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Introduction

Algebras of Hom-type were introduced in the Physics literature of the 1990’s related to quantum
deformations of algebras of vector fields, which satisfy a modified Jacobi identity involving a
homomorphism (such algebras were called Hom-Lie algebras in [6], [8]). Hom-analogues of other
algebraic structures have been introduced afterwards, such as Hom-(co)associative (co)algebras,
Hom-bialgebras, Hom-pre-Lie algebras etc. Recently, structures of a more general type have
been introduced in [4], called BiHom-type algebras, for which a certain algebraic identity is
twisted by two commuting homomorphisms (called structure maps).
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Infinitesimal bialgebras were introduced by Joni and Rota in [7] and studied by Aguiar in a
series of papers ([I, 2, 3]). They have connections with some other concepts such as Rota-Baxter
operators, pre-Lie algebras, Lie bialgebras etc. A prominent class of examples, discovered by
Aguiar, is provided by the path algebra of an arbitrary quiver. Infinitesimal bialgebras have
been used (with a different name) in [I12] by Voiculescu in free probability theory.

The concept of infinitesimal Hom-bialgebra (the Hom-analogue of infinitesimal bialgebras)
was introduced and studied by Yau in [I5]. We continued this study in our previous paper [11],
where we obtained a Hom-analogue of the following theorem of Aguiar from [3]: Let (A, u, A)
be an infinitesimal bialgebra, with notation u(a ®b) = a-b and A(a) = a1 ® ag, for all a,b € A;
if one defines a new operation on A by a @ b = by - a - bg, then (A, e) is a left pre-Lie algebra.
In order to obtain the Hom-generalization of this result, we relied on the observation that, if
the infinitesimal bialgebra in Aguiar’s theorem is commutative, then his theorem is a particular
case of the Gel’fand-Dorfman theorem which shows how to obtain a Novikov algebra by using
a derivation on a commutative associative algebra. Thus, what we did in [11] was essentially
to find a sort of connection between infinitesimal Hom-bialgebras and Hom-Novikov algebras
(these have been also introduced by Yau in [16]).

The main aim of the present paper is to extend the above mentioned results to the BiHom
case. We define infinitesimal BiHom-bialgebras, and our main result (Theorem [.6]) shows how
to obtain a left BiHom-pre-Lie algebra from an infinitesimal BiHom-bialgebra. We use the same
strategy as in the Hom case, namely we find a connection with so-called BiHom-Novikov algebras,
that we also introduce and study here (we would like to emphasize that our concept of BiHom-
Novikov algebra is different from the one introduced in [5]). Along the way, we also introduce
and study several other concepts, such as BiHom-Novikov-Poisson algebras and quasitriangular
infinitesimal BiHom-bialgebras.

1 Preliminaries

We work over a base field k. All algebras, linear spaces etc. will be over k; unadorned ®
means ®g. Unless otherwise specified, the (co)algebras that will appear in what follows are not
supposed to be (co)associative or (co)unital, the multiplication p : A ® A — A of an algebra
(A, p) is denoted by u(a ® a’) = a-d’, and for a comultiplication A : C' — C ® C on a linear
space C' we use a Sweedler-type notation A(c) = ¢; ® co, for ¢ € C. For the composition of two
maps f and g, we will write either g o f or simply gf. For the identity map on a linear space V
we will use the notation ¢dy .

Definition 1.1 ([/]) A BiHom-associative algebra is a 4-tuple (A, u, «, 3), where A is a linear
space and o, : A — A and u : A® A — A are linear maps such that c o = f o a,

a(r-y) = az) - aly), Bz-y) = B(x) - By) and
a(z) - (y-2) = (z-y)- B(2), (1.1)

for all x,y,z € A. The maps « and B (in this order) are called the structure maps of A and
condition ({I.1)) is called the BiHom-associativity condition.

A morphism f: (A, pua,aa,B4) = (B, up,ap, ) of BiHom-associative algebras is a linear
map f: A— B such that apo f = foaa, Bpof=fopBa and foua=ppo(f® f).

If (A, p) is an associative algebra and o, : A — A are two commuting algebra maps, then
Ala,p) = (A po(a®p),a, ) is a BiHom-associative algebra, called the Yau twist of A via the
maps « and .



Definition 1.2 ([/]/) A BiHom-coassociative coalgebra is a 4-tuple (C, A1, w), in which C is
a linear space, Y,w : C — C and A : C — C ® C are linear maps, such that 9 ow = w o1,
(VWRY)oA=Aot, (WQw)oA=Aow and

(A®Y)oA=(w®A)oA. (1.2)

The maps v and w (in this order) are called the structure maps of C' and condition (I.2) is
called the BiHom-coassociativity condition.

A morphism g : (C,Ac, Yo, ,we) = (D,Ap,¥p,wp) of BiHom-coassociative coalgebras is a
linear map g : C — D such that Ypog=gotc, wpog=gowc and (R g)oAc =Apog.

Definition 1.3 A left pre-Lie algebra is a pair (A, p), where A is a a linear space and p :
AR A — A is a linear map satisfying the condition

z-(y-2)—(x-y)-z=y-(x-2)—(y-x)-2, VxyzeA

/

A morphism of left pre-Lie algebras from (A,u) to (A',u') is a linear map f : A — A’

satisfying f(x-y) = f(z) ' f(y), for all z,y € A.

Definition 1.4 ([10]) A left BiHom-pre-Lie algebra is a 4-tuple (A, u, o, B), where A is a linear
space and p : A A — A and o, : A — A are linear maps satisfying a o f = p o a,

a(r-y) = az) - aly), Bx-y) = B(x) - Bly) and
af(x) - (aly) - z) — (B(x) - ay)) - B(2) = aB(y) - (a(x) - 2) — (B(y) - al)) - B(2), (1.3)

forall z,y,z € A. We call a and [ (in this order) the structure maps of A.

A morphism [ : (A, u,,B) — (A, 1/, d/, B") of left BiHom-pre-Lie algebras is a linear map
f+A— A satisfying f(z-y) = f(z) fly), for all x,y € A, as well as foa = o' o f and
foB=p0f.

A BiHom-associative algebra is an example of a left BiHom-pre-Lie algebra.

Definition 1.5 ([10]) A left (respectively right) BiHom-Leibniz algebra is a 4-tuple (L, [-, -], o, 3),

where L is a linear space, [-,-] : L x L — L is a bilinear map and o, B : L — L are linear maps
satisfying a o f = Boa, a([r,y]) = [a(z),a(y)], B([z,y]) = [8(z), B(y)] and

[aB(x), [y, 2]] = [[B(x), y], B(z)] + [B(y), [e(=), 2]}, (1.4)
respectively

[z, 9], aB(2)] = [[z, B(2)], a(y)] + [a(2), [y, a(2)]], (1.5)

for all x,y,z € L. We call a and § (in this order) the structure maps of L.

Definition 1.6 ([10/) A left (respectively right) BiHom-Lie algebra is a left (respectively right)
BiHom-Leibniz algebra (L, [-, -], «, B) satisfying the BiHom-skew-symmetry condition

[B(z),a(y)] = —[B(),a(z)], Vz,y€ L. (1.6)

A morphism f : (L,[-,"],a, 8) — (L', [-,]', &, 8) of BiHom-Lie algebras is a linear map f : L —
1 such that o/ o f = foa, f'o f = f o 8 and f(lz,3]) = [f(x), f()]', for all 2,y € L.
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Definition 1.7 ([9]) A BiHom-dendriform algebra is a 5-tuple (A, <, >, a, ) consisting of a
linear space A and linear maps <,=: AQA — A and o, 5 : A — A such that, for all x,y,z € A:

aof=pfoa, (1.7)
a(z <y) =az) < aly), a(z-y) =a(z) = a(y), (1.8)
Bz <y) = B(z) < By), Bz = y) = Bx) = By), (1.9)
(x<y)<B(z)=alz) < (y<z+y = 2), (1.10)
(- y) < B(2) = a(z) > (y < 2), (1.11)
alx) = (y=z2)=(x<y+z>y) = 5(2). (1.12)

We call o and 8 (in this order) the structure maps of A.

Proposition 1.8 ([10]) Let (A, <,>,«a,3) be a BiHom-dendriform algebra such that o and
are bijective. Let x: A® A — A be the linear map defined for all x,y € A by

zry=x>y—(a ' By) < (af™(x)).
Then (A, *,«, B) is a left BiHom-pre-Lie algebra.
Definition 1.9 ([/)/, [9]) Let (A, pa,aa,B4) be a BiHom-associative algebra and let (M, cpr, Bar)
be a triple where M is a linear space and apy, Byr : M — M are commuting linear maps.
(i) (M, cnr, Bar) is a left A-module if we have a linear map A@ M — M, a @ m — a - m, such
that apr(a-m) = aq(a) - ap(m), By(a-m) = Bala) - By(m) and
asla)-(a-m)=(a-d) By(m), V a,a €A, me M. (1.13)

(ii) (M, apg, Bar) is a right A-module if we have a linear map M@ A — M, m®a — m-a, such
that apr(m - a) = apr(m) - aa(a), Bar(m - a) = Bar(m) - Ba(a) and

ay(m)-(a-a')=(m-a) Ba(d), V a,d €A, me M. (1.14)
(11i) If (M, cnr, Bar) is a left and right A-module, then M is called an A-bimodule if
asla)-(m-d)=(a-m)-Bald), V a,d €A, me M. (1.15)

Definition 1.10 An algebra (A, p) is called a Novikov algebra if it is left pre-Lie and
(- y) z=(x-2)y, Va,yzeA (1.16)

A morphism of Novikov algebras from (A, u) to (A',u') is a linear map f: A — A’ satisfying
f(:E y) = f(:E) . f(y)) fO’f’ all T,y € A.

Theorem 1.11 (Gel’fand-Dorfman) Let (A, j) be an associative and commutative algebra and
let D: A — A be a derivation. Define a new multiplication on A by axb = a - D(b), for all
a,b € A. Then (A,x) is a Novikov algebra.

Definition 1.12 ([13], [T]]) A Novikov-Poisson algebra is a triple (A,-,*) such that (A,-) is
a commutative associative algebra, (A,x) is a Novikov algebra and the following compatibility
conditions hold, for all x,y,z € A:

(xxy)-z—xzx(y-2)=(y*xz) - z—yx*(x-2), (1.17)
(x-y)xz=(r*xz)-y. (1.18)

A morphism of Novikov-Poisson algebras from (A, -, *) to (A',-',«') is a linear map f : A — A’
satisfying f(z-y) = f(z) ' f(y) and f(z*y) = f(z)* f(y), for all z,y € A.



Note that, by the commutativity of (A, -), (LI8) is equivalent to

(x-y)xz=x (y*xz), Va,yze€ A (1.19)

2 BiHom-Novikov algebras

We begin by introducing the BiHom-analogue of Novikov algebras (the Hom-analogue was in-
troduced in [16]).

Definition 2.1 A BiHom-Novikov algebra is a 4-tuple (A, p, o, B), where A is a linear space,
w: AR A — Ais a linear map and o, f : A — A are commuting linear maps (called the structure
maps of A), satisfying the following conditions, for all x,y,z € A:

a(z-y)=a(@)-aly), Bx-y)=p5x)- By), (2.1)
(B(x) - a(y) - B(z) — af(x) - (aly) - z) = (B(y) - a(@)) - B(2) — af(y) - () - 2), (2.2
(z-B(y)) - af(z) = (z-5(2)) - af(y)-

In other words, a BiHom-Novikov algebra is a left BiHom-pre-Lie algebra satisfying (2.3).

A morphism f : (A ua,an,84) = (B, uB,ap,B) of BiHom-Novikov algebras is a linear
map f: A— B such that apo f = foaa, Bpof=fofa and fous=pupo(f® f).

Proposition 2.2 Let (A,u) be a Novikov algebra and let o, : A — A be two commuting
Novikov algebra morphisms. Then A, gy = (A,,u(aﬁ) =po(a®pf),a,p) is a BiHom-Novikov
algebra, called the Yau twist of (A, ).

Proof. For all z,y € A, we write i, 8)(* ® y) = %y = a(x) - B(y). We already know from
[10] that A, g) is a left BiHom-pre-Lie algebra, so we only need to prove (2.3]). We compute:

(xB) x0Bz) = (aX(z) of’(y) - af(2)
I (2(0) . ap2(2)) - 0f()
—  afale)- B(2)) - BlaB(y)

= (ale)- B(2) xaBly) = (x % (=) * aB(y).

So indeed A, ) is a BiHom-Novikov algebra. O

More generally, one can prove the following result:

Proposition 2.3 Let (A, u,a,3) be a BiHom-Novikov algebra and let & B : A= A be two

morphisms of BiHom-Novikov algebras such that any two of the maps «, B, &, B commute.
Then A(& B = (A,po(a®p),aoda,Bof) is also a BiHom-Novikov algebra.

The next concept is the BiHom-analogue of the concept of commutative associative algebra.
Definition 2.4 A BiHom-associative algebra (A, p, v, B) is called BiHom-commutative if

B(a) - a(b) = B(b) - a(a), V a,be A. (2.4)



Remark 2.5 If (A, u) is a commutative associative algebra and o, 3 : A — A are commuting

algebra morphisms, then (A, po(a® B),a, ) is a BiHom-commutative algebra. More generally,

if (A,u,«,B) is a BiHom-commutative algebra and &,fB: A — A are morphisms of BiHom-

associative algebras such that any two of the maps o, B, &, B commute, then (A, po(a® 5) Qo
a, o B) is a BiHom-commutative algebra.

Remark 2.6 Obviously, any BiHom-commutative algebra is BiHom-Novikov.

Our next result is the BiHom-analogue of the Gel’fand-Dorfman Theorem [[.T] (for a Hom-
analogue see [16]).

Proposition 2.7 Let (A, p,a,3) be a BiHom-commutative algebra. Let v, \,& : A — A be
linear maps such that y(x - y) = y(x) - y(y), M@ - y) = A@) - A(y) and {(z - y) = £(x) - {(y), for
all x,y € A. Let D : A — A be a linear map, assume that any two of the maps o, 8,7y, A\, &, D
commute and the following condition is satisfied:

D(a-b)=~(a)-D(b)+ D (a)-v(b), Y a,be A. (2.5)

Define a new multiplication on A by axb= \(a)-£D (b), for all a,b € A. Then (A, *, Ao, ££7)
1s a BiHom-Novikov algebra.

Proof. Tt is easy to see that Aa(a * b) = Aa(a) * Aa(b) and {B~v(a * b) = £Bv(a) * £B(b), for all
a,b € A. Now we compute:

Aot By(z) * (Aa(y) * 2)
= AafBy(z) * (Ma(y) - €D (2)) = Na&By(z) - £D (Valy) - €D (2))
()

B3 \2agpy(a) € [y (\2aw) - DED (=) + D (A2a(y)) -1 (€D (2))]
= NaBy(z) - [EvNaly) - €D 2( )+£A2aD() v&2D (2)]
= Nagy(z) - (ENaly) - D% (2)) + NagBy(x) - (EX*aD(y) - 16D (2)),

(EB7(x) x Aa(y)) *EBy (2) = (AB(x) - Aa§D(y)) * £B7 (2)
= (N¢By(x) - NaD(y)) - €BvD (2)

so that we get
(E87(x) * Aa(y)) = €87 (2) — AagBy(z) « (Aa(y) * 2)

= (NEBy(x) - N2alD(y)) - £ByD () — Na&Bvy(x) - (¢yXa(y) - €D? (2))
—NagBy(z) - (EXNaD(y) - v€°D (2))

(N¢Br(x) - N D(y)) - BrE*D (2) — NatBy(x) - (v °aly) - 2D (2))

— (N%Br(z) - NatD(y)) - ByE°D (2)

= =NagBy(z) - (X a(y) - D% (2)) = — (N%By(x) - EvAa(y)) - BE2D? (2)
— (B(N*&y(2)) - al€vN*(y))) - BE2D? (2)

— (BA*y(y) - a&yN(x)) - BEED? (2),

so the expression is symmetric in z and y, meaning that (A, x, Aa, {57) is a left BiHom-pre-Lie
algebra. We have to check now the BiHom-Novikov condition, namely (z*£57y(y)) * A\a&fv(z) =

24
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(x % £67(2)) * Aa&Bv(y). Note first that, since (A, u, o, 5) is BiHom-commutative, it is BiHom-
Novikov, so (2.3 holds. Now we compute:

(x % EBY(y)) * A\a&By(z) (A (z) - €D (€87(y))) * Ak By(z)
= V(@) )\(szﬁ’y ®))] - D (aBE*yA(2))
= [(@) BODEYW))] - 0B (DE(2))
2D 132 2). 8 (ADEA(2))] - aB (DEVAW))
= (z*&By(2)) * AalBy(y),
finishing the proof. -

Corollary 2.8 Let (A, pu,a,3) be a BiHom-commutative algebra. Let p and r be some natural
numbers and let D : A — A be a linear map commuting with o and 8 and satisfying the condition

D (ab) =" (a)- D)+ D (a)-p"(b), ¥V a,be A.

Define a new multiplication on A by axb = o (a)-D (b), for alla,b € A. Then (A, *, Pt ﬁ’"“)
1s a BiHom-Novikov algebra.

Proof. Take in the previous proposition A = o, vy = ", £ = id 4. O
In particular, by taking p = r = 0, we obtain:

Corollary 2.9 Let (A, u,«, 5) be a BiHom-commutative algebra and let D : A — A be a deriva-
tion in the usual sense (i.e. D(z-y) =z -D(y)+ D(z) -y, for all x,y € A) commuting with «
and . Then (A, x,«, 3) is a BiHom-Novikov algebra, where a xb = a - D(b), for all a,b € A.

The following result is a consequence of Corollary

Corollary 2.10 Let (A, ) be an associative and commutative algebra, let o, f: A — A be two
commuting algebra morphisms and let D : A — A be a derivation such that Doa =ao D and
Do =poD. Then (A, *,«,B) is a BiHom-Novikov algebra, where a x b = «(a) - D(3(b)), for
all a,b € A.

Proof. The only thing that needs to be proved is that D is also a derivation for (A, x), where
a*b=a(a)-B(b), and this follows by a straightforward computation. O

By taking in Proposition 27 oo = § = A = £ = id 4, we obtain the following result:

Proposition 2.11 Let (A, p) be a commutative associative algebra, let v : A — A be an algebra
map and let D : A — A be a (v,7)-derivation, i.e.

D(a-b)=~(a)-D(b)+ D (a)-v(b), Y a,bec A (2.6)

Assume that moreover we have Doy = ~vyoD. Define a new multiplication on A by axb = a-D(b),
for all a,b € A. Then (A, x*,ida,7) is a BiHom-Novikov algebra.

For a left BiHom-Lie algebra (L, [, ], o, ), we write Z;(3(L)) for the subset of L consisting
of the elements = € L such that [z, 3(y)] = 0 for all y € L. Similarly, we write Z,(«(L)) for the
subset of L consisting of the elements = € L such that [a(y),z] =0 for all y € L.
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Proposition 2.12 Let (L, [, ],a, 8) be a left BiHom-Lie algebra and let f : L — L be a linear
map such that foa=ao f and fo B = o f. Define two operations on A by

pey=[f@)y] and a¥y=[z,fy)], ¥ z.y€A

Then we have:
(i) (L,*,, B) is a BiHom-Novikov algebra if and only if the following conditions hold for all
x,y,2 € L:
(U (B(@)), aly)] + [B(z), f(ay))]) — [f(B(2)), fle(y))] € Zi(B(L)), (2.7)
[F(Lf (@), B, aB(2)] = [f([f(x), B(2)]), aB(y)]. (2.8)
(i1) If o and 8 are bijective, then (L,%',, 3) is a BiHom-Novikov algebra if and only if the
following conditions hold for all x,y,z € L:
[(B(z), f(a(y)] + [f(B(x)), aly)], f(B(2))] — [aB(=), f([a(y), f(2)])]
+laB(y), f([alz), f(2)])] =0, (2.9)
[£(B(x)), fla(y))] € Z(a(L)). (2.10)
Proof. First note that «, 8 are multiplicative with respect to both * and *' since ao [-,-] =
[ lola®@a), Bol,]=[,]o(B®p)and foa=aof, fof=pof.
Consider the first assertion. The condition (2.2)) for the multiplication * is
(B(z) x a(y)) * B(z) — af(z) * (aly) x z) = (B(y) *x a(z)) * B(2) — af(y) * (a(x) x 2),

and this is equivalent to

[F(Lf(B(=)), al)]); B(2)] = [f(aB(z)), [f(e(y)), 2]
= [f([F(BW)), a@)]), B(2)] = [f(@B(y)), [f (al(x)), 2]],

which, by using BiHom-skew-symmetry, is equivalent to

F([f(B)), aly)] + [B(z), f(alw))]), B(2)] = [f (ab (), [f(aly)), 2]]

+[f(aB()), [f (), 2]] =0,
which, by using (L.4]), is equivalent to

F([f(B)), ay)] + [B(z), f(alw))]) = [f(B(2)), flaly))], 5(2)] = 0,

and this is indeed equivalent to

FAf(B(=)), ay)] + [B(x), f(a))]) — [f(B()), f(aly)] € Zi(B(L)), ¥V x,y€ L.
The condition (23] for the multiplication % is (z x 5(y)) * aB(z) = (z x 5(2)) * aB(y), and this
is obviously equivalent to

[F([f (), B)]), aB(2)] = [f([f (2), B(2)]), aB(y)]-

This proves (i). To prove (ii), we need a result from [10] saying that, since o and /3 are bijective,
(L,[,], @, B) is also a right BiHom-Lie algebra. One can easily see that (2.9]) is just a restatement
of (Z:2) for the multiplication . On the other hand, for all z,y, z € L we have:

(@ BW) * ap(z) = [z, f(BW))], f(eB(2))]
= [z, F(B(2))], flaB())] + [ale), [f(B(y)), f(a(2))]
= (z# B(2)) ¥ aBy) + [a(@), [f(B1)), fe(2)].
This implies that (x+ B8(y)) ¥ af(z) = (x+ B(2)) ¥ aB(y) holds for all z,y, z € L if and only if
[a(2), [f(B(Y)), f(a(2)]] = 0, or equivalently [f(5(y ))7f(04( )] € Zr(a(L)) for all y,z € L. T
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3 BiHom-Novikov-Poisson algebras

The main aim of this section is to show that the BiHom-Novikov algebras obtained in Corollary
[2.9] satisfy more compatibility conditions, turning them into what we will call BiHom-Novikov-
Poisson algebras, which are the BiHom-analogues of Novikov-Poisson algebras. Note that the
Hom-analogue of Novikov-Poisson algebras has been introduced by Yau in [17].

Definition 3.1 A BiHom-Novikov-Poisson algebra is a 5-tuple (A, -, *,a, B) such that:
(1) (A,-, o, B) is a BiHom-commutative algebra;
(2) (A, *,a, B) is a BiHom-Novikov algebra;
(8) the following compatibility conditions hold for all x,y,z € A:

B(x) * a(y)) - B(z) — aB(z) * (aly) - z) = (B(y) * a(z)) - B(z) — aB(y) * (a(z) - 2), (3.1)
z- By)) * af(z) = (z + B(2)) - aBly), 2
) (yxz)=(z-y)*p(z)

The maps o and (B (in this order) are called the structure maps of A.

A morphism [ : (A, -, x,«a,8) — (A, «,d',8") of BiHom-Novikov-Poisson algebras is a

map that is a morphism of BiHom-associative algebras from (A,-,«, ) to (A',,&/,5") and a
morphism of BiHom-Novikov algebras from (A,*,a, 3) to (A, a/,3).

*

(
(

alx

Our first result shows that, in case of bijective structure maps, (8:2]) and (8.3) are equivalent.

Lemma 3.2 Let A be a linear space endowed with two linear multiplications ;% : AQ A — A
and two commuting bijective linear maps o, B : A — A that are multiplicative with respect to -
and * and such that (A, -, a, B) is a BiHom-commutative algebra. Then

(- B(y)) * af(z) = (z = B(z)) - af(y) (3.4)
holds for all x,y,z € A if and only if
a(z) - (yxz) = (z-y)*B(2) (3.5)

holds for all z,y,z € A.
Proof. We prove that (3.4) implies (B.5)):
(x-y) * B(2)

2))) - aB(af(x))
Bla™ (y *Ofl( ))' a(ap™! ()

Blas™ (z)) - ala™ (y) xa~'(2))
a(z) - (y*xz), q.ed.

I IIE I IIQ I IIQ I

The proof of the fact that ([3.3) implies (3.4]) is similar and left to the reader. O

Proposition 3.3 Let (A,-,a, () be a BiHom-commutative algebra. Then (A,-,-,a, ) is a
BiHom-Novikov-Poisson algebra.



Proof. By Remark we know that (A, -, a, () is a BiHom-Novikov algebra. The condition
BI) coincides with the condition (2.2)), the condition (B:2]) coincides with the condition (2.3]),
while (3.3 is just the BiHom-associativity of -. O

The Hom-version of our next result may be found in [I8].

Proposition 3.4 Under the hypotheses of Corollary , (A, p, %, 0, B) is a BiHom-Novikov-
Poisson algebra.

Proof. We only need to prove the relations (8.1)), (3.2)) and (33]). To prove ([B.I) we compute:
(B(z) * a(y)) - B(z) — af(z) x (aly) - 2)

(8(z) - aD()) - (=) — ab(z) - Dlaly) - )
—  (B(x)-aD(y)) - B(=) — aB(a) - (aly) - D(=) + aD(y) - 2)
= (B(x)-aD(y) - B(z) — aB(x) - (a(y) - D(=)) — aB(x) - (aD(y) - 2)
D (500) . aD(y)) - B(z) — aB(@) - (aly) - D(2)) — (B(x) - aD)) - B(2)
—  —0B(@) - (aly) - D(2))
= )

and this expression is obviously symmetric in z and y because of the BiHom-commutativity of
(A, -, a, ). To prove ([B.2) we compute:

(- By)) x aB(z) (- B(y)) - Dap(z)

a(z) - (B(y) - a(D(z)))

a(z) - (BD(z) - a(y))

(z-BD(2)) - aBly) = (z * B(2)) - aB(y).

Finally, to prove (83]) we compute:

(z-y)* B(2) (z-y) - DB(z)
a(z) - (y- D(2)) = a(z) - (y * 2),

finishing the proof. O

D

Proposition 3.5 Let (A,-,*) be a Novikov-Poisson algebra and let o, : A — A be two com-
muting morphisms of Novikov-Poisson algebras. Then

A = (A7 ="0(a@p),*:=+0(a®f) a,p)
is a BiHom-Novikov-Poisson algebra, called the Yau twist of (A, -, *).

Proof. We only have to check (B.1]), (3.2) and (B.3) for A, g). For (B.I)) we compute:
(B(z)*a(y))B(z) — ab(z)*(a(y)2)
= (aB(x) * ap(y))B(z) — aB(z)¥(e*(y) - B(2))

10



= (a®B(z) x a®B(y)) - B%(2) — o®B(x) = (a®B(y) - B(2)),
and this expression is symmetric in « and y by (LIT7)). Next, [32]) reads
(B(y))*af(z) = (xxB(2))-ab(y),

which is equivalent to (a(z) - %(y))*aB(z) = (a(z) * %(2))"aB(y), which in turn is equivalent
to (a?(z) - aB?(y)) * aB?(z) = (a?(z) * aB?(2)) - aB%(y), which is true by (LIS).
Finally, (33) reads:
a(z)(y*z) = (z7y)*B(2),
which is equivalent to a(z)"(a(y) * 5(2)) = (a(x) - B(y))*B(2), which in turn is equivalent to
o?(z) - (aB(y) * B2(2)) = (@*(x) - aB(y)) * B?(2), which is true by (LI9). O

More generally, one can prove the following result:

Proposition 3.6 Let (A,-,*,a, ) be a BiHom-Novikov-Poisson algebra and let apB:A— A
be two morphisms of BiHom-Novikov-Poisson algebras such that any two of the maps «, B, &, B
commute. Then

Asp=(A7i=0(@®p),3:=x0(@®f),acd, fop)
1s also a BiHom-Novikov-Poisson algebra.
Corollary 3.7 Let (A, -, x,«, ) be a BiHom-Novikov-Poisson algebra. Then
A" = (A, 0 (a" ® "), %0 (o ® B"), 0™, BT
is also a BiHom-Novikov-Poisson algebra for any n > 0.
Proof. Apply Proposition for & := " and 3 := ™. O
The following result is the special case of Corollary B.7 with * = 0.
Corollary 3.8 Let (A,-,«,3) be a BiHom-commutative algebra. Then
A" = (A, 0 (@ ® "), gt
1s also a BiHom-commutative algebra for any n > 0.
The following result is the special case of Corollary B.7] with - = 0.
Corollary 3.9 Let (A,*,a, ) be a BiHom-Novikov algebra. Then
A" = (A% 0 (@™ ® B"), " gt
is also a BiHom-Novikov algebra for any n > 0.

The following consequence of Proposition [3.4] is useful for constructing examples of BiHom-
Novikov-Poisson algebras.

Corollary 3.10 Let (A, pu) be a commutative and associative algebra, let o, B : A — A be two
commuting algebra morphisms, and let D : A — A be a derivation such that Doa = ao D and
Dof=poD. Then (A, e, x «,f) is a BiHom-Novikov-Poisson algebra, where

rey=pla(r)®B(y), x*xy=plalz)®D(B(y))), V zycA

11



4 Infinitesimal BiHom-bialgebras

We introduce now the main concept of this paper.

Definition 4.1 An infinitesimal BiHom-bialgebra is a 7-tuple (A, u, A, o, 5,1, w), with the prop-
erties that (A, u,a, ) is a BiHom-associative algebra, (A, A,1,w) is a BiHom-coassociative
coalgebra and the following conditions are satisfied, for all a,b € A:

Nop=(1@B)o(w®A)+(a®u)o(Asv) (1)
aoyYp=1Poa, aocw=woaqa, foyY=1pof, fow=wof, (4.2)
(a®@a)ocA=Aoqa, (BRL)oA=Aop, (4.3)
v(a-b) =v(a)-¥(b), wla-b)=w(a)- w(b). (4.4)

In terms of elements, the condition (41l can be rewritten as
Aa-b) =w(a) by @ B(ba) + alar) ® ag - Y(b). (4.5)
The above axioms are justified by the following result:

Lemma 4.2 If (A, u, A, o, B,%,w) is an infinitesimal BiHom-bialgebra, then A : A — A® A is
a derivation (in the usual sense) of A with values in the A-bimodule (A ® A,a ® o, ® (), in
which the left and the right A-actions are (for all a,b,c € A)

a-(b®c)=w(a) - b®p(c) and (b®c)-a=a(b)®c-Y(a). (4.6)

Proof. We prove that (A ® A,a ® «, 8 ® ) with the left and right actions defined above is an
A-bimodule. For a,a’,b,c € A, it is easy to check that (a®@a)(a-(b®c)) = ala)  ((a®@a)(b®c))
and (B® B)(a- (b®@c)) = B(a)  ((B® B)(b@ c)). We compute:

a(a) - (w(d') - b & B(c))
wa(a) - (w(d') - b) ® B2(c)
w(a-a') - Bb) ® B(c)

(a-a’)- (B(b) ® B(c)
(a-d)-(BeB)(b@c)).

Thus (A® A,a ® o, ® () is a left A-module. Similarly one proves that it is also a right
A-module. Finally, we compute:

(a-(b@c)) - Bd)

afa) - (- (b®c))

I IIE IIE IIE IIE

(w(a) - b® B(c)) - Bla’)
aw(a) - a(b) ® B(c) - ¥B(d)
w(a(a)) - a(b) @ B(c - (a’))
a(a) - (a(b) ® c-1(a’))
afa) - ((b®@c)-d).

Hence, (A® A,a® o, f ® () is indeed an A-bimodule. From (£3]) and (Z8]), we get A(a -b) =
a-A(b) + A(a) - b, that is A is a derivation. O

IIE IIE IIE IIE IIE

We show now how to obtain infinitesimal BiHom-bialgebras from infinitesimal bialgebras.
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Proposition 4.3 Let (A, p,A) be an infinitesimal bialgebra and let o, ,),w : A — A be
morphisms of algebras and coalgebras such that any two of them commute. Then A gy w) =
(A pi(a,p) = po(@® B), Apw) = (W) oA, a, B,9,w) is an infinitesimal BiHom-bialgebra,
called the Yau twist of (A, u, A).

Proof. The fact that (4, pi(a,8), @, 3) is a BiHom-associative algebra and (A, Ay ., ¥, w) is a
BiHom-coassociative coalgebra is known from [4]. It is easy to see that conditions (£.2)-(@4]) are
satisfied, so we only need to prove (). For simplicity, we denote pi(4, gy(a®b) = a*xb = a(a)-5(b)
and Ay ) (a) = ap) @ ajg) = w(a1) ® P(az), for all a,b € A. We compute:

w(a) * by @ B(bpy) + alap)) @ apy * ¥(b)
= w(a)*w(br) @ Brp(b2) + aw(ar) ® P(az) * P (b)
= aw(a) - fw(br) @ Bib(be) + aw(ar) @ ayp(az) - B1(D)
= w(a(a) - B(b1)) @ Bib(ba) + aw(ar) @ (alaz) - B(b))
)

= (w®y)(ala)-Bb1) @ B(b2) + afa1) ® a(az) - B(b))
= (wey)(ala)-B(b)1 ® B(b)2 + afa)1 ® ala)z - B(D))
= (weY)(Aa(a) - B(D)) = Apw)(axb),

finishing the proof. O

We recall the following well-known concept:

Definition 4.4 Let A be an algebra, 0,7 : A — A algebra maps and D : A — A a linear map.
We call D a (1,0)-derivation if D(a-b) = D(a) - 7(b) + o(a) - D(b), for all a,b € A.

Remark 4.5 Let (A, u, A, o, B,7,w) be an infinitesimal BiHom-bialgebra and define the linear
map D : A — A, D := pol, that is D(a) = ay - ag, for all a € A. Then D is a (B¢, aw)-
derivation. Indeed, by using [{-3]) and (I1) we can compute:

D(a-b) = p(w(a)- by ® B(b2) + alar) ® ag - (b))
= (w(a)-b) 'ﬂ(b2) + afar) - (a2 - ¥ (b))

(a) - (b1 - b2) + (a1 - az) - BY(b)

(a) - () D(a) - Bip(b), g.e.d.

We want to prove that one can associate a left BiHom-pre-Lie algebra to an infinitesimal
BiHom-bialgebra (A, u, A, «, 5,1,w). We need to guess the multiplication and the structure
maps of the left BiHom-pre-Lie algebra we are looking for. We proceed as follows. We assume
first that the infinitesimal BiHom-bialgebra A is BiHom-commutative. In this case, one can
check that the hypotheses of Proposition 2.7 are satisfied, for v = a?Byw, A = af, € = ida
and the map D defined by D(a) = aB¢(a;) - a’w(az), for all a € A. So, by Proposition 27, we
obtain a left BiHom-pre-Lie algebra (A, x,a?3, a?3%w), where the multiplication * is defined
by a*b = af(a) - D(b), which, by using BiHom-associativity and BiHom-commutativity, may
be expressed as follows:

axb = af(a)-D(b) = af(a) - (aBp(br) - a’w(by))
(B(a) - aBp(br)) - & Buw(be)
(B4 (b1) - a(a)) - @*Bw(by)

13
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= af%(b1) - (a(a) - a’w(b2)).
It turns out that this formula works also in the general case. Indeed, we have:

Theorem 4.6 Let (A, u, A, o, 8,9, w) be an infinitesimal BiHom-bialgebra. Define a new mul-
tiplication on A by

axb = aB (by1) - [a (a) - aPw (bg)] = [ﬂzw (1) -« (a)] -2 Bw (ba) .
Then (A, *,028,a?B%)w) is a left BiHom-pre-Lie algebra.

Proof. It is easy to see that o?f(z *y) = a?B(z) * &?B(y) and a?B2pw(z *y) = a?B2pw(x) *
a?B%puw(y), for all z,y € A. So we only need to check that, for all z,y, z € A, we have

(0?8 w (@) x ?B(y)) * o B2pw(z) — o' BPw() * (®B(y) * 2)
= (a®B*yw(y) x ?B(x)) * &2 F2pw(z) — o' Brhw(y) * (a®B(z) * 2).
For a,b,c € A, we compute:
(axb)xc = aB®P(a)-[alaxd) a®w(c)]

= af*(c1) - [a{aB® (b1) - [a(a) - o’w o'
= oy (er) - [{a®B% (br) - [0* (a) - @’w (Ba)]} - @*w ()],

hence
(@?B%pw(z) * a?B(y)) * a?B*hw(z)
= af*Y (o*BYw(21)) -
[{a2ﬁ2¢ (oz26(y1)) . [a2 (ozzﬁzmu(x)) cadw (a2ﬁ(y2))]} - oPw (ozzﬁzmu(zQ))]
= &*Bw(z1) - { [ B (1) - (o' B*Yw () - &°Bw (y2))] - o' BPwh(z2) } .
For elements s,t,w € A we have, by (4.3,
Alt-w) = w(t) w @ P(we) + alty) ® ta - Y(w),

and so we can compute, by using again (£5H):

A(s-(t-w)) = w

= w

and we use this formula to compute:

Abxc) = (a62 Y (e1) -
= w(ap? w<c1>) B*(0Pw (c2),)
b)y) - B(a’w (c2))

)
+a(af?y (61)1) ® af?y (c1); - (@ (b) - a’w(cz))
14
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= afw(cr) - [ow () - 0Pw (c2,)] ® B0 (c2,)
+aB?Yw (c1) - o? (b1) ® afB (b2) - &2 Byw (c2)
+a B (e1,) ® B (c1y) - (o) (b) - @Pdpw (c2)] -

Finally, we use this formula to compute:

ax(bxc)

= af?((bxc),) - [a(a) - Pw((bxc)y)]

= 04521/1 {aﬂ21/1w (c1) - [ (b) a’w (621)]} . [a (a) cqPwa? fPw (022)]
+af%yY [aﬂ21/1w (c1) - ] {a caPw [aﬁ (ba) - o Byw (62)]}
+af*p (?B%) (cry)) - [a (a) - o?w {aﬂ% (¢15) - [t (b) - @®yw (e2)] }]

= {afvap?yw (c1) - [af*Paw (b) - af*Pa’w (cz,)] } - [a(a) - o B20? (cz,)]
+ [aB*vaBYw (c1) - 04527/104 (b1)] - {a(a) - [@*waB (by) - @*wa’Byw (cz)] }
+a3p4y? (c1y) - [oz {a wa B2 (c1,) - [oz waap (b) - Qwaw (62)] }]

= {a?8%%w (1) - [o*B° ¢W( ) - o’ Bw (e2,)] } - [er(a) - o' B2 (e2,)]

+ [@2B'%w (c1) - B2 (b1)] - {a (@) - [aPwp (b2) - o Bypw? (c2)] }

+a3p4y? (c1y) - [oz {a3621/)w (c1,) - [ 3epw (d) - atpw? (02)] }] .

By using this formula for a * (b * ¢), we can compute:
ot Bhw (@) * (a?B(y) * 2)

= {a?8%’w (1) - [@®Bw (a®B(y)) - o*Bpw (22,)] } - [a (o BPow () - o' BPw? (22,)]
+ [0?BYPw (21) - & B2 (PB(11))] - {o (' BPyw()) - [PwB (a®B(y2)) - o' Brpw? (22)] }
+a? B (21)) - [ (@' BPYw(x)) - {o®BPYw (21,) - [P dw (02B(y)) - a'pw? (22)] }]
= {a?8%%w (1) - [@'BPYw(y) - o’ B Yw (22,)] } - [0°BPYw(z) - o' B2w? (22,)]
+ [0®BPw (21) - & BP(y1)] - {@°BPYpw(z) - [0°Bw (32) - o Byw? (22)] }
+a? B (21,) - [a 5ﬁ31/1w (2) - {0’ B (21,) - [@”Brw(y) - a'pw? (22)] }] -

We apply repeatedly the BiHom-associativity condition to compute the second term in this sum:
(2822w (21) - &° B39 (y1)] - {o®BPpw(z) - [0®B%w (y2) - o* Bw? (22)] }
= @’ (n1) - [@* () - {o’BYw(@) - [0”Bw (1) - a'vw® (22)] }]
= o’ f1%0 (21) - [a° B {[ 1w () - o Buw (y2)] - o Byw? (22) }]
a’glpPo (21) [{a453 )+ [0 B%pw(z) - o Bw (12)] } - ' B2y® (22)]
and this coincides with the expression we obtained before for (a?3%yw(x) *a?B(y)) * a? B2yw(z).
Thus the only thing that remains to be proved is that the expression
{o®B%%w (21) - [a" BP0 (y) - @* B20w (23,)] } - [0” BP0w(2) - o 7w (22,)]
+a’ 5% (21) - [@° BPw(x) - {0’ B2yw (21,) - [@” Byw(y) - atyw? (22)] }]

is symmetric in  and y. We compute, by applying both the BiHom-associativity condition and
the BiHom-coassociativity condition (A ® ¢) o A = (w® A) o A:
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{02820 (21) - [0 B30w(y) - 0* B20w (22,)] } - [@° B3 0w (x) - o BPw? (22,)]
21) - { [0 B yw(y) - 0® 82w (22,)] - [0 BHw(z) - o Bw? (22,)] }
) [a

— a3/84¢2w(
= o?sM%w (z1 Sﬂgww {a352¢w (22,) - [ 5B¢w(az)-a4w2 (222)] }]
o Bh? (21,) - [0 BPpw(y) - { &’ Bw (21,) - [0°Brw(x) - a'pw® (22)] }]
so that
{a?BYw (21) - [0 BPYw(y) - ®B2Yw (22,)] } - [@° BPopw(z) - o' BPw? (22,)]
+a M (z1,) - [0 B w(z) - {a®BYw (21,) - [@°Brhw(y) - a'vw® (22)] }]
= a*BM? (21,) - [o®BPPw(y) {of’ﬁ Yw (z1,) - [ Bw(z) - atypw? (22)] }]
+a’ % (z1,) - [a 55% {a?Byw (21,) - [0 Bpw(y) - a'yuw® (22)] }]
which is obviously symmetric in z and y. O

5 Quasitriangular infinitesimal BiHom-bialgebras

We begin this section with a result of independent interest.

Proposition 5.1 Let (A, u,«,3) be a BiHom-associative algebra and let n > 2 be a natural
number. Consider the following left and right actions of A on A®™, for all a,by,bo,--- ,b, € A:

ae (b1 @by ®---®by) = ala) by ®B(b2) @ ® B(bn),
1 ®b®@:- ®@by)ea=a(b) @ @alb,—1) @b, - B(a).

Then with these actions (A®™, a®™ ™) is an A-bimodule.
Proof. A straightforward computation left to the reader. O

We will be interested in the case n = 3, so we have the following actions of A on A ® A ® A:

ae (z®y®z)=ala) z® B(y) @ B(z2), (5.1)
(z@y®z)ea=alx)®aly) ®z-L(a).

Proposition 5.2 Let (A, p,a,B) be a BiHom-associative algebra and let r € A ® A be an
element, with notation r =), x; ® y;, such that (a @ a)(r) =r = (B ® B)(r). Define the linear
map

At A— AR A, Ar(a):Za(mi)@)yi-a—Za-xi@B(yi), V acA

7 7

Then we have (o ® @) o A, = Ay oa, (B® B)o A, = A, of and, if we denote as usual
A,(a) = a1 ® ag, for a € A, the following identity holds:

AT(CL -b) = a(a) -b1 ® 5(52) + a(al) X as - ,B(b), YV a,be A.
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Proof. The fact that (a ® a) o A, = Ao and (B® ) o A, = A, o 3 follows immediately from
the condition (o ® «a)(r) =r = (8 ® B)(r). Now we compute:

afa) - by ® B(b2) + afa1) ® az - B(b)

= Y afa)-alz) @By -b) — Y _ala) - (b-z;) @ B(B(y:))

i

+Za(a(ﬂfz’)) ® (yi-a)-B) = _ola-z;) @ By:) - Bb)

i

= Y @) @aly) (a-b) = (a-b)-Bx;) @ B (y:)

i

— Za(xi) ®y;-(a-b) — Z(a'b)'wz’ ® B(yi),

i

where for the last equality we used the fact that (a ® a)(r) = r = (8 ® B)(r). The expression
we obtained is exactly A, (a - b). O

We recall the following notation introduced in [11]:

Definition 5.3 Let (A, 1, o, B) be a BiHom-associative algebra and let r =5 . 2; @ y; € A® A
be such that (a @ a)(r) =r = (B® B)(r). We define the following elements in A®@ A® A:

riaras = Y olxs) @ yi - 35 ® Bly;),

Z"j

riarie = Y w2 © By;) @ Byi),
Z"j

rogris = Y olxs) ® ) ® yj - i,
Z"j

A(r) = ri3ri2 — rigres + 23713

Proposition 5.4 Let (A, i, o, ) be a BiHom-associative algebra and letr =), 2;®y; € A®A
be such that (a @ a)(r) =r = (B® B)(r). Then we have that (A, @ f) o A, = (@ ® Ay) o A, if
and only if ae A(r) = A(r) ea for all a € A, where the actions e are defined by {5.1]) and (5.2).

Proof. We compute, for a € A:
(Ar @ B)(Ar(a))

= A epQal)eya-) o ni@By)

(2

= ZAr(am)) ® B(y;) - Bla) — Z Ar(a- ;) ® B (ys)
= > a(zy) @y; - alz) @ By) - Bla) = D olas) - 25 @ Bly;) @ Byi) - Bla)

i,9 2
- Za(xj) ®y; - (a-z) @B (y;) + Z(a cx;) - 5 @ Bly;) @ B2 (yi)
i3 2

PO S a(ag) @ gy - ale) @ Blys) - Bla) — 3 alei) 25 @ Bly;) @ Blys) - Bla)

1,J 1,J
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=D alz) @y (o m)@ B y) + Y _(a-mi) - Blay) @ B(y;) © B (y:)
5 i
CELIT S aeg) @y ale) @ B - Bla) - D alw) 3@ B) © Blu) - Ba)
—’]Z o’ () ® a(y;) - (a - 2:) @ B*(y:) :Z(“ i) - Blay) ® B (y;) @ B (i)
N Zva(“;ﬂ‘) ® ;- olz) ® Alus) - Bla) - Z;v](wz-) ;@ Bly;) © Blyi) - Bla)
—’]Zaz(wj)®(yj- ) - Blzi) © B2 (i) +]Z (z; - 2;) ® B2(y;) ® B(i),

2%

where for the last equality we applied two times the BiHom-associativity condition, and

(@A) (A (a))

= (a®Ar)(Za(xi)®yi'G—Za'xi@’ﬁ(%))

i

R A OEENIRES SEORIOEEET)

7

_ Za (z:) @ alz;) @ y; - (i - Za () ) x5 @ B(y;)
—Z a(z;) ® alz;) @ y; - Bys) +Z a(zi) @ By) - x5 © Bly;)
(a)(r)=r Za ) ® 02(z;) ® aly;) - (v Za 1) ® (vi - @) 25 @ Bly;)
—Z a(z;) ® olzs) @ y; - Bys) +Z a(zi) ® Blyi) -z ® Bly;)

BRB)(r)=r
(BoA)r) Za (25) @ @*(x5) @ aly;) - (vi Za 7i) ® (i a) - Blay) © B (y)

—Z a(z;) ® a(z;) @ yj - By;) +Z afr;) @ Byi) - 25 @ B(y;)-

So, by using these formulae, we have (A, ® 8)(A,(a)) = (¢ ® A)(Ar(a)) if and only if

> alz) @yj - alz) @ Byi) - Bla) = Y alas) - a5 @ Blys) @ Blwi) - Bla)

i,J i,J
+Z (i - ;) ® 5 (y5) © 52 (y:)
—Za (1) ® o (2)) @ alyy) - (yi - @) = Y a(a) - alw;) ® alz;) @ y; - By:)
2

+Z a(z;) @ By:) - x5 @ B(yy),
which, by using one more time the BiHom-associativity condition, the fact that (o ® «)(r) =
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(B ® B)(r) = r and separating the terms, may be rewritten as
> ala) - (- wy) @ B y;) @ B2(yi) + Y ala) - alzi) ® aB(z;) ® By; - vi)
2% 2%

DCRIGEERREL
Za () @ a*(x;) ® (y; - i) +Z a(z; - z5) ® af(y;) © Byi) - Ba)

=D o (@) @ aly; @) @ Bly) o
i7j
and this is exactly the condition a ® A(r) = A(r) e a. O

As a consequence of the previous results, we obtain:

Proposition 5.5 Let (A, i, o, f) be a BiHom-associative algebra and letr =) . 2;®y; € AQ A
be such that (a @ a)(r) =r = (B® B)(r) and a e A(r) = A(r) e a, for all a € A. Then, if we
define the linear map

Ari A= AQA Aa) =D a(@)@yi-a—Y a-z;@P(y), V acA,
then (A, p, Ar, o, B, = B,w = «) is an infinitesimal BiHom-bialgebra.

Definition 5.6 An infinitesimal BiHom-bialgebra as in Proposition is called a coboundary
infinitesimal BiHom-bialgebra.

Definition 5.7 A coboundary infinitesimal BiHom-bialgebra for which A(r) = 0 is called a
quasitriangular infinitesimal BiHom-bialgebra.

These concepts extend Aguiar’s classical concepts of coboundary and quasitriangular in-
finitesimal bialgebras (see [1], [2]), as well as their Hom-versions introduced by Yau in [15].
We recall from [11] that the equation A(r) =0, i.e.

T13T12 — T12723 + 123713 = 0, (5.3)

or, more concretely,

Za($i) Ry ;@ By;) = Z{xi 2y ® By;) @ Bys) + alz:) @ a(z;) @y -y}, (5.4)
i7j i7]
is called the associative BiHom-Yang-Baxter equation.
We have the following characterization of quasitriangular infinitesimal BiHom-bialgebras (ex-
tending, up to a sign convention, the ones for quasitriangular infinitesimal bialgebras in [I] and
for quasitriangular infinitesimal Hom-bialgebras in [15]).

Proposition 5.8 Let (A, pu, Ar,a, 3,9 = B,w = ) be a quasitriangular infinitesimal BiHom-
bialgebra and denote A = A, (r=>, 2,0y, € A® A). Then:
(1) Ala) =), a(z) Quyi-a—Y ,a-x;® B(y;), for alla € A;
(it) (A ® B)(r) = rasriz;
(’i’i’i) (a & A)(T) = —713712.

Conversely, if an infinitesimal BiHom-bialgebra (A, u, A, o, B, = B,w = «) satisfies the
relations (i), (ii) and (iii) for somer =), x;Qy; € A®A with (a®a)(r) =r = (B®P)(r), then
A=A, and (A, u, A, 0, 5,9 = B,w = ) is a quasitriangular infinitesimal BiHom-bialgebra.
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Proof. We prove first the direct implication. (i) is just the definition of A,. We prove (ii):

(A®p)(r) = ZA ) @ B(ys)
= Z(a(xj)®yj'xi—xi-iﬂj@?ﬁ(yj))@ﬁ(yi)
= Z (x])®y] x@@ﬁ yz Z$Z $j®ﬁ(y])®ﬁ(yl)

= 12723 — T'13T12

723713

The proof of (iii) is similar and left to the reader.

For the converse, it is enough if we know (i) and (ii) (or (i) and (iii)), because (i) says anyway
that A is of the form A, with r = >, 2; ® y; € A ® A, and the computation performed for
(i) up to the last step can be done also now, and we get (A ® 3)(r) = 712123 — r13712, and so
(11) implies 712723 — 13712 = 723713, that is (IZ):{D hOldS, ie. (A,,U,Ar,()é,ﬁ,ﬂ) = 5,&) = Oé) is a
quasitriangular infinitesimal BiHom-bialgebra. O

We recall some other facts from [I1].

Definition 5.9 ([11]) Let (A, u, o, B) be a BiHom-associative algebra and let R: A — A be a
linear map commuting with o and 8. We call R an af-Rota-Baxter operator if

R(af(a)) - R(aB(b)) = R(aB(a) - R(b) + R(a) - af(b)), V a,be A. (5.5)

Proposition 5.10 ([11]) Let (A, pu, o, 8) be a BiHom-associative algebra and let R : A — A
be an af-Rota-Baxter operator. Let n : A — A be a linear map, commuting with o, 3, R and
having the property that n(z -y) = n(x) - n(y), for all x,y € A. Define new operations on A by

z<y=oaB(z) Rn(y) and z>y=R(z) apfn(y),
for all ,y € A. Then (A, <, =,a?B,a3?n) is a BiHom-dendriform algebra.

Consequently, by using Proposition [[L.8] we obtain:

Corollary 5.11 In the hypotheses of Proposition [5.10 and assuming that o, 8,1 are bijective,
if we define a new operation on A by

zxy=x-y— (a7 Bn(y) < (@B~ (z)) = R(z) - aBnly) — B*n(y) - Rap ™ (z),
for all z,y € A, then (A,*,a?B,a%n) is a left BiHom-pre-Lie algebra.

Theorem 5.12 ([11]) Let (A, p, o, B) be a BiHom-associative algebra and let r =), x; @ y; €
A® A be such that (a @ a)(r) =r = (B® B)(r) and r is a solution of the associative BiHom-
Yang-Baxter equation. Define the linear map

R:A— A, R(a)=) af@:) (e o) =) (B (x:)-a)-a®B(y), V acA

i i
Then R is an af-Rota-Bazxter operator.
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Let now (A, u, A, o, 8,9 = B,w = «) be a quasitriangular infinitesimal BiHom-bialgebra.
By applying Theorem 6], we obtain a BiHom-pre-Lie algebra (A, *,a?3, a333), where the mul-
tiplication * becomes:

af(br) - (afa) - o (by))
= Z af®(a(z;)) - (a(a) - & (y; - b)) — Z af(b-x) - (ala) - *(B(y:)))

= Y a8 (@) - (o)1) = 3 af(b- ) - (ala) - *Bl).

a*b

On the other hand, to (A, u, A,,«, 5,1 = f,w = a) we can associate the a-Rota-Baxter
operator R as in Theorem [5.12] from which, by using Proposition .10, and choosing n = o?f
there, we obtain a BiHom-dendriform algebra (A4, <,>=,a?3,a33%). Assume now that more-
over a and f are bijective. Then, by Corollary [5.11] we obtain a left BiHom-pre-Lie algebra
(A, x,a%B,a3B3), whose multiplication is

axb = R(a) o*B() — a2B(b) - Raf~\(a))
= YlaB@) (0 a*w)} - a*B )
- St a8 (@) (@87 @) i)}
> a8 (e {(a- o)) -0’80} - Nolas'0) a8 (a0} - {ala) -’80}
= > a?8e) - {ala) o)) - zi:a63(b ;) - {ala) - *B(y:)}.

So, the BiHom-pre-Lie algebras (4, *,a?3,a?3%) and (A,*,a?B,a333) coincide. This extends
Aguiar’s classical result from [3], whose Hom-version was obtained in [II], even without the
restriction concerning the bijectivity of the structure map.
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