(2 R)N τ
∬

Qτ,R(t0 ,x0)

|∇u|p dt dx

=
1

(1 − σ)N+1
−∫

Qτ,R(t0 ,x0)

|∇u|p dt dx,

we eventually reach the desired conclusion.
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