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Abstract We deal with the following Cauchy problem for a Schrödinger
equation:

Dtu−∆u+

n∑
j=1

aj(t, x)Dxju+ b(t, x)u = 0, u(0, x) = g(x).

We assume a decay condition of type |x|−σ, σ ∈ (0, 1), on the imaginary part of
the coefficients aj of the convection term for large values of |x|. This condition
is known to produce a unique solution with Gevrey regularity of index s ≥ 1
and loss of an infinite number of derivatives with respect to the data for every
s ≤ 1

1−σ . In this paper we consider the case s > 1
1−σ , where, in general, Gevrey

ill-posedness holds. We explain how the space where a unique solution exists
depends on the decay and regularity of an initial data in Hm, m ≥ 0. As a
byproduct, we show that a decay condition on data in Hm produces a solution
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with (at least locally) the same regularity as the data, but with an expected
different behavior as |x| → ∞.
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1 Introduction and main results

In this paper we consider the Cauchy problem{
Su = 0, (t, x) ∈ [0, T ]× Rn,
u(0, x) = g(x), x ∈ Rn, (1)

for the operator

S = Dt −∆+

n∑
j=1

aj(t, x)Dxj + b(t, x), (2)

where aj , b ∈ C([0, T ];B∞(Rn)). Moreover, we suppose the condition

|=aj(t, x)| ≤ C

〈x〉σ
with σ ∈ (0, 1), (t, x) ∈ [0, T ]× Rn, (3)

where we use the notation 〈·〉2 = 1 + | · |2. Mainly, we are looking for well-
posedness of the Cauchy problem (1)-(3) in suitable spaces of functions of
Gevrey regularity. We say that (1) is globally in time well posed in the couple
of spaces of functions (or distributions) (X,Y ) if for every choice of g ∈ X
there exists a unique solution u ∈ C([0, T ], Y ) and for every t ∈ [0, T ] we have
‖u(t, ·)‖Y ≤ Ct‖g‖X for a function Ct ∈ C[0, T ]; we are going to say that (1)
is locally in time well posed in (X,Y ) if there exists T ∗ ≤ T such that there
exists a unique solution u ∈ C([0, T ∗], Y ) and for every t ∈ [0, T ∗] we have
‖u(t, ·)‖Y ≤ Ct‖g‖X for a function Ct ∈ C[0, T ∗].
It is well-known, see [8], that the condition (3) allows to prove that if the
coefficients of S belong to the Gevrey space Gs0 , s0 <

1
1−σ , then the Cauchy

problem (1) is globally in time well-posed in Gevrey spaces Gs for s0 ≤ s <
1

1−σ . In the critical case s = 1
1−σ , one has local in time well-posedness of the

Cauchy problem (1), only. The Cauchy problem (1) is not well-posed, neither
in H∞ nor in Gs for s > 1

1−σ . Here we refer to the necessity results from [4]
and [3].
We recall that, given s > 1, the Gevrey class Gs(Rn) consists of C∞ functions
f = f(x) such that

|∂αx f(x)| ≤ CA|α||α|!s for all x ∈ Rn, α ∈ Nn

and with positive constants A and C. Suitable subclasses of Gs(Rn) consist

of functions f ∈ L2(Rn) such that eρ〈D〉
1/s

f ∈ L2(Rn) for some ρ > 0. In [8]
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the authors show that if g ∈ Hm is such that eρ〈D〉
1/s

g ∈ Hm for some m ∈ R
and ρ > 0, then the Cauchy problem admits a unique solution u such that

eτ〈D〉
1/s

u ∈ Hm at any t ∈ [0, T ] for a suitable τ = τ(t) ≤ ρ. Since eτ〈D〉
1/s

is a pseudo-differential operator of infinite order, the solution presents, with
respect to the data, a loss of regularity, usually referred to as “loss of (an
infinite number of) derivatives” in the mathematical literature.
The aim of the present paper is to give an answer to the following two
questions:

Q1: Let us suppose that the data g belongs to a weighted Hm space with m ≥ 0.
Can we obtain at least a local (in time) Sobolev solution which is valued
in an, in general, other weighted Hm space? If yes, then the regularities
of the solution and the data with respect to the spatial variables coincide.
So, it turns out that the solution is valued in Hm

loc with respect to x.
Q2: What about well-posedness results in spaces with Gevrey regularity Gs

with s > 1
1−σ ?

As far as the authors know, the smoothing effect coming from decay of Cauchy
data has been studied in the literature but not from the point of view of well-
posedness, at least in question Q2. Some results concerning question Q1 are
available under some stronger conditions with respect to (3). We describe
hereafter briefly the state-of-the-art.

– In the particular case aj ≡ 0 for j = 1, · · · , n, in [5] the author proved
that if g belongs to the weighted L2 space with the weight 〈x〉k, then there
exists a uniquely determined Sobolev solution u with a better regularity in
x, but it belongs to a weighted Sobolev space with weight 〈x〉−k instead.
More precisely,

〈x〉kg ∈ H0 with k > 0 implies 〈x〉−ku(t, ·) ∈ Hk for all t > 0.

The Hk norm of 〈x〉−ku(t, ·) blows up as t−k for t → 0+. We have a
smoothing effect but no well-posedness.

– In [7] the author considered the case 1 ≤ s < 1
1−σ and proved that, under

assumption (3) and the additional decay assumption

|∂αx aj(t, x)| ≤ C(ρ〈x〉)−|α||α|!s,

one has

ek〈x〉
1−σ

g ∈ H0 with k > 0 implies

|∂αx u(t, ·) | ≤ C(ρ|t|)−|α|α!sec〈x〉
1−σ

for all t > 0

with a suitable positive constant c. The Gevrey semi-norms of the classical
solutions blow up as t→ 0+. The smoothing effect is not due to any well-
posedness result. We notice also that a decay behavior is assumed for all
spatial derivatives of the coefficients.
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– In [1] the authors proved that, in the framework of the SG calculus (so
with coefficients aj , b possibly admitting an algebraic growth with respect
to x) and if (3) holds with σ = 1, the assumption that the data g belongs
to a Sobolev space with weight 〈x〉k gives a unique Sobolev solution with
the same regularity as the data, but from another weighted space. More
precisely,1

〈x〉kg ∈ Hm, m ≥ 0, implies 〈x〉k−cu(t, ·) ∈ Hm for all t ∈ [0, T ]

with a suitable c > 0 with bounded norm with respect to t ∈ [0, T ]. We
recall that the SG (Symbol Global) calculus requires symbol-like behavior
of the coefficients also with respect to the spatial variables.

– A partial answer to question Q1 has been given, again in the framework
of the SG calculus, as a byproduct of [2]. Under the assumption

aj , b ∈ C
(
[0, T ], Gs0

)
, s0 <

1

1− σ
and

∣∣∂βx=aj(t, x)
∣∣ ≤ C |β|+1β!s0〈x〉−σ−|β|

we have

ek〈x〉
1−σ

g ∈ Hm, m ≥ 0, k > 0 implies

e(k−c)〈x〉
1
s u(t, ·) ∈ Hm for all t ∈ [0, T ]

with a suitable c > 0 and for every s ∈ [s0,
1

1−σ ) with bounded norm
with respect to t ∈ [0, T ]. This means that, the description of data from a
weighted Sobolev space with a suitable exponential weight gives a uniquely
determined Sobolev solution valued in the same Sobolev space but with
either a slower increasing exponential weight (if c < k) or an exponentially
decreasing weight (if c > k) as |x| → ∞.

In the present paper we are going to state and prove our main result, Theorem
1, which gives an answer to question Q2 and provides, as a corollary, the
answer to question Q1, see Corollary 1 here below.

To state our main result we introduce the following function spaces.

Definition 1 For given m ≥ 0, σ ∈ (0, 1), s1, s2 ∈ ( 1
1−σ ,∞], A > 0, ρ > 0,

we define

As1,s2A,ρ (Hm) :=
{
g ∈ Hm : eA〈x〉

1−σ− 1
s2 〈Dx〉

1
s2
h +ρ〈Dx〉

1
s1
h g ∈ Hm

}
, (4)

and the projective and inductive limit of these spaces, respectively, by

As1,s2(Hm) =
⋂

A,ρ>0

As1,s2A,ρ (Hm) and As1,s2(Hm) =
⋃

A,ρ>0

As1,s2A,ρ (Hm).

1 We restrict ourselves to Sobolev solutions with respect to the spatial variables. For this
reason we explain the result for m ≥ 0. Several steps of our approach can be generalized to
m ∈ R, too.
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Moreover, for given s1 > 1 we define for every s2 ∈ [s1,∞], A > 0, ρ ≥ 0 the
space

Bs1,s2A,ρ (Hm) :=
{
g ∈ (As1,s2(Hm))∗ : e−A〈x〉

1−σ− 1
s2 〈Dx〉

1
s2
h +ρ〈Dx〉

1
s1
h g ∈ Hm

}
. (5)

Here (As1,s2(Hm))∗ denotes the dual space to As1,s2(Hm). Finally, we define

Bs1,s2(Hm) =
⋃

A>0,ρ≥0

Bs1,s2A,ρ (Hm).

Remark 1 Notice that in the limit case 1
s1

= 1
s2

= 0 we get

A∞,∞(Hm) =
{
g ∈ Hm : eA〈x〉

1−σ
g ∈ Hm for some A > 0

}
,

a weighted space of Hm−functions with an exponentially increasing weight at
infinity, and

B∞,∞(Hm) = {g ∈ Hm
loc : e−A〈x〉

1−σ
g ∈ Hm for some A > 0},

a weighted space of Hm−functions with an exponentially decaying weight at
infinity.

We now present the main result of this paper, which gives an answer to
question Q2.

Theorem 1 Assume that the data g ∈ As1,s2A,ρ (Hm) for suitable m ≥ 0, σ ∈
(0, 1), s1, s2 ∈ ( 1

1−σ ,∞], s2 ≥ s1, and A, ρ > 0. Then the Cauchy problem

Dtu−∆u+

n∑
j=1

aj(t, x)Dxju+ b(t, x)u = 0, u(0, x) = g(x),

with aj , b ∈ C([0, T ], G
1

1−σ ), where the coefficients aj satisfy (3) for j =
1, · · · , n, admits a uniquely determined local (in time) Sobolev solution u such
that for every t ∈ [0, T ∗], T ∗ ≤ T small enough, we have

u(t, ·) ∈
⋂

1
s∈[0,

1
s1

]

Bs1,s(Hm).

Moreover, for every s ≥ s1 there exists a function Ct continuous on [0, T ∗]
such that for every t ∈ [0, T ∗] the following energy estimate holds:

‖u(t, ·)‖Bs1,s
A,M(T−t)(H

m) ≤ Ct‖g‖As1,s2A,ρ (Hm). (6)

We remark that the estimate (6) gives local in time well posedness of (1)
in the couple of spaces (As1,s2 ,Bs1,s) for every s ≥ s1, s2 ≥ s1 and s1, s2 ∈
( 1
1−σ ,∞].

If we choose in (4), (5) the parameters s1, s2 formally as 1
s1

= 1
s2

= 0, then
we obtain from Theorem 1 the following statement.
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Corollary 1 If the data g ∈ Hm, m ≥ 0 is such that eA〈x〉
1−σ

g ∈ Hm for a
positive constant A, then the Cauchy problem

Dtu−∆u+

n∑
j=1

aj(t, x)Dxju+ b(t, x)u = 0, u(0, x) = g(x),

with aj , b ∈ C([0, T ], G
1

1−σ ), where the coefficients aj satisfy (3) for j =
1, · · · , n, admits a uniquely determined local (in time) Sobolev solution u such

that for every t ∈ [0, T ∗], T ∗ ≤ T small enough, we have e−A
′〈x〉1−σu(t, ·) ∈

Hm, where A′ > 0 is a suitable constant. Consequently, u(t, ·) belongs to
Hm
loc(Rn). Moreover, there exists a positive constant M and a function Ct

continuous on [0, T ∗] such that for every t ∈ [0, T ∗]

‖e(A−4M)〈x〉1−σu(t, ·)‖Hm ≤ Ct‖eA〈x〉
1−σ

g‖Hm ,

i.e. the Cauchy problem is locally in time well posed in weighted Sobolev spaces.

The result of Corollary 1, which is an answer to question Q1, implies that
if the data g belongs to a Sobolev space Hm with an exponentially increasing
weight, then the Sobolev solution is still valued in the same Sobolev space
with an exponentially decreasing weight for |x| → ∞.

Remark 2 We remark that, in comparison with [2] in the case of uniformly
bounded in x coefficients and in comparison with [7], we obtain by Corollary
1 a Sobolev solution valued in Hm

loc without any assumption on the spatial
derivatives of =aj . Furthermore, in comparison with [7], where a pointwise
estimate for u is given with a time-dependent constant tending to infinity for
t→ +0, we have to mention that here, since we do not look for smoothing, we
obtain for the solution u an energy estimate on the whole interval [0, T ∗].

To conclude this section, we point out that in the particular case s2 = ∞
our main result reads as follows:

Corollary 2 Assume that the data g ∈ Hm, m ≥ 0, is such that

eA〈x〉
1−σ+ρ〈Dx〉

1
s1
h g ∈ Hm

for given σ ∈ (0, 1), s1 ∈ ( 1
1−σ ,∞], A, ρ > 0. Then the Cauchy problem

Dtu−∆u+

n∑
j=1

aj(t, x)Dxju+ b(t, x)u = 0, u(0, x) = g(x),

with aj , b ∈ C([0, T ], G
1

1−σ ), aj satisfying (3) for j = 1, · · · , n, admits a
uniquely determined local (in time) Sobolev solution u such that for every
t ∈ [0, T ∗], T ∗ ≤ T small enough, we have that

u(t, ·) ∈
⋂

1
s∈[0,

1
s1

]

Bs1,s(Hm).
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In particular, taking s =∞ we get

e−A〈x〉
1−σ+ρ′〈Dx〉

1
s1
h u(t, ·) ∈ Hm

for a suitable positive ρ′. Moreover, there exists a function Ct continuous on
[0, T ∗] such that for every t ∈ [0, T ∗] the following estimate holds:

‖e−A〈x〉
1−σ+ρ′〈Dx〉

1
s1
h u(t, ·)‖Hm ≤ Ct‖eA〈x〉

1−σ+ρ〈Dx〉
1
s1
h g‖Hm . (7)

Remark 3 We remark that Corollary 2 states that if we start with a data
having Gevrey-type regularity of exponent s1 and belonging to a weighted
space with exponentially increasing weight eA〈x〉

1−σ
, we find a unique solution

with the same Gevrey regularity belonging to a weighted space with expo-
nentially decreasing weight e−A〈x〉

1−σ
for every s1 > 1/(1 − σ). This result is

consistent with the one obtained in [2] for the critical case s = 1
1−σ . We can

so overcome the critical index 1/(1 − σ) for Gs well posedness by allowing a
suitable loss of asymptotic behavior as |x| → ∞ in the used weights.

Remark 4 We believe that this loss of asymptotic behavior is sharp in the
sense that a smaller loss of asymptotic behavior may lead to a non well posed
Cauchy problem in suitable Gevrey classes. Indeed, in a forthcoming paper we
aim to construct a Cauchy data g ∈ Hm such that

eA〈x〉
1−α+ρ〈D〉

1
s1
h g ∈ Hm for some σ < α < 1

but for every s1 ∈ ( 1
1−σ ,

1
1−α ] we have e−A

′〈x〉1−α+ρ′〈D〉
1
s1
h u(t, ·) /∈ Hm.

A result of this type would confirm that the “extreme” loss of behavior (from

the weight eA〈x〉
1−σ

to the weight eA〈x〉
1−σ

) that we observe in Corollary 2
(and, of course, in Theorem 1) is necessary to gain, by assuming a decay on
the data, well posedenss in Gs also for s > 1/(1− σ).

The strategy of the proof of Theorem 1 (and, with minor changes, of the
two corollaries) is the following:

– We perform the change of variable

v(t, x) = eΛ(t, x,D)u(t, x),

where eΛ = op(eΛ(t,x,ξ)) is a pseudodifferential operator of infinite order
with symbol eΛ(t,x,ξ), constructed in a way such that the Cauchy problem
SΛv = 0, v(0) = gΛ is equivalent to (1). It has data gΛ ∈ Hm and SΛ has
the structure

SΛ = Dt −4x +

n∑
j=1

{
aj(t, x)Dxj + 2iop((∂xjΛ)ξj)

}
+iop(∂tΛ) + r1−σ(t, x,D) + r0(t, x,D)

=: Dt −4x − iAΛ(t, x,D), (8)

where r1−σ and r0 are pseudodifferential operators of order 1− σ and r0,
respectively.
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– By a correct choice of Λ, while writing an energy estimate for v it is possible
to use the contribution coming from

∑n
j=1 2iop((∂xjΛ)ξj) to compensate

the contribution coming from
∑n
j=1 aj(t, x)Dxj and to use the contribution

coming from iop(∂tΛ) to compensate the contribution coming from r1−σ,
obtaining that

2<〈AΛ(t, x,D)v, v〉 ≥ 0, (9)

that is, the Cauchy problem for v is well posed in Sobolev spaces.
– The inverse change of variable u = (eΛ)−1v gives the solution to the original

Cauchy problem.

The construction of the correct function Λ is the crux of the matter, and it is
quite technical. Indeed, several features are required for Λ and the transfor-
mation needs obviously to be invertible. The symbol Λ will be of the form

Λ(t, x, ξ) = Λ̃(t, x, ξ) +M(T − t)〈ξ〉
1
s1

h (10)

with M > 0 large, to be chosen at the end of the proof to get (9), where the
second term in (10) rules the Gevrey regularity of the solution and the first

one, which rules the behavior at infinity, is constructed in such a way that eΛ̃

is invertible (for h ≥ 1 large enough and T ≤ T ∗ small enough). Moreover, it
satisfies the crucial inequality

∂tΛ(t, x, ξ) + 2

n∑
j=1

ξj∂xjΛ(t, x, ξ) ≤ −M〈x〉−σ〈ξ〉h.

This inequality will allow us to use the new terms appearing in SΛ for the
compensation procedure described above. Notice that the restriction to a

subinterval [0, T ∗] is needed for the invertibility of eΛ̃. Finally, the symbol

Λ̃ that we construct has a special behavior of type 〈x〉1−σ− 1
s 〈ξ〉

1
s

h for every
0 ≤ 1

s ≤ 1 − σ. This particular behavior is very useful in the proof of our

theorems, since we can on one hand think that Λ̃ behaves like 〈ξ〉1−σh when we
perform the change of variable (so we can apply the well established theory for

symbols uniformly bounded in space to compute the conjugation eΛ̃SΛ(eΛ̃)−1),
and on the other hand we can think that Λ̃ behaves like 〈x〉1−σ when we

recapture u = e−M(T−t)〈Dx〉
1/s1
h (eΛ̃)−1v, obtaining a solution v with no loss of

regularity, but possibly different behavior as |x| → ∞.
The paper is structured as follows:

– In Section 2 we present a class of symbols with Gevrey regularity, the
corresponding class of pseudodifferential operators, and the class of Gevrey-
Sobolev spaces, where these operators act continuously in suitable scales of
spaces. Moreover, we state the invertibility of operators of infinite order of
the form eΛ and we describe the structure of the conjugation eΛS(eΛ)−1.

– In Section 3 we perform the change of variable, constructing Λ, checking
its invertibility and deriving explicitly the equivalent Cauchy problem.
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– Section 4 is devoted to a crucial result, Lemma 1, which states the continuity
of the maps eΛ : As1,s2 −→ Hm and (eΛ)−1 : Hm −→ Bs1,s. Moreover, we
give the proof of the main theorem and of the corollaries. The continuity
of eΛ will allow us to study the Cauchy problem for v in Sobolev spaces,
the continuity of (eΛ)−1 will provide the space of well posedness for the
original Cauchy problem.

A discussion about the characterization of As1,s2 and Bs1,s spaces via Fourier
transform concludes the paper.

2 Preliminaries

In what follows, we are going to consider for m ∈ R and s ≥ 1 symbols of
Gevrey regularity in the following sense: we say that a given C∞(R2n) function
a = a(x, ξ) belongs to Sms (Rn) if it satisfies

|∂αξ ∂βxa(x, ξ)| ≤ ChA|α|+|β||α+ β|!s〈ξ〉m−|α|h , (x, ξ) ∈ R2n, α, β ∈ Zn+, (11)

for some constants h > 0, Ch > 0 and A > 1. Here and in the following we
use the notation 〈ξ〉2h := h2 + |ξ|2. The space Sms (Rn) is a limit space in the
following sense:

Sms (Rn) := lim
←

`→+∞

Sms,`(Rn) with Sms,`(Rn) := lim
→

A→+∞

Sms,`,A(Rn).

Here Sms,A,`(Rn) denotes the Banach space of all symbols satisfying the conditions
such that

|a|m,s,A,` := sup
|α+β|≤`

sup
x,ξ

∣∣∂αξ ∂βxa(x, ξ)
∣∣A−|α|−|β|(|α|+ |β|)!−s〈ξ〉−m+|α|

h < +∞.

We are going to use pseudo-differential operators p(x,D) = op(p(x, ξ)) with
symbols σ(p(x,D)) = p(x, ξ) ∈ Sms (Rn). These operators act continuously
on the so-called Sobolev-Gevrey spaces, defined for m ∈ R, ρ > 0, s ≥ 1 as
follows:

Hm
ρ,s(Rn) :=

{
u ∈ S ′(Rn) : ‖u‖m,ρ,s :=

∥∥eρ〈Dx〉 1s u∥∥
Hm

<∞
}
.

We are also going to deal with pseudo-differential operators of infinite order
eΛ(x,D) with symbols of the form eΛ(x,ξ), where Λ satisfies∣∣∂αξ ∂βxΛ(x, ξ)

∣∣ ≤ CΛA|α|+|β||α+β|!s〈ξ〉
1
s−|α|
h , (x, ξ) ∈ Rn, α, β ∈ Zn+ (12)

for a constant CΛ independent of the parameter h ≥ 1 and s > 1. By Theorem
6.14 in [9], operators of this form turn out to be invertible on L2 by Neumann
series for h large enough and CΛ small enough. Indeed, let us consider the
pseudodifferential operator eΛ(x,D) with symbol eΛ(x,ξ), and define its so-called
reversed operator

(ReΛ)(x,D)u(x) := (2π)−n
∫
Rn

(∫
Rn
ei(x+y)·ξ+Λ(y,ξ)u(y) dy

)
dξ

defined as an oscillatory integral. Then we have the following properties:
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1. eΛ : H0
ρ,s(Rn) −→ H0

ρ−ρ′,s(Rn) is a continuous mapping for |ρ−ρ′| < δA−
1
s

and ρ′ > CΛ,
2. ReΛ : H0

ρ,s(Rn) −→ H0
ρ−ρ′,s(Rn) is a continuous mapping for |ρ| < δA−

1
s

and ρ′ > CΛ, where δ > 0 is a suitable constant, see [9, Part I, Proposition
6.7],

3. if we form the composition eΛ(Re−Λ), then we get

eΛ(Re−Λ) = I + r(x,Dx)

where r(x, ξ) has the asymptotic expansion

r(x, ξ) ∼
∑
j≥1

rj(x, ξ), rj(x, ξ) =
∑
|α|=j

1

α!
∂αξ

(
eΛ(x,ξ)Dα

x e
−Λ(x,ξ)

)
(13)

and satisfies ∣∣r(α)(β)(x, ξ)
∣∣ ≤ Cα,β〈ξ〉 1s−1−αh ≤ Cα,βh

1
s−1〈ξ〉−αh ,

with Cα,β independent of h.

Using these properties we can fix a large h in order to have a bounded operator

r(x,Dx) : u ∈ Hµ → r(x,Dx)u ∈ Hµ with norm ‖r(x,Dx)‖Hµ→Hµ < 1.

The operator I + r(x,Dx) is invertible by Neumann series and its inverse
operator is given by

I + p(x,Dx), p =

∞∑
j=1

(−r)j .

This proves that the operator Re−Λ(I+p) is the right inverse of eΛ. By similar
arguments one proves the existence of a left inverse. Thus, the operator eΛ is
invertible, and the inverse operator is given by

(eΛ)−1 = (Re−Λ)(I + p). (14)

Moreover, let us notice that the inverse has the structure

(eΛ)−1 = (Re−Λ)(I − r + lower order terms)

=
(
Re−Λ

)
(I − r1 + lower order terms)

= (Re−Λ)op
(

1 +

n∑
j=1

∂ξjDxjΛ(x, ξ) + lower order terms
)
.

Remark 5 We may apply the same arguments to the operator eΛ
′

with symbol
σ(Λ′) given by

σ(Λ′)(x, ξ) = A〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h + ρ〈ξ〉
1
s1

h . (15)

In particular, we have

As1,s2A,ρ (Hm) = {u =R e−Λ
′
v : v ∈ Hm}. (16)
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Finally, Theorem 6.14 in [9] states that there exist δ > 0 and h0 > 1 such

that for every h ≥ h0 and CΛ < δA−
1
s the conjugation eΛp(eΛ)−1 makes sense

for every operator p(x,D) having the symbol p(x, ξ) ∈ Sms (R2n). Moreover,
the conjugation has the following structure:

eΛ(x,D)p(x,D)(eΛ(x,D))−1 = p(x,D) + q(x,D) + r(x,D), (17)

where r(x, ξ) ∈ Sm−2(1−
1
s )

s (Rn) and

q(x, ξ) =
∑
|α|=1

∂αξ p(x, ξ)(i∂x)αΛ(x, ξ) +
∑
|β|=1

Dβ
xp(x, ξ)∂

β
ξ Λ(x, ξ).

3 Change of variables

To prove Theorem 1 and Corollary 1, we perform the change of variables

v(t, x) = eΛ(t,x,D)u(t, x),

by choosing a suitable symbol Λ = Λ(t, x, ξ) with the following features:

– the function Λ has the form Λ(t, x, ξ) = Λ̃(t, x, ξ)+Λ3(t, ξ), where Λ̃ satisfies
for an arbitrary µ > 1 the following symbol like estimates:∣∣∂αξ ∂βx Λ̃(t, x, ξ)

∣∣ ≤ Cα+β+1 |α+ β|!µ〈x〉δ−|β|〈ξ〉d−|α|h (18)

for all δ, d with d ≥ 0, δ + d = 1− σ,

where C = CT is a suitable positive constant which depends continuously
on T but which is independent of h ≥ 1;

– Λ3 ∈ S
1
s1 (Rn) (recall that 1

s1
< 1− σ);

– the operator eΛ is invertible for h > 0 large enough;
– the operators of infinite order

eΛ(t, x,D) : As1,s2A,ρ (Hm) −→ Hm and Re−Λ(t, x,D) : Hm −→ Bs1,s2A,ρ (Hm)

are continuous mappings for suitable (large enough) A and ρ, see Lemma
1 below;

– for sufficiently large constants h > 0 and M > 0 the following crucial
inequality holds:

∂tΛ(t, x, ξ) + 2

n∑
j=1

ξj∂xjΛ(t, x, ξ) ≤ −M〈x〉−σ〈ξ〉h. (19)

By this change of variable, choosing suitably the phase function Λ, we reduce
the Cauchy problem

Su = 0, u(0, x) = g, (20)

to the equivalent Cauchy problem{
SΛv = 0, SΛ = Dt −∆x − iAΛ(t, x,D) + r0(t, x,D),
v(0, x) = gΛ, gΛ = eΛ(0)g,

(21)
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where the pseudodifferential operator AΛ satisfies the condition

2<〈AΛ(t, x,D)v, v〉 ≥ 0.

The remainder r0 is a pseudodifferential operator of order zero. It turns out
that this Cauchy problem is L2 well-posed, and trivially also Hm well-posed.
Then, coming back to the original Cauchy problem, from v ∈ C([0, T ];Hm),
using the structure of Λ3 and (18) with δ = 1− σ− 1

s and d = 1
s , 0 ≤ 1

s ≤
1
s1

,

we obtain that u = (eΛ)−1v satisfies for every t ∈ [0, T ∗] the condition

e−A〈x〉
1−σ− 1

s 〈D〉
1
s
h +ρ′〈D〉

1
s1
h u(t, ·) ∈ Hm

with a suitable positive ρ′. For this reason, u(t, ·) ∈ Bs1,sA,ρ′(H
m) for t ∈ [0, T ∗]

and every 0 ≤ 1
s ≤

1
s1

. More details are provided in the proofs of Theorem 1
and of Corollary 1.

Remark 6 In the case of Corollary 1 we take Λ3(t, ξ) ≡ 0. By choosing δ = 1−σ
and d = 0 we arrive at a result without any loss of regularity. The other limit
case δ = 0, d = 1− σ, corresponds to a result of [8].

We choose

Λ(t, x, ξ) := Λ̃(t, x, ξ) + Λ3(t, ξ), Λ̃(t, x, ξ) := Λ1(t, x, ξ) + Λ2(x, ξ), (22)

where

Λ1(t, x, ξ) := M(T − t)〈x〉−σ〈ξ〉h
(

1− χ
( 〈x〉
ε〈ξ〉h

))
, (23)

Λ2(x, ξ) := χ
( 2〈x〉
ε〈ξ〉h

)
λ(x, ξ), (24)

Λ3(t, ξ) := M(T − t)〈ξ〉
1
s1

h , (25)

under the following assumptions:

– M is a sufficiently large positive constant to be chosen later on;
– ε > 0 is an arbitrarily small constant depending on M ;
– h ≥ 1 will be chosen later on, in fact, we will choose h ≥ h0 with h0 > 0

large enough to have the invertibility of eΛ̃;
– χ ∈ C∞0 (R) is such that 0 ≤ χ(t) ≤ 1, tχ′(t) ≤ 0 for all t ∈ R, χ(t) = 1 for
|t| ≤ 1

2 , χ(t) = 0 for |t| ≥ 1, and |χ(k)(t)| ≤ Ak+1
0 k!µ for some µ > 1 to be

chosen later on;
– λ = λ(x, ξ) is a solution to the inequality

n∑
j=1

ξj∂xjλ(x, ξ) ≤ −M〈x〉−σ〈ξ〉h, (26)

with a large constant M to be chosen later on.
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The function λ is given as follows:

λ(x, ξ) := −M
(
λ1(x, ξ)χ

(2x · ω
〈x〉

)
− λ2(x, ξ)

(
1− χ

(2x · ω
〈x〉

)))
(27)

with ω = ξ/|ξ|, where

λ1(x, ξ) :=

∫ x·ω

0

〈x− τω〉−σh dτ and λ2(x, ξ) :=

∫ x·ω

0

〈τ〉−σh dτ.

We know by Lemma 4 of [2] that there exists a constant Cσ independent of h
and M such that the function λ = λ(x, ξ) which is defined in (27) satisfies the
following estimate for every α, β ∈ Zn+:

∣∣∂αξ ∂βxλ(x, ξ)
∣∣ ≤ MC |α|+|β|+1

σ |α+ β|!µ〈x〉1−σ−|β||ξ|−|α| (28)

for every (x, ξ) ∈ R2n with |ξ| > 1. Notice that it is enough to estimate
λ = λ(t, x, ξ) for |ξ| > 1 because Λ2 is supported in the region

〈ξ〉h ≥
2〈x〉
ε
≥ 2

ε
> 〈1〉h

if ε is small enough, thanks to the use of the cut-off function χ.

Now, since in (24) the term Λ2 = Λ2(x, ξ) is given by χ
( 2〈x〉
ε〈ξ〉h

)
λ(x, ξ) and

due to (see [8], formula (2.6))

∣∣∣∂αξ ∂βx(χ( 2〈x〉
ε〈ξ〉h

))∣∣∣ ≤ C1A
|α+β|
1 |α+ β|!µ〈x〉−|β|〈ξ〉−|α|h

with C1, A1 independent of ε, it follows that for every δ ∈ [−σ, 1−σ], d ∈ [0, 1]
satisfying δ + d = 1− σ we have the relations

∂αξ ∂
β
xΛ2(x, ξ) =

∑
α1+α2=α

∑
β1+β2=β

(
α

α1

)(
β

β1

)
∂α1

ξ ∂β1
x χ

(
2〈x〉
ε〈ξ〉h

)
∂α2

ξ ∂β2
x λ(x, ξ),

∣∣∂αξ ∂βxΛ2(x, ξ)
∣∣ ≤ MC |α|+|β|+1

σ |α+ β|!µ〈x〉1−σ−|β|〈ξ〉−|α|h

= MC |α|+|β|+1
σ |α+ β|!µ〈x〉δ−|β|〈x〉d〈ξ〉−|α|h

≤ M
( ε

2

)d
C̃ |α|+|β|+1
σ |α+ β|!µ〈x〉δ−|β|〈ξ〉d−|α|h (29)

with a constant Cσ which is independent of h,M, ε. Here we use the inequality

〈x〉 ≤ ε

2
〈ξ〉h on the support of χ

( 〈x〉
ε〈ξ〉h

)
. As it concerns the term Λ1 =



14 A.Ascanelli, M.Cicognani, M.Reissig

Λ1(t, x, ξ) in (22) we have

∂αξ ∂
β
xΛ1(t, x, ξ) = M(T − t)

∑
α1+α2=α

∑
β1+β2=β

(
α

α1

)(
β

β1

)
∂α1

ξ 〈ξ〉h∂
β1
x 〈x〉−σ

×∂α2

ξ ∂β2
x

(
1− χ

( 〈x〉
ε〈ξ〉h

))
,∣∣∂αξ ∂βxΛ1(t, x, ξ)

∣∣ ≤ M(T − t)C |α|+|β|+1
2 |α+ β|!µ〈x〉−σ−|β|〈ξ〉1−|α|h

= M(T − t)C |α|+|β|+1
2 |α+ β|!µ〈x〉δ−|β|〈x〉−σ−δ〈ξ〉d−|α|h 〈ξ〉1−dh

≤ M(T − t)
(2

ε

)1−d
C
|α|+|β|+1
2 |α+ β|!µ〈x〉δ−|β|〈ξ〉d−|α|h 〈x〉1−d−σ−δ

= M(T − t)
(2

ε

)1−d
C
|α|+|β|+1
2 |α+ β|!µ〈x〉δ−|β|〈ξ〉d−|α|h ,

for every δ ∈ [−σ, 1 − σ], d ∈ [0, 1] satisfying δ + d = 1 − σ, with a constant

C2 which is independent of h,M, T, ε. Here we use the inequality 〈ξ〉h ≤
2

ε
〈x〉

on the support of 1−χ
( 〈x〉
ε〈ξ〉h

)
. Summing up we arrive for δ+ d = 1−σ with

δ ∈ [−σ, 1− σ], d ∈ [0, 1] at the following estimate:

∣∣∂αξ ∂βx Λ̃(t, x, ξ)
∣∣≤ M

(
T
(2

ε

)1−d
+
( ε

2

)d)
C̃ |α|+|β|+1
σ |α+ β|!µ〈x〉δ−|β|〈ξ〉d−|α|h (30)

with a new constant C̃σ. As special cases we may conclude from (30) the
following estimates:

δ = 1− σ, d = 0 :∣∣∂αξ ∂βx Λ̃(t, x, ξ)
∣∣ ≤M(2T

ε
+ 1
)
C̃ |α|+|β|+1
σ |α+ β|!µ〈x〉1−σ−|β|〈ξ〉−|α|h , (31)

δ = 0, d = 1− σ :∣∣∂αξ ∂βx Λ̃(t, x, ξ)
∣∣≤M(T(2

ε

)σ
+
( ε

2

)1−σ)
C̃ |α|+|β|+1
σ |α+ β|!µ〈x〉−|β|〈ξ〉1−σ−|α|h ,(32)

δ = −σ, d = 1 :∣∣∂αξ ∂βx Λ̃(t, x, ξ)
∣∣ ≤M(T +

ε

2

)
C̃ |α|+|β|+1
σ |α+ β|!µ〈x〉−σ−|β|〈ξ〉1−|α|h . (33)

Notice the following observations:

1. In (31) we can estimate |∂αξ ∂βxΛ(t, x, ξ)| by a constant which depends only
on M after choosing ε arbitrarily positive but then fixed, and taking the
parameter T small enough (i.e. 2T

ε < 1).
2. In (32) we can estimate |∂αξ ∂βxΛ(t, x, ξ)| by a constant which is independent

ofM after taking ε small enough (i.e.M( ε2 )1−σ < 1) and then the parameter

T small enough
(
i.e. MT

(
2
ε

)σ
< 1
)
.

3. In (33) we can estimate |∂αξ ∂βxΛ(t, x, ξ)| by a constant which is independent
of M after taking T and ε small enough.
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Notice, moreover, that in the intermediate case δ = 1− σ− 1
s and d = 1

s with
0 ≤ 1

s ≤ 1− σ we get

∣∣∂αξ ∂βx Λ̃(t, x, ξ)
∣∣ ≤ M

(
T
(2

ε

)σ+ 1
s

+
( ε

2

) 1
s
)

×C̃ |α|+|β|+1
σ |α+ β|!µ〈x〉1−σ− 1

s−|β|〈ξ〉
1
s−|α|
h , (34)

where the constants which gives the semi-norms of Λ̃ can be chosen arbitrarily
small by taking ε and T small enough.
Formula (32) states that we can consider Λ̃ = Λ̃(t, x, ξ) for all t ∈ [0, T ] as
a symbol in S1−σ

µ (Rn) for every µ > 1. Moreover, Λ̃ satisfies (12) with 1 − σ
instead of 1

s . So we can apply Theorem 6.14 in [9] and obtain that if h is

large enough, then the operator eΛ̃ is invertible on L2 and (eΛ̃)−1 has the

form (14). This provides also the invertibility of eΛ = eΛ̃+Λ3 = eΛ̃eΛ3 with

inverse e−Λ3(eΛ̃)−1 since eΛ3 is trivially invertible. Moreover, the conjugation
eΛ(t, x,D)p(t, x,D)(eΛ(t, x,D))−1 makes sense and by (17) the following for-
mula holds for every p ∈ Sm1/(1−σ)(R

n):

eΛ(t, x,D)p(t, x,D)(eΛ(t, x,D))−1

= eΛ̃(t, x,D)
(
eΛ3(t,D)p(t, x,D)e−Λ3(t,D)

)
(eΛ̃)−1(t, x,D)

= eΛ̃(t, x,D)op
(
p(t, x, ξ) + p1(t, x, ξ) + p2(t, x, ξ)

)
(eΛ̃)−1(t, x,D)

= p(t, x,D) + q(t, x,D) + r(t, x,D), (35)

where

p1(t, x, ξ) =

n∑
j=1

M(T − t)
s1

〈ξ〉
1
s1
−1

h ∂ξj 〈ξ〉hDxjp(t, x, ξ) ∈ S
m−1+ 1

s1
1

1−σ
⊂ Sm−σ1

1−σ
,

p2(t, x, ξ) ∈ S
m−2(1− 1

s1
)

1
1−σ

⊂ Sm−2σ1
1−σ

,

q(t, x, ξ) =
∑
|α|=1

∂αξ p(t, x, ξ)(i∂x)αΛ̃(t, x, ξ) (36)

+
∑
|β|=1

Dβ
xp(t, x, ξ)∂

β
ξ Λ̃(t, x, ξ) + p1(t, x, ξ),

r(t, x, ξ) ∈ S
m−2(1− 1

s1
)

1
1−σ

⊂ Sm−2σ1
1−σ

.
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Let us complete this section by checking that the function Λ = Λ(t, x, ξ)
satisfies (19). By (22), (23), (24), (25) we compute

∂tΛ(t, x, ξ) + 2

n∑
j=1

ξj∂xjΛ(t, x, ξ) = ∂tΛ̃(t, x, ξ) + ∂tΛ3(t, ξ) + 2

n∑
j=1

ξj∂xj Λ̃(t, x, ξ)

≤ ∂tΛ̃(t, x, ξ) + 2

n∑
j=1

ξj∂xj Λ̃(t, x, ξ) = −M〈x〉−σ〈ξ〉h
(

1− χ
( 〈x〉
ε〈ξ〉h

))
+2

n∑
j=1

ξj

(
χ′
( 2〈x〉
ε〈ξ〉h

)
2ε−1〈ξ〉−1h λ(x, ξ)∂xj 〈x〉+ χ

( 2〈x〉
ε〈ξ〉h

)
∂xjλ(x, ξ)

)
+2

n∑
j=1

M(T − t)〈ξ〉hξj
((
∂xj 〈x〉−σ

)(
1− χ

( 〈x〉
ε〈ξ〉h

))
+〈x〉−σχ′

( 〈x〉
ε〈ξ〉h

)
ε−1〈ξ〉−1h ∂xj 〈x〉

)
since ∂tΛ3(t, ξ) = −M〈ξ〉

1
s1

h ≤ 0. Now we use (26), (28) and we take account
of the support of χ, χ′, to verify that all the terms of the right-hand side
of the last formula (except the ones containing the partial derivative ∂xjλ,
but to those terms we apply the estimate (26)) behave like 〈x〉−σ〈ξ〉h. All
these terms, except the first one, are moreover bounded by arbitrarily small
constants, since we can choose ε small, and then T small as described above.
Summarizing, these considerations imply the crucial inequality (19).

4 Proof of the main result

Before giving the proof of Theorem 1, we will state and prove the following
lemma which deals with the continuity of eΛ and Re−Λ with respect to the
spaces (4) and (5) of our interest. This lemma provides the way to shift from the
solution to the original Cauchy problem (20) to the solution to the equivalent
(and L2 well-posed) Cauchy problem (21) and to shift back.

Lemma 1 Let us choose m ≥ 0, σ ∈ (0, 1), s1, s2 ∈ ( 1
1−σ ,∞], s2 ≥ s1, A > 0

and ρ > 0. Consider the function Λ which is defined in (22). Then, for every
parameters A and ρ satisfying the conditions

A > sup
t∈[0,T ],x,ξ∈Rn

Λ̃(t, x, ξ)

〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h

, and ρ> sup
t∈[0,T ],ξ∈Rn

Λ3(t, ξ)

〈ξ〉
1
s1

h

we have the following mapping properties:

1. the mapping eΛ : As1,s2A,ρ (Hm) −→ Hm is continuous;

2. the mapping Re−Λ̃ : Hm −→ Bs1,s2A,0 (Hm) is continuous.
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Proof Let us recall that the function Λ̃ satisfies (34) for every 1
s ≤

1
s1

being
1
s1

< 1 − σ. Since formula (34) holds for every 0 ≤ 1
s ≤ 1 − σ, we take

s = s2 >
1

1−σ . Then we get

sup
t∈[0,T ],x,ξ∈Rn

Λ̃(t, x, ξ)

〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h

= M
(
T
(2

ε

)σ+ 1
s2

+
( ε

2

) 1
s2
)
C̃σ <∞, (37)

so the choice of the parameter A is possible. On the other hand, we have

sup
t∈[0,T ],ξ∈Rn

Λ3(t, ξ)

〈ξ〉
1
s1

h

= sup
t∈[0,T ],ξ∈Rn

M(T − t) = MT <∞, (38)

and also the choice of the parameter ρ is possible. Consider now, for u ∈
As1,s2A,ρ (Hm) with A, ρ as large as we need,

eΛu = eΛ
(
eA〈x〉

1−σ− 1
s2 〈D〉

1
s2
h +ρ〈D〉

1
s1
h

)−1
w

with

w = eA〈x〉
1−σ− 1

s2 〈D〉
1
s2
h +ρ〈D〉

1
s1
h u ∈ Hm.

The operator (
eA〈x〉

1−σ− 1
s2 〈D〉

1
s2
h +ρ〈D〉

1
s1
h

)−1
has the structure given by (14). Hence,

eΛu = eΛ
(R
e−A〈x〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)
(1 + p)w

= eΛ
(R
e−A〈x〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)
z, (39)

where the principal part of p is

n∑
j=1

∂ξjDxj

(
A〈x〉1−σ−

1
s2 〈ξ〉

1
s2

h + ρ〈ξ〉
1
s1

h

)
∈ S0.

Consequently, z = (1 + p)w ∈ Hm. Now, let us notice that

(
Re−A〈·〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h u

)
(x)=

((
e−A〈·〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)∗
u
)

(−x).(40)
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Indeed, using the L2 scalar product we may compute as follows:〈(
e−A〈·〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)∗
u, v
〉

=
〈
u,
(
e−A〈·〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)
v
〉

=

∫
Rn
u(y)

(
e−A〈·〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)
v(y) dy

=

∫
Rn

∫
Rn
e−iyξ−A〈y〉

1−σ− 1
s2 〈ξ〉

1
s2
h −ρ〈ξ〉

1
s1
h ¯̂v(ξ)u(y)(2π)−n dξdy

=

∫
Rn

∫
Rn

∫
Rn
eixξ−iyξ−A〈y〉

1−σ− 1
s2 〈ξ〉

1
s2
h −ρ〈ξ〉

1
s1
h v̄(x)u(y)(2π)−n dxdξdy

=
〈∫

Rn

∫
Rn
ei·ξ−iyξ−A〈y〉

1−σ− 1
s2 〈ξ〉

1
s2
h −ρ〈ξ〉

1
s1
h u(y)(2π)−n dξdy, v

〉
.

This implies(
e−A〈·〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)∗
u(x)

=

∫
Rn

∫
Rn
ei(x−y)ξ−A〈y〉

1−σ− 1
s2 〈ξ〉

1
s2
h −ρ〈ξ〉

1
s1
h u(y)(2π)−n dξdy

=

∫
Rn

∫
Rn
ei(−x+y)ξ−A〈y〉

1−σ− 1
s2 〈ξ〉

1
s2
h −ρ〈ξ〉

1
s1
h u(y)(2π)−n dξdy

=
(R
e−A〈·〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h u

)
(−x).

For every A′ < A, the symbol

a(x, ξ) = σ
((
e−A〈x〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)∗)
(x, ξ)

satisfies

|∂αξ Dβ
xa(x, ξ)| ≤ C(A′, α, β)e−A

′〈x〉
1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h .

For s1, s2 < +∞, the symbol of the reversed operator is so of class S−∞, and
the reverse turns out to be a regularizing operator in this specific case. Coming
back to the composition in (39) we gain that the composition is well defined,
and the symbol q = q(x, ξ) of the composed operator satisfies the estimate

|∂αξ Dβ
xq(x, ξ)| ≤ C(A′, α, β)〈ξ〉−σ|α|eΛ(t,x,ξ)−A

′〈x〉
1−σ− 1

s2 〈ξ〉
1
s2
h −ρ〈ξ〉

1
s1
h .

Indeed, with A′ and ρ large enough it follows

Λ̃(t, x, ξ)−A′〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h

≤
(
M
(
T
(2

ε

)σ+ 1
s2

+
( ε

2

) 1
s2
)
C̃σ −A′

)
〈x〉1−σ−

1
s2 〈ξ〉

1
s2

h

= −CT 〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h ,

Λ3(t, ξ)− ρ〈ξ〉
1
s1

h ≤ (MT − ρ) 〈ξ〉
1
s1

h = −C ′T 〈ξ〉
1
s1

h .
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Summing up,

eΛ(t, x,D)
(R
e−A〈x〉

1−σ− 1
s2 〈D〉

1
s2
h −ρ〈D〉

1
s1
h

)
is a pseudo-differential operator of order zero acting on z ∈ Hm. So, if u ∈
As1,s2A,ρ (Hm) with A and ρ large enough, then eΛu ∈ Hm. Similarly, one obtains

that for every u ∈ Hm the function Re−Λ̃u ∈ Bs1,s2A,0 (Hm) has the property

e−A〈x〉
1−σ− 1

s2 〈D〉
1
s2
h Re−Λ̃u ∈ Hm.

This completes the proof.

Proof (Proof of Theorem 1) Let us perform the change of variables

v(t, x) = eΛ(t,x,D)u(t, x),

with Λ as in (22). Take the parameter h large so that eΛ is invertible and
the conjugation formula (35) holds. By this change of variables, the Cauchy
problem (20) is reduced to the equivalent Cauchy problem (21). In the further
considerations we are going to show that the remainder r0 is of order zero and
the operator AΛ satisfies

2<〈AΛ(t, x,D)v, v〉 ≥ 0.

By (22) and (35) we have

SΛ = eΛS(eΛ)−1

= Dt −∆x + i∂tΛ(t, x,D) + eΛ
n∑
j=1

(
(∂xjΛ)2 + ∂2xjΛ+ 2(∂xjΛ)∂xj

)
(eΛ)−1

+ eΛ
( n∑
j=1

aj(t, x)Dxj + b(t, x)
)

(eΛ)−1.

By formula (30) with δ = 1− σ and d = 0, and since Λ3 does not depend on
x, we get ∂xjΛ, ∂

2
xjΛ ∈ S

0
µ for an arbitrary µ > 1. After applying formula (35)

and taking account of the Gevrey regularity of the coefficients aj , b we arrive
at

SΛ = Dt −∆x + i∂tΛ(t, x,D)

+eΛ
( n∑
j=1

2i(∂xjΛ)Dxj +

n∑
j=1

aj(t, x)Dxj + b(t, x)
)

(eΛ)−1 + r(t, x,D)

= Dt −∆x + i∂tΛ(t, x,D) +

n∑
j=1

2i(∂xjΛ)Dxj +

n∑
j=1

aj(t, x)Dxj

+r1−σ(t, x,D) + r0(t, x,D),
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where r = r(t, x, ξ) and r0 = r0(t, x, ξ) are symbols in S0
1

1−σ
. Moreover, r1 =

r1−σ(t, x, ξ) is a symbol of positive order with principal part given by

n∑
j=1

∑
|β|=1

(
Dβ
xaj(t, x)

)
∂βξ Λ(x, ξ)ξj ∈ S1−σ

1
1−σ

by using our assumption 1
s1
< 1− σ. Here we also use that the symbols∑

|α|=1

∂αξ
(
(∂xjΛ)ξj

)
(i∂x)αΛ(x, ξ) +

∑
|β|=1

Dβ
x

(
(∂xjΛ)ξj

)
∂βξ Λ(x, ξ),

∑
|α|=1

∂αξ (ajξj) (i∂x)αΛ(x, ξ)

belong to S0
1

1−σ
as well by choosing δ = 1− σ and d = 0 in (30) and by taking

into consideration the structure of Λ3. Consequently, we get

SΛ = Dt −∆x − iAΛ(t, x,D) + r0(t, x,D) (41)

with

AΛ(t, x, ξ)=−∂tΛ(t, x, ξ)−
n∑
j=1

2(∂xjΛ)ξj+ i

n∑
j=1

aj(t, x)ξj+ir1−σ(t, x, ξ).(42)

Now we look for an energy estimate for v = v(t, x). We compute

d

dt
‖v(t, ·)‖2L2 = 2<〈v′, v〉L2

= 2<〈i∆v, v〉L2 − 2<〈AΛ(t, x,D)v, v〉L2 − 2<〈(ir0)v, v〉L2

≤ C‖v(t, ·)‖2L2 − 2<〈AΛ(t, x,D)v, v〉L2

≤ C‖v(t, ·)‖2L2 − 〈(AΛ +A∗Λ)(t, x,D)v, v〉L2 .

Taking account of (19), (3), (33) and (29) with δ = 1−σ and d = 0 we obtain

(
AΛ + (AΛ)∗

)
(t, x, ξ) = −2

(
∂tΛ(t, x, ξ) +

n∑
j=1

2(∂xjΛ)ξj

)
− 2

n∑
j=1

=aj(t, x)ξj

+
(
ir1−σ + ir∗1−σ

)
+ terms of order zero

≥ 2M〈x〉−σ〈ξ〉h−2C〈x〉−σ〈ξ〉h−2CσMT 〈x〉−σ〈ξ〉h−2CσM〈x〉1−σχ
( 2〈x〉
ε〈ξ〉h

)
≥ 2M〈x〉−σ〈ξ〉h − 2C〈x〉−σ〈ξ〉h − 2CσMT 〈x〉−σ〈ξ〉h − 2CσMε〈x〉−σ〈ξ〉h
≥ 2 (M − C − CσMT − CσMε) 〈x〉−σ〈ξ〉h,

where we have also used that 〈x〉 ≤ ε〈ξ〉h on the support of Λ2. First we choose
M > C + 2, where C is the constant in (3). Then we choose ε and T so small
that CσMε < 1 and CσMT < 1. With these choices we have

(AΛ + (AΛ)∗) (t, x, ξ) ≥ 2 (M − C − 2) 〈x〉−σ〈ξ〉h ≥ 0.
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Applying the sharp G̊arding inequality we obtain 2<〈AΛ(t, x,D)v, v〉 ≥ 0.
Hence,

d

dt
‖v(t, ·)‖2L2 ≤ C‖v(t, ·)‖2L2 .

Thus the energy estimate

‖v(t, ·)‖2L2 ≤ c‖gΛ‖2L2 ,

is established for all t ∈ [0, T ] with a suitable positive constant c. The Cauchy
problem for v is so well-posed in L2.
It is well-posed also in Sobolev spacesHm, since the conjugation 〈D〉mSΛ〈D〉−m
transforms the Cauchy problem SΛv = 0, v(0, x) = gΛ(x) with gΛ ∈ Hm to
an equivalent Cauchy problem S̃Λṽ = 0, ṽ(0, x) = g̃Λ(x) with g̃Λ ∈ L2, where
ṽ = 〈D〉mv and a new pseudodifferential operator S̃Λ which has exactly the
same structure as SΛ.
To go back to the solution u to the original Cauchy problem, notice that
g ∈ As1,s2A,ρ (Hm) implies by Lemma 1 that we can obtain gΛ = eΛ(0)g ∈ Hm by
a sharp choice of M, ε, ρ and T ∗ ≤ T . The Cauchy problem (21) is Hm well-
posed, so it admits a unique solution v ∈ C([0, T ∗], Hm). For every t ∈ [0, T ∗],
v(t, ·) ∈ Hm implies by Lemma 1 that

u(t, ·) =
((
eΛ̃eΛ3

)−1
v
)

(t, ·) =
(
e−Λ3

(
eΛ̃
)−1

v
)

(t, ·)

= e−M(T−t)〈Dx〉
1
s1
((
eΛ̃
)−1

v
)

(t, ·)

= e−M(T−t)〈Dx〉
1
s1
((

Re−Λ̃
)

(1 + p)v
)

(t, ·)

= e−M(T−t)〈Dx〉
1
s1 Re−Λ̃z(t, ·)

= e−M(T−t)〈Dx〉
1
s1 w(t, ·) ∈ Bs1,sA,ρ′(H

m)

for every 0 ≤ 1
s ≤

1
s1

and with ρ′ = M(T − t), since the principal part of p

is in S0, and so z = (1 + p)v ∈ Hm. This implies w ∈ Bs1,sA,0 . The proof is

complete, since starting from data in As1,s2A,ρ (Hm) we have obtained a solution

u ∈ Bs1,sA,ρ′(H
m) for every 0 ≤ 1

s ≤
1
s1

and for a suitable ρ′. Moreover, we may
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conclude for every s ≥ s1 as follows:

‖u(t, ·)‖Bs1,s
A,ρ′ (H

m) = ‖e−A〈x〉
1−σ− 1

s 〈D〉
1
s+ρ′〈D〉

1
s1 u(t, ·)‖Hm

= ‖e−A〈x〉
1−σ− 1

s 〈D〉
1
s+ρ′〈D〉

1
s1 e−Λ3(t,D)(eΛ̃)−1v(t, ·)‖Hm

= ‖e−A〈x〉
1−σ− 1

s 〈D〉
1
s (eΛ̃)−1v(t, ·)‖Hm

= ‖(eΛ̃)−1v(t, ·)‖Bs1,sA,0 (Hm)

≤ Ct‖v(t, ·)‖Hm (by continuity, see Lemma 1)

≤ C ′t‖gΛ‖Hm (by the energy estimate)

= C ′t‖eΛ(0)g‖Hm
= C ′t‖g‖As1,s2

A,ρ′ (Hm) (by continuity, see Lemma 1)

with continuous functions Ct, C
′
t with respect to time thanks to the well-

posedness of the auxiliary Cauchy problem.

Remark 7 We remark that the choice of the parameters A, ρ and T , depending
on formulas (37) and (38), may be interpreted in two different ways:

– on the one hand, if one aims to obtain a solution defined on the whole
interval [0, T ], then one has to choose large A and ρ, i.e., one asks for more
regularity to the data g;

– on the other hand, if one has a fixed regularity for the data g, i.e., if A
and ρ are fixed, then one can obtain a solution in Hm only for small times
t ∈ [0, T ∗], T ∗ ≤ T .

Proof (Proof of Corollary 1) The change of variables

v(t, x) = eΛ(t,x,D)u(t, x),

with Λ = Λ̃ in (22) (i.e., Λ3 ≡ 0) and h large enough to get invertibility of eΛ

reduces the Cauchy problem (20) to an equivalent Cauchy problem (21) with
2<〈AΛ(t, x,D)v, v〉 ≥ 0 and r0 of order zero, following the same computations
as in the proof of Theorem 1.
To go back to the solution u to the original Cauchy problem, notice that
the assumption eA〈x〉

1−σ
g ∈ Hm implies by (32) that gΛ = eΛ(0)g satisfies

e(A−2M)〈x〉1−σgΛ ∈ Hm. By the change of variables w = e(A−2M)〈x〉1−σv we
get the equivalent Cauchy problem

S′Λw := e(A−2M)〈x〉1−σSΛe
(−A+2M)〈x〉1−σw = 0, w(0, x) = g′Λ(x)

with g′Λ ∈ Hm with S′Λ having the same structure as SΛ. Consequently,
the Cauchy problem for w admits a unique solution w ∈ C([0, T ];Hm). The

Cauchy problem for v admits a unique solution satisfying e(A−2M)〈x〉1−σv(t, ·) ∈
Hm, respectively. Finally, the unique solution u = (eΛ)−1v of the original

Cauchy problem satisfies e(A−4M)〈x〉1−σu(t, ·) ∈ Hm for every t ∈ [0, T ]. For
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this reason, u(t, ·) may belong to a weighted Sobolev space with exponentially
decreasing weight, compare with [7],[2]. Finally, the solution u satisfies the
following energy estimate:

‖e(A−4M)〈x〉1−σu(t, ·)‖Hm = ‖e(A−4M)〈x〉1−σ (eΛ)−1v(t, ·)‖Hm

≤ Ct‖e(A−2M)〈x〉1−σv(t, ·)‖Hm = ‖w(t, ·)‖Hm

≤ Ct‖g′Λ‖Hm = Ct‖e(A−2M)〈x〉1−σgΛ‖Hm

= Ct‖e(A−2M)〈x〉1−σeΛ(0)g‖Hm

≤ Ct‖e(A−4M)〈x〉1−σg‖Hm ,

where the function Ct is continuous on [0, T ] and may change from line to line.
This completes the proof.

Remark 8 The choice δ = 1− σ and d = 0 allows us to obtain in Corollary 1
a solution which is valued in Sobolev spaces. Notice that if 1− σ = 1

s , then to

ensure eΛ(0)g ∈ Hm under the assumption eA〈x〉
1−σ

g ∈ Hm we need to require
CT ≤ A, that is, T is small enough. This is the reason why we obtain local (in
time) results for the Cauchy problem for S. We remark that in this paper in
the definition of Λ1 we take the time-dependent function ρ = ρ(t) = M(T − t)
since we are looking for a local (in time) well-posedness result in the critical
case 1− σ = 1

s , too. In the non critical case 1− σ < 1
s , the condition CT ≤ A

is no more required. By taking the same function ρ = ρ(t) as in [8], we can
obtain global (in time) well-posedness of the Cauchy problem for S under the
assumptions of Corollary 1.

Remark 9 Let us characterize the spaces As1,s2A,ρ (Hm) which are used in the
formulation of the main results in Theorem 1, Corollaries 1 and 2. Here A and
ρ are positive constants, the parameter m ≥ 0. We turn to As1,s2A,ρ (Hm), where

σ ∈ (0, 1) and s1, s2 ∈ ( 1
1−σ ,∞]. Then due to (4)

As1,s2A,ρ (Hm) :=
{
u ∈ Hm : eA〈x〉

1−σ− 1
s2 〈Dx〉

1
s2
h +ρ〈Dx〉

1
s1
h u ∈ Hm

}
.

Let us introduce

v := eρ〈Dx〉
1
s1
h u with a given u ∈ Hm,m ≥ 0.

Then v belongs to the Gevrey-Sobolev space

Hm,s1 =
⋃
ρ>0

Hm,s1
ρ , where Hm,s1

ρ = e−ρ〈D〉
1
s1 Hm.

We apply to elements of this space the pseudodifferential operator of infinite
order

eA〈x〉
1−σ− 1

s2 〈Dx〉
1
s2
h with

1

s2
∈ [0, 1− σ].
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If s2 =∞, then we apply

eA〈x〉
1−σ

only, that is, u belongs to the Gelfand-Shilov space

Ss11
1−σ

=
{
f ∈ C∞(Rn) : sup

x∈Rn, α∈Nn
C−|α|α!−s1eε|x|

1−σ
|∂αx f(x)| <∞

}
with positive constants C and ε. These spaces can be characterized in the
following way, too:

Ss11
1−σ

=
⋃

mj∈R,ρj∈R+, j=1,2

{
u ∈ S ′(Rn) : 〈·〉m2〈D〉m1eρ2〈·〉

1−σ
eρ1〈D〉

1/s1
u ∈ L2

}
.

If s2 = 1
1−σ , then we apply

eA〈Dx〉
1−σ
h

only, that is, u belongs to the Gevrey-Sobolev spaceH1−σ,m. Let us understand
the situation between.
To describe the space As1,s2A′,ρ′(H

m), A′, ρ′ > 0, by Fourier multipliers, we use
Remark 5, (40) and the Fourier transform to get

As1,s2A′,ρ′(H
m) =

{
u ∈ Hm : eΛ

′
u ∈ Hm

}
=
{
u = (eΛ

′
)−1w : w ∈ Hm

}
=
{
u = Re−Λ

′
(1 + p)w : w ∈ Hm

}
=
{
u = Re−Λ

′
w : w ∈ Hm

}
=
{
u = (e−Λ

′
)∗w : w ∈ Hm

}
with

σ(Λ′)(x, ξ) = A′〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h + ρ′〈ξ〉
1
s1

h

as in (15). Here w is a function in Hm that may change from line to line.
Now, we see that (e−Λ

′
)(x,Dx) is at least an operator of finite order. So by

asymptotically developing the symbol of the adjoint we obtain

σ
(
(e−Λ

′
)∗(x, ξ)

)
= e−Λ

′′(x,ξ)p̃(x, ξ), Λ′′(x, ξ) = A′′〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h + ρ′′〈ξ〉
1
s1

h ,

with p̃(x,Dx) a bounded operator of order 0 and with suitable A′′, ρ′′ > 0. For
this reason, we can characterize the space as follows: As1,s2A′,ρ′(H

m) is contained
in the space of all functions u ∈ Hm such that

u = op (e−Λ
′′(x,ξ))(x,Dx)w with w ∈ Hm,

where op (e−Λ
′′(x,ξ))(x,Dx) is the pseudodifferential operator of infinite order

with symbol e−Λ
′′(x,ξ).
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Remark 10 Let us characterize the spaces Bs1,s2A,ρ (Hm) which are used in the
formulation of the main results in Theorem 1, Corollaries 1 and 2. Here A and
ρ are positive constants, the parameter m ≥ 0. We turn to Bs1,s2A,ρ (Hm), where

σ ∈ (0, 1), s1 ∈ ( 1
1−σ ,∞] and s2 ∈ [s1,∞]. Then due to (5) we have

Bs1,s2A,ρ (Hm) :=
{
u ∈ (As1,s2(Hm))∗ : e−A〈x〉

1−σ− 1
s2 〈Dx〉

1
s2
h +ρ〈Dx〉

1
s1
h u ∈ Hm

}
.

Let us introduce

v := eρ〈Dx〉
1
s1
h u with a given u ∈ Hm,m ≥ 0.

Then v belongs to the Gevrey-Sobolev space Hs1,m. We apply to elements of
this space the pseudodifferential operator of infinite order

e−A〈x〉
1−σ− 1

s2 〈Dx〉
1
s2
h with

1

s2
∈
[
0,

1

s1

]
.

If s2 =∞, then we apply

e−A〈x〉
1−σ

only, that is, u belongs to a weighted Gevrey-Sobolev space with an exponentially
decreasing weight. If s2 = s1, then

Bs1,s2A,ρ (Hm) :=
{
u ∈ (As1,s1(Hm))∗ : e

(
ρ−A〈x〉

1−σ− 1
s1

)
〈Dx〉

1
s1
h u ∈ Hm

}
.

To characterize the spaces Bs1,s2A′,ρ′(H
m), A′, ρ′ > 0, by Fourier multipliers we

can formally repeat the same computations done in Remark 9. By using the
symbol

Λ′(x, ξ) = −A′〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h + ρ′〈ξ〉
1
s1

h

straight-forward computations give that Bs1,s2A′,ρ′(H
m) is contained in the space

of all u ∈ (As1,s2(Hm))∗ such that

u = op (e−Λ
′′(x,ξ))w with w ∈ Hm,

where

Λ′′(x, ξ) = −A′′〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h + ρ′′〈ξ〉
1
s1

h ,

with suitableA′′, ρ′′ > 0 and where op (e−Λ
′′(x,ξ))(x,Dx) is the pseudodifferential

operator of infinite order with symbol e−Λ
′′(x,ξ).

Let us now restrict to the case s2 > s1. Taking into consideration

〈x〉1−σ−
1
s2 〈ξ〉

1
s2

h ≤ Cε
(
〈x〉(1−σ−

1
s2

) 1+ε
ε + 〈ξ〉

1
s2

(1+ε)

h

)
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for all ε > 0, a sufficiently small positive ε allows to conclude from

eA
′′Cε

(
〈x〉

(1−σ− 1
s2

) 1+ε
ε +〈ξ〉

1
s2

(1+ε)

h

)
e−A

′′Cε

(
〈x〉

(1−σ− 1
s2

) 1+ε
ε +〈ξ〉

1
s2

(1+ε)

h

)
e−Λ

′′(x,ξ)

= eA
′′Cε〈x〉

(1−σ− 1
s2

) 1+ε
ε

e−ρ
′′〈ξ〉

1
s1
h +A′′Cε〈ξ〉

1
s2

(1+ε)

h

×e−A
′′Cε

(
〈x〉

(1−σ− 1
s2

) 1+ε
ε +〈ξ〉

1
s2

(1+ε)

h

)
+A′′〈x〉

1−σ− 1
s2 〈ξ〉

1
s2
h

that Bs1,s2A′,ρ′(H
m) is contained in the space of functions u ∈ Hm

loc such that

u = eÃ〈x〉
(1−σ− 1

s2
) 1+ε
ε

e−ρ̃〈Dx〉
1
s1
h w with w ∈ Hm,

for suitable positive constants Ã and ρ̃. Consequently, u belongs to a Gevrey
space with exponentially decaying weight.
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