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Abstract

This dissertation work was carried out in the context of the PVLAS experiment, financed

by INFN and MIUR, which has the ultimate goal of measuring the magnetic birefringence

of vacuum. Photon-photon interaction and therefore magnetic birefringence of vacuum

anticipated Quantum Electrodynamics (QED): these effects, already studied since 1936 by

Euler, Heisenberg and Weisskopf, are associated with the fluctuations of electron-positron

pairs in vacuum. The effective Lagrangian density derived by these scientists was later

confirmed by Schwinger in 1951 within the QED formalism. For a 2.5 T magnetic field it is

found that the induced vacuum magnetic birefringence is:

∆nEHW = 2.47×10−23 @ 2.5 T.

This birefringence is extremely small and is still waiting for a direct experimental

confirmation.

This thesis mainly concerns the new high sensitive polarimeter of the PVLAS experiment.

The polarimeter consists of a pair of crossed polarisers, a Fabry-Perot cavity with a high

finesse (F = 7× 105) and uses the heterodyne technique to minimise the noise and the

systematic effects. The anisotropy of vacuum with respect to electromagnetic radiation

is produced using two rotating dipole permanent magnets characterised globally by the

parameter
∫

B2dl = 10.25 T2m.

In this thesis work, the experimental apparatus is characterised and the sources of spurious

signals and excess wide band noise are studied. As the principal source of spurious signals,

we have identified diffused light modulated by a mechanical coupling between the tube and

the magnet. A detailed description of the methods used to minimise this magneto-mechanical

coupling, as well as other noises and systematic effects, is given. The improvements thus

obtained have allowed acquiring data for rather extended periods of time - of a few weeks

- and this has allowed the improvement of the existing current limits on magnetic vacuum

birefringence, reaching a noise floor (1σ c.l.)

∆n(PVLAS) = (12±17)×10−23 @ B = 2.5 T,
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a factor 7 above the predicted QED value.

To reach the predicted QED value a ten fold improvement in sensitivity is necessary. The

cause of the excess wide band noise, which is more than a factor 50 above the expected

budget, is still unknown. Experimentally it is observed that the noise has a trend ≈ 1/ f α

with α between 0.5 and 1. The problem of the excess wide band noise is common to

all the experimental efforts, past and present, intended to measure the vacuum magnetic

birefringence. The sensitivity of these experiments and the slope of the spectral noise seem

to suggest that the limit may be due to the thermal noise of the mirrors. These remarks, to

which this thesis work has also contributed, perhaps will lead to a new understanding of the

residual noise of such devices and to the development of useful new experimental methods.



Introduction

The PVLAS experiment in Ferrara, funded by the Minister of Research in the context of the

Projects of Relevant National Interest (PRIN), and the National Institute of Nuclear Physics

(INFN), involves researchers from the Universities of Trieste, Ferrara, and the INFN National

Laboratories of Legnaro. This ambitious project aims at a first measurement of the magnetic

birefringence of vacuum (MBV). The birefringence induced by an external field is predicted

by Quantum Electrodynamics (QED) and is a direct consequence of the γγ interactions.

One must note that the most precise particle physics theory that has been ever devised is

the QED theory: experiments measuring the g−2 of the muon and of the electron give a

perception of that. It must be noted though that such precise verifications of QED always

regard the presence of a charged particle. A direct verification of the theory in the case in

which only photons are involved is still missing. The sensitivity of experiments today is

still not good enough to measure MBV: with currently available magnetic fields the induced

MBV is ∆n ≈ 4×10−24 @ 1 T. This exceedingly small and fine prediction explains why this

phenomenon has not been observed so far.

In MBV experiments it is necessary to measure a difference of the speeds of light with

polarisation perpendicular and parallel to the traverse magnetic field which, for B = 1 T,

is of the order of ∆v/c = 4× 10−24. At present this extremely small speed difference is

not directly observable by measuring the speed of light separately for the two polarisations.

Rather, it is conceivable to measure the ellipticity ψ induced on a linearly polarised beam of

light which traverses a magnetic field in vacuum. If L is the length of the light path in the

magnetic field B, ϑ is the angle between the polarisation vector of the light and the magnetic

field direction, the induced ellipticity is

ψ = 4×10−24 ×
(

πL

λ
B2 sin2ϑ

)
(1)

with B measured in tesla. To get a feeling of the difficulty of these measurements notice

that for B = 1 T, L = 1 m, λ = 1 µm, ϑ = 45◦: ψ = 5× 10−17. The calculation of the
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magnetic birefringence and of other effects generating ellipticity and/or dichroism in vacuum

are presented in Chapter 1.

The method chosen in the PVLAS experiment is to measure the ellipticity of a linearly

polarised laser beam passing through a region of transverse magnetic field. This is an

intrinsically differential measurement of the difference in the speed of light for the two

polarisations. The magnetic region is provided by two permanent magnets of maximum

field 2.5 T and 0.82 m in length, arranged horizontally and rotating around their axis at a

frequency νB up to 23 Hz. A rotating magnetic field induces a modulated ellipticity on the

laser beam at a twice the rotation frequency.

To measure the ellipticity acquired by the beam a polarimeter is employed composed of

two crossed polarisers, a high finesse Fabry-Perot cavity and an ellipticity modulator.

Using the Fabry-Perot optical cavity one obtains an amplification factor of N = 2F

π , where

F is the finesse of the cavity. As we will see in this thesis, we have reached a finesse of

F = 770000. The difficulty in using such high finesse cavities is that the resonance FWHM

is extremely small: ≈ 60 Hz compared to the laser light frequency of νlaser = 2.8×1014 Hz.

To maintain resonance, the light source must be frequency locked to the cavity to obtain a

constant laser-cavity coupling.

Finally, since the intensity at the output of the crossed polarisers alone is quadratic in

ellipticity, we get a linearisation of the effect using the heterodyne technique which requires

the implementation of an ellipticity modulator. The detailed description of the experimental

method is given in Chapter 2

My thesis work started in January 2014, when the complete apparatus had just begun to

be optimised. The first few months were devoted to the characterisation of the apparatus and

to some test measurements. The characterisation and the method used to analyse the data is

described in Chapter 3.

After the detailed characterisation of the polarimeter, spurious signals were present in

phase with the rotating magnets. At this stage, we had identified the diffused light as a

source of spurious signals. It will be shown how the mechanical coupling of tube and magnet

induces spurious signals and how we proceeded to solve this problem.

We then dealt with an important feature of the Fabry-Perot cavity which is the intrinsic

birefringence of the two cavity mirrors. The effect of the intrinsic birefringence of the

mirrors was immediately observed during the calibration of the apparatus when measuring

the magnetic birefringence of gases. Firstly we noted an attenuation of the ellipticity signal

with respect to the predicted one. This is due to the fact that the eigenstates of the two

polarisations of light in the cavity have different resonance frequencies, separated by a few

hertz. A second effect of the birefringence of the cavity is a cross-talk between the ellipticity
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and the rotation signals. Finally, with the frequency of the ellipticity signal being close to

the frequency cutoff of the cavity, the signals are filtered by the Fabry-Perot cavity which

acts as a low-pass filter. A more detailed study of the dynamic response of the cavity, also

considering the mirror birefringence, brought to the result that the behaviour of a birefringent

Fabry-Perot cavity deviates from a simple first order filter. For a correct calibration of the

apparatus these effects must all be taken into account.

A critical attention has also been paid to the wide-band noise. This noise has no phase

relation with the rotating magnets. At present, this noise remains the only obstacle to

measuring the magnetic birefringence of vacuum. With respect to the calculated noise budget

due to known sources, the polarimeter shows a noise about a factor 50 above the expected

one. To understand the source of this excess noise we tried changing a number of elements:

different polarisers, further reduction of the diffused light, redesigning of the feedback circuit.

We also performed several tests modifying the locking parameters and other experimental

parameters (modulation amplitude, laser power, environmental noise). These experimental

tests put constraints on the origin of the excess noise. We believe that the source of this excess

noise is an intrinsic thermal noise of the mirrors. In Chapter 4 all the material regarding the

hunting for wide-band noise and systematics will be presented.

Finally, a lot of effort has been also addressed to the analysis of the data collected during

these years. The data, acquired after the improvements of the polarimeter, consisted mainly

in ellipticity data but a part was also dedicated to rotation data. The analysis presented in this

thesis has set the best laboratory limits on the magnetic birefringence of vacuum and on the

existence of axion-like particles with masses above 1 meV and of millicharged particles. All

the collected data are presented in Chapter 5.
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X INTRODUCTION

F. Della Valle, E. Milotti, A. Ejlli, U. Gastaldi, G. Messineo, L. Piemontese, G.

Zavattini, R. Pengo, G. Ruoso, “Extremely long decay long decay time optical cavity”,

Optics Express 22, 11570 (2014).

F. Della Valle, E. Milotti, A. Ejlli, G. Messineo, L. Piemontese, G. Zavattini, U.

Gastaldi, R. Pengo, G. Ruoso, “First results from the new PVLAS apparatus: a new

limit on vacuum magnetic birefringence”, Physical Review D 90, 092003 (2014)

A. Ejlli, F. Della Valle, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso,

G. Zavattini, “Progress toward a direct experimental detection of gamma-gamma

interactions”, Nuclear and Particle Physics Proceedings 270-272, 67 (2016).

F. Della Valle, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso, G.

Zavattini, “The PVLAS experiment: measuring vacuum magnetic birefringence and

dichroism with a birefringent Fabry-Perot”, European Physics Journal C 76, 24 (2016).

G. Zavattini, F. Della Valle, A. Ejlli, G. Ruoso, “A polarisation modulation scheme

for measuring vacuum magnetic birefringence with static fields”, European Physics

Journal C 76, 294 (2016).

A. Ejlli, F. Della Valle, G. Zavattini, “Polarisation dynamics of a birefringent Fabry-

Perot cavity”, arXiv:1707.02967v1.



Chapter 1

Quantum vacuum

This thesis describes the last three years of the experimental effort in progress within the

PVLAS collaboration to perform the first observation of the Magnetic Birefringence of

Vacuum (MBV). MBV is expected as a consequence of the existence of the antiparticle of the

electron and of the possibility of the virtual creation of particle-antiparticle pairs in vacuum.

Together with the Casimir effect, MBV represents a macroscopic evidence of quantum

vacuum. The PVLAS experiment intends to observe the ellipticity induced in vacuum on a

linearly polarised beam of light passing through a transverse magnetic field. The speed of

light results from virtual microscopic processes involving photons in the quantum vacuum.

The presence of an external (magnetic/electric) field, which acts on the charged particle-

antiparticle pairs and polarises the vacuum, results, at the macroscopic level, in a variation of

the speed of light. Furthermore, the speed of light depends on the polarisation: the speeds

of light polarised parallel and orthogonal to the direction of the external (magnetic/electric)

field are different.

The consequences on Electrodynamics of the existence of electron-positron virtual pairs

were derived already in 1936 (shortly after the introduction of the Dirac equation – 1928 –

and the observation of the positron – 1932). With the Heisenberg-Euler effective Lagrangian,

new terms have to be added to Maxwell’s equations, which make the new equations no

longer linear in the electric and magnetic fields. In section 1.1 we present the mathematical

formulation of the electromagnetic quantum vacuum and the Heisenberg-Euler effective

Lagrangian. The electric permittivities and the magnetic permeabilities ε⊥, ε∥, µ⊥, µ∥ are

also derived.

In a more general framework, vacuum effects are described by means of Feynman graphs,

and quantum field theory takes into account other hypothetical effects such as the vacuum

fluctuations of particles with fractional charge and bosonic axion-like particles. All of them

are predicted to give place to observable magneto-optical effects. Normally, scattering
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experiments in particle physics have featured the observation of the interaction of beams

with targets when matter particles (fermions) are present either as the beam or the target.

Considered as a scattering experiment, PVLAS represents one of the rare cases in which

both the beam and the target are composed of bosons (photons of the laser beam and virtual

photons of the magnetic field).

1.1 Heisenberg-Euler effective Lagrangian

The electromagnetic classical vacuum

Classically the electromagnetic field in vacuum is described by Maxwell’s equations (1861-

1862), which allow wave propagation. The electromagnetic properties of vacuum, in classical

electrodynamics, are represented by two fundamental constants: the vacuum permittivity

ε0 and the vacuum permeability µ0, with the speed of light given by c = 1√
ε0µ0

. The two

constants describe, respectively, the proportionality factor between D and E and between B

and H in vacuum. The field D = ε0E is the electric displacement vector, E is the electric field

vector, B = µ0H is the magnetic induction vector, and H is the magnetic field vector. Any

variation of the speed of light compared to c is attributed to the fact that the light propagates

in a medium, that is, not in vacuum. To describe the electromagnetic properties of matter, one

introduces the tensors [ε] and [µ] characterising the medium itself: D = [ε]E and B = [µ]H.

The speed of light in a medium is smaller than the speed of light in vacuum by a factor

n, called the index of refraction, equal to (in an isotropic medium for which [ε] = ε and

[µ] = µ)

n =

√
εµ√

ε0µ0
(1.1)

Vacuum is therefore the medium to which one associates, in classical electrodynamics, a

refractive index n exactly equal to 1. Classically there is no polarisation or magnetisation of

vacuum in the presence of a magnetic or electric field. In contrast a medium, in the presence

of an electric and/or magnetic field, may exhibit a birefringence, i.e. the medium may have

different indices of refraction for two orthogonal polarisations. Two effects that generate

birefringence are the Cotton-Mouton effect (CME) [1, 2] and the Kerr effect [3, 4]. In the

CME, a birefringence proportional to the square of an external magnetic field is induced,

whereas in the Kerr effect the birefringence is proportional to the square of an electric field.

In both cases, a linearly polarised beam of light traversing a medium perpendicularly to an

external field will become elliptically polarised if the polarisation is not aligned with one of

the birefringence axes. Therefore the optical response of the medium depends on the external
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field strength. This correlation means that ε and µ are not constants but functions of the

external fields. So in general n depends on E and B: n = n(E,B).

To describe this nonlinear interaction, one uses the constitutive equations of the medium

giving the relation between the polarisation P and E, the relation between the magnetisation

M and B and the Maxwell’s equations [5]. When no charge density or current density is

present, Maxwell’s equations in SI units [6] are

∇×E = −∂B

∂ t
∇ ·D = 0

∇×H =
∂D

∂ t
∇ ·B = 0

with

H =
1

µ0
B−M D = ε0E+P. (1.2)

Considering the propagation of light in a medium, both the external field and the light

fields produce a polarisation P and a magnetisation M. Instead, in vacuum, the two vectors,

magnetisation and polarisation, are zero (Pvac = 0 and Mvac = 0).

C P T CPT

E - - + +

B - + - +

F + + + +

G + - - +

Table 1.1: Symmetry properties of the electromagnetic fields and of the invariants F and G

with respect to C, P and T.

Classically, the electromagnetic interaction is described by a Lagrangian density L ,

which is a function of the fields in the system and their derivatives [7]. The mathematical

expression of the Lagrangian density L is mainly determined by the fact that it must be

relativistically invariant, and therefore must be a function of the Lorentz invariants [7]:

F =

(
ε0E2 − B2

µ0

)
and G =

√
ε0

µ0
(E ·B). (1.3)

The general expression of a relativistically invariant Lagrangian density can be written in

terms of Lorentz invariants,

L =
∞

∑
i=0

∞

∑
j=0

ci, jF
iG j. (1.4)
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Thanks to the symmetry properties of the E and B fields (see table 1), F and G are also CPT

invariant, but while F is C, P, and T invariant, G violates P and T. Since classical vacuum

is separately invariant for each of the C, P, and T symmetries, all the coefficients ci, j with

odd j are null, and in particular c0,1 = 0. The lowest order term, with c0,0 = 0 and c1,0 =
1
2

corresponds to the classical Maxwell Lagrangian density

L0 =
1

2

(
ε0E2 − B2

µ0

)
=

F

2
. (1.5)

Now we can derive the constitutive equations for D and H from the Lagrangian [7]:

D =
∂L

∂E
and H =−∂L

∂B
, (1.6)

For a plane wave propagating in vacuum, both F and G are equal to zero and therefore

L0 = 0. This statement means that, due to the Lorentz invariance, the propagation of a plane

wave in vacuum cannot be affected by any nonlinear interaction.

We can draw some conclusions concerning classical electrodynamics: the difference

between vacuum and matter due to electromagnetic properties are that

• in classical vacuum the magnetic permeability µ0 and the electric permittivity ε0 are

not functions of the fields, but are constants. In matter, this is not the case;

• classical vacuum does not allow a polarisation P or a magnetisation M;

• classical vacuum does not exhibit nonlinear interactions as in matter.

The electromagnetic quantum vacuum

The idea of the classical vacuum changed when Heisenberg [8] and Dirac [9] introduced the

Uncertainty Principle and the theory of the positron, respectively. The Uncertainty Principle,

first proposed in 1927 by Heisenberg, states that the time interval ∆t during which an energy

measurement is performed is related to the energy uncertainty ∆E by:

∆E ∆t ≥ h̄

2
(1.7)

A year later, in 1928, Dirac introduced the wave equation for the electron, which implied the

existence of antiparticles. A few years later, the anti-electron was experimentally observed,

and it became evident that an important consequence of the Uncertainty Principle and of the

Dirac theory was the existence of γγ interactions [10, 11]. Citing from Halpern’s 1933 letter:
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.... Here purely radiation phenomena are of particular interest inasmuch as they might

serve in an attempt to formulate observed effects as consequences of hitherto unknown

properties of corrected electromagnetic equations. We are seeking, then, scattering properties

of the “vacuum".

This prediction has so far not yet been confirmed experimentally by a direct observation

in a laboratory experiment.

The first mathematical formulation of electromagnetic nonlinearities in vacuum was

published in 1935 by Euler and Kockel [12]. Details on their estimation can be found in Ref.

[13]. In an article published in 1936 by Heisenberg and Euler [14], a complete theoretical

study of the effects related to the fact that electromagnetic radiation can be transformed into

matter and vice-versa was made. The starting point of the authors was that it was no longer

possible to separate processes in a vacuum from those involving matter, since electromagnetic

fields can create matter if they are strong enough. Moreover, even if they are not strong

enough to create matter, they can polarise the vacuum because of the creation of virtual

matter, dominantly electron-positron pairs, and thus the result of applying the constitutive

equations changes [14]. The resulting effective Lagrangian density for electromagnetic fields

in the absence of matter is [14]:

LHE =
1

2

(
ε0E2 − B2

µ0

)
+α

∫ ∞

0
e−η dη

η3

×



iη2

√
ε0

µ0
(E ·B)

cos
[

η√
ε0Ecr

√
C
]
+ conj.

cos
[

η√
ε0Ecr

√
C
]
− conj.

+ ε0E2
cr +

η2

3

(
ε0E2 − B2

µ0

)
 ,

(1.8)

with

C =

(
ε0E2 − B2

µ0

)
+2i

ε0

µ0
(E ·B), (1.9)

and where α = e2

4πε0h̄c
is the fine structure constant, e the charge of the electron, h̄ the Planck’s

constant h divided by 2π , and η the integration variable. The quantity Ecr =
m2

ec3

eh̄
has the

dimensions of an electric field and it is called the critical electric field corresponding to a

value:

Ecr = 1.3×1018 V/m. (1.10)

It corresponds to the electric field needed to create an electron mass me at rest over a distance

equal to the length of reduced electron Compton wavelength λ̄ = λe

2π = h̄
mec

. In the same way
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one can define a critical magnetic field such as: Bcr =
Ecr

c
=

m2
ec2

eh̄
:

Bcr = 4.4×109 T. (1.11)

The authors derived the Lagrangian LHE in the following approximations:

• Slowly varying fields:

h̄

mec
|∇E| ≪ E,

h̄

mec2

∣∣∣∣
∂E

∂ t

∣∣∣∣≪ E (1.12)

h̄

mec
|∇B| ≪ B,

h̄

mec2

∣∣∣∣
∂B

∂ t

∣∣∣∣≪ B (1.13)

• Fields much smaller than their critical values:

B ≪ Bcr =
m2c2

eh̄
= 4.4×109 T, E ≪ Ecr =

m2c3

eh̄
= 1.3×1018 V/m (1.14)

• Only virtual electron-positron pairs are exchanged.

In general, the QED Lagrangian LHE can be expanded as indicated in Eq. (1.4). Remind-

ing that symmetry requires that c1,1 = 0, at the lowest order one has

LHE = c1,0F + c2,0F2 + c0,2G2. (1.15)

The values of c2,0 and c0,2 can be written following the Euler-Kockel result [12] as:

c2,0 =
2α2h̄3

45m4
ec5

≃ 1.67×10−30 m3/J, and c0,2 = 7c2,0, (1.16)

and therefore

LHE =
1

2µ0

(
E2

c2
−B2

)
+

2α2

45µ2
0

h̄3

m4
e

[(
E2

c2
−B2

)2

+7(E ·B)2

]
. (1.17)

Note that this result is prior to the formulation of QED but was verified later by Schwinger

[15]. Next term coefficients can be found in Refs. [14, 16, 17]. Each term can be represented

as a Feynman graph, as in Fig. 1.1. The first term in the Equation (1.17), quadratic in the

fields, is the classical electromagnetic Lagrangian leading to Maxwell’s equations in vacuum,

for which the superposition principle holds and no light-by-light interaction is possible. The

other term, instead, implies that Electrodynamics is nonlinear in vacuum, giving rise to a new
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Figure 1.1: Contributions to Light by Light scattering, a) to d), Magnetic Birefringence of

Vacuum, e) to h) and g−2, i) to p).

class of observable effects. The higher order terms of the free Lagrangian are proportional

to 1/m4. If, instead of electron-positron pairs, we considered the contribution of other pairs

of charged particles like lepton-antilepton such as µ+µ− and τ+τ− the effect would be

negligible compared to the contribution due to e−e+. The Feynman graphs of Figs. 1.1a) and

1.1e) are the simplest ones giving rise to non-zero matrix elements with e−e+ pairs. Note

that a graph with only three external photons has a null matrix element according to the

Furry theorem [18]. This statement implies that no term proportional to a product of three

electromagnetic fields like E3, E2B, EB2 and B3 can be present in LHE, and indeed this is

the case in equation (1.17). In the particular case in which photons propagate in an external

magnetic field, the leading Feynman diagram is shown in figure 1.1e). Today it is thought

that the interaction between two photons, mediated by loops of electron-positron pairs and

(with remarkably weaker effects) by loops of muons, hadrons etc., could also be mediated by

hypothetical very light particles which couple to two photons [see fig. 1.1f)].
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1.2 QED vacuum magnetic birefringence

In this section we deal with the estimation of the linear birefringence induced in vacuum by

an electric or magnetic field. The field equations are determined by the energy density U ,

which is a function of the field intensities. The following relation exists between the energy

density U and the Lagrangian density L [16],

U = E · ∂L

∂E
−L . (1.18)

Using the general expression of the Lagrangian density (1.4) the energy density is:

U =
∞

∑
i=0

∞

∑
j=0

ci, j

(
2ε0iF(i−1)G jE2 +( j−1)F iG j

)
. (1.19)

Considering the case in which the fields vary slowly over the length h̄
mc

and the time h̄
mc2

[see Eqs. (1.12) and (1.13)], the Lagrangian expression can be expanded in powers of the

invariants F and G [16]. Expanding in series of powers in the invariants up to the third order,

we obtain:

L = c1,0F +L
′ = c1,0F + c2,0F2 + c0,2G2 + c3,0F3 + c1,2FG2 + ... (1.20)

Using equation (1.19) we obtain the energy density of vacuum in the presence of an

electromagnetic field:

U = c1,0

(
ε0E2 +

B2

µ0

)
+ c2,0F

(
3ε0E2 +

B2

µ0

)
+ c0,2G2 +

+ c3,0F2

(
5ε0E2 +

B2

µ0

)
+ c1,2G2

(
3ε0E2 − B2

µ0

)
... (1.21)

where the coefficients are:

c1,0 = 1/2, c2,0 =
α

90π

1

ε0E2
cr

, c0,2 = 7c2,0, c3,0 =
2α

315π

1

ε2
0 E4

cr

, c1,2 =
13

2
c3,0. (1.22)

Using relations (1.2) and (1.6) the polarisation and the magnetisation vectors are:

P =
∂L

∂E
− ε0E and M =

∂L

∂B
+

B

µ0
. (1.23)
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Using the Lagrangian expansion (1.20), we obtain the expression for the magnetisation

and polarisation of vacuum at the lowest order in the fields:

P = 4c2,0ε0EF +2c0,2

√
ε0

µ0
BG, (1.24)

M =−4c2,0
B

µ0
F +2c0,2

√
ε0

µ0
EG.vac (1.25)

Now we discuss the two particular cases in which a polarised electromagnetic wave

passes through a region of vacuum in the presence of a transverse electric or magnetic field.

In a medium, linear birefringence in the presence of an electric field was discovered by John

Kerr in 1875 and is called the Kerr effect [3, 4]. A linearly polarised electromagnetic plane

wave passing through a medium in the presence of an orthogonal electric field experiences a

different index of refraction according to whether the polarisation is parallel or orthogonal to

the electric field: n∥ ̸= n⊥. The difference n∥−n⊥ = ∆nK is proportional to the square of the

electric field:

∆nK = kKE2
ext. (1.26)

The same happens in the presence of a magnetic field. This effect was investigated in detail

by A. Cotton and H. Mouton in 1905 [1, 2] in liquids and by W. Voigt in gases 30 years after

the Kerr effect was discovered. Similarly to the Kerr effect, when a magnetic field is applied

to a medium, the difference in the indices of refraction, n∥ and n⊥, is proportional to the

square of the magnetic field:

∆nCM = kCMB2
ext. (1.27)

We will see that due to Eqs. (1.24) and (1.25) the same effects are expected in vacuum. Let

us concentrate on the Cotton-Mouton effect in vacuum whose detection is the aim of our

experiment. Consider a homogeneous static magnetic field Bext in vacuum. When a polarised

plane wave traverses an orthogonal static magnetic field, equations (1.24) and (1.25) give the

following expressions for the magnetisation M and polarisation P:

Pvac =−4c2,0ε0

B2
0

µ0
Eγ +2c0,2

ε0

µ0
Bext(Eγ ·Bext), (1.28)

Mvac = 4c2,0
B2

0

µ2
0

Bγ +8c2,0
Bext

µ2
0

(Bγ ·Bext) (1.29)

where Eγ and Bγ are the electric and magnetic fields of the incident wave.

The tensorial electric permittivity [ε] and tensorial magnetic permeability [µ] are defined

as D = [ε]E and B = [µ]H. Using expressions (1.2) for H and D one finds the following
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equations:

Dvac =

(
ε0 −4c2,0ε0

B2
0

µ0

)
Eγ +2c0,2

ε0

µ0
Bext(Eγ ·Bext)

Hvac =

(
1

µ0
+4c2,0

B2
0

µ2
0

)
Bγ +8c2,0

Bext

µ2
0

(Bγ ·Bext). (1.30)

The terms (Eγ ·Bext) and (Bγ ·Bext) depend on the polarisation of the incident wave. When

the polarisation direction is parallel (∥) to or perpendicular (⊥) to the external field we have

that:

ε∥ = ε0

(
1−4c2,0

1

µ0
B2

ext +2c0,2
1

µ0
B2

ext

)

ε⊥ = ε0

(
1−4c2,0

1

µ0
B2

ext

)

∆ε = ε∥− ε⊥ = 2c0,2
ε0

µ0
B2

ext (1.31)

and

µ∥ = µ0

(
1+4c2,0

1

µ2
0

B2
ext

)

µ⊥ = µ0

(
1+12c2,0

1

µ2
0

B2
ext

)

∆µ = µ∥−µ⊥ =−8c2,0
1

µ0
B2

ext. (1.32)

One can therefore calculate the refractive index using the definition (1.1),

n∥ = 1+ c0,2
B2

ext

µ0

n⊥ = 1+4c2,0
B2

ext

µ0
. (1.33)

From the last two equations, one sees that the velocity of the light is less than c even in

vacuum. Furthermore, there is a birefringence given by:

∆nvac = n∥−n⊥ = (c0,2 −4c2,0)
B2

ext

µ0
(1.34)
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of length L in the direction orthogonal to the direction of the magnetic field acquire a small

phase difference δφ :

δφ = 2π
L

λ
(n∥−n⊥)sin2ϑ (1.39)

where λ is the wavelength of the light and ϑ is the angle between the direction of the electric

field of the linearly polarised beam and the direction of the external magnetic field. At the

output of the birefringent region the beam acquires an ellipticity ψ (see figure 1.2) given by:

ψvac =
δφ

2
= π

L

λ
∆nvac sin2ϑ (1.40)

which is the ratio of the minor axis to the major axis of the ellipse described by the electric

field of the wave.

In general, also absorption can be described using the complex index of refraction:

n̂ = n+ iκ. (1.41)

If the absorption is anisotropic, the medium is said to be dichroic. The relationship between

the extinction coefficient κ and the absorption coefficient µ is given by µ = 4πκ
λ . It has been

shown that the dichroism generated by a magnetic field due to e+e− pairs is negligible [19]:

no significant imaginary part κ of the index of refraction is predicted in QED.

1.2.1 Higher order QED corrections

Figure 1.1g) shows one of the Feynman diagrams for the α3 contribution to vacuum magnetic

birefringence (radiative corrections to the 1.1e) diagram). The effective Lagrangian density

for this correction has been evaluated [20] and can be expressed as

Lrad =
Ae

µ0

(α

π

) 10

72

[
32
(E2

c2
−B2

)2

+263
(E

c
·B
)2
]
. (1.42)

This Lagrangian leads to a 1.45% extra contribution ∆nrad to the vacuum magnetic birefrin-

gence given in equation (1.35):

∆nrad =
25α

4π
3AeB2

ext = 0.0145 ·∆nvac. (1.43)
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1.3 Other effects generating magnetic birefringence in vac-

uum

Looking over the e+e− loop [Figs. 1.1e) and 1.1g)], let us consider other contributions to

MBV. As already mentioned, contributions of muon loops are estimated to be depressed

with respect to those of the electron loops by a factor (me/mµ)
4 ≈ 5.5×10−10 and so to be

negligible. For the same reason, contributions from qq̄ charged hadron loops [Fig. 1.1h)] are

expected to be depressed by a factor between (me/mq)
4 and (me/mπ)

4 [21]. However, the

hadronic contributions are not completely under control because of the difficulties of QCD

calculations in the low energy regime [21].

Coming to the realm of speculations, the very same diagram of Fig. 1.1e) might apply

to so far hypothetical light particles with fractional charge (milli-charged particles, MCP)

[22, 23]. The diagram of Fig. 1.1f) applies instead to a neutral boson weakly coupled to

two photons and called Axion-like particle (ALP) [24–26]. In the presence of an external

transverse field, both can give place to magneto-optical effects.

1.3.1 Axion Like Particles

Weak experimental limits exist for the contribution of axion-like particles (ALPs) [see

fig.1f)]. The best model independent experimental limits on the mass and the coupling

constant of ALPs with mass m > 10−3 eV are due to limits on the observed ellipticity

in experiments aiming at detecting MBV induced ellipticity. The limits obtained by the

PVLAS collaboration will be presented in this thesis as ellipticity noise. MBV experiments

could become appealing in searches for ALPs if and when their sensitivity would become

competitive with regeneration experiments like CAST [27, 28].

The measurement of the ellipticity and the rotation (due to a dichroism), induced by ALPs

can in principle fully characterise the pseudoscalar or scalar nature of the hypothetical boson

particle, its mass ma,s and its coupling constant ga,s. In their paper, in which polarimetry for

the detection of ALPs is proposed for the first time, L. Maiani, R. Petronzio and E. Zavattini

were motivated by the search for axions [24] related to QCD. These particles are pseudoscalar,

neutral, and spinless bosons introduced [29–32] to solve the strong CP problem, namely the

fact that there is no experimentally observed CP violation in quantum chromodynamics, even

if there is no known reason for CP to be conserved in QCD. A discussion of non-Standard

Model physics in external fields can be found in ref. [33]. Magnetic birefringence accompa-

nied by magnetic dichroism may, however, be generated in a vacuum by the hypothetical

light bosonic spin zero ALP, in analogy with the Primakoff effect [34]. The processes causing
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birefringence are shown in Fig. 1.1f). The Lagrangian density describing the interaction

of a pseudoscalar field φa and scalar field φs with two photons can be expressed as (for

convenience, we use the natural Heavyside-Lorentz units, so that 1 T =
√

h̄3c3

e4µ0
= 195 eV2

and 1 m = e
h̄c

= 5.06×106 eV−1)

La = gaφaE ·B
Ls = gsφs

(
E2 −B2

)
(1.44)

where ga and gs are the coupling constants of a pseudoscalar field φa and of a scalar field φs,

respectively. Considering the pseudoscalar case, it is clear from these expressions that in the

presence of an external uniform magnetic field Bext, a photon with electric field Eγ parallel to

Bext will interact with the pseudoscalar field whereas for electric fields perpendicular to Bext

there is no such interaction. For the scalar case the opposite is true: an interaction will exist if

Eγ ⊥ Bext and does not if Eγ ∥ Bext. When an interaction is present, the photon oscillates into

the pseudoscalar/scalar particle. For photon energies above the mass ma,s of such particle

candidates, a real production can follow. On the other hand, even if the photon energy is

smaller than the mass of the particles, virtual production is possible, therefore causing a

phase delay to the photons with a direction of the electric field that allows an interaction.

The net result is that the presence of these particles causes a vacuum dichroism (selective

absorption in function of the photon’s polarisation state) and vacuum birefringence. The

measurable effects of these two properties is an apparent rotation of the polarisation plane θ

(apparent because there is a net loss in photons) and an ellipticity ψ due to the phase delay

between the two polarisation directions. The ellipticity ψ is related to the birefringence

∆n(ALP) and the rotation θ is related to the extinction coefficient ∆κ(ALP) by

ψ = π
∆n(ALP)L

λ

θ = π
∆κ(ALP)L

λ
(1.45)

The ellipticity ψ and the rotation θ of the polarisation of an electromagnetic wave, with

polarisation allowing an interaction according to the Lagrangian densities (1.44), can be

expressed, for both the scalar and pseudoscalar cases, as [24, 25, 35]:

ψ =
ωLg2

a,sB
2
ext

4m2
a,s

(
1− sin2x

2x

)
(1.46)

θ =

(
ga,sBextL

4

)2(
sinx

x

)2

(1.47)
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where, in vacuum, x =
Lm2

a,s

4ω , ω is the photon energy and L is the magnetic field length.

Therefore in the pseudoscalar case, where (na
∥ > 1, κa

∥ ̸= 0) and (na
⊥ = 1, κa

⊥ = 0) and in the

scalar case, where (ns
⊥ > 1, κs

⊥ ̸= 0) and (ns
∥ = 1, κs

∥ = 0), one also has [32]

|∆n(ALP)|= na
∥−1 = ns

⊥−1 =
g2

a,sB
2
ext

2m2
a,s

(
1− sin2x

2x

)
,

|∆κ(ALP)|= κa
∥ = κs

⊥ =
2

ωL

(
ga,sBextL

4

)2(
sinx

x

)2

. (1.48)

1.3.2 Millicharged particles

Let us consider the interactions between the laser beam and the magnetic field mediated

by vacuum fluctuations of hypothetical particles with fractional charge ±εe and mass mε

as discussed in references [22, 23]. The photons passing through a uniform magnetic field

can interact with such fluctuations. If the photon energy ω is ω > 2mε , this results in the

production of real pairs accompanied by an amplitude depletion of the incident photon. If

the photon energy is ω < 2mε , only a phase delay will result. This situation applies to both

fermions or bosons with spin-0. Now we will discuss birefringence effects (real part) and

dichroism (imaginary part) of the complex refraction index (1.41) due to these hypothetical

particles.

- Dirac fermions

Consider the case in which the particles are millicharged Dirac fermions (DF). As

derived in Refs [36, 37], the indices of refraction of photons with polarisation parallel and

perpendicular to the external magnetic field have two different regimes of mass defined by

the value of a dimensionless parameter χ (S.I. units):

χ ≡ 3

2

h̄ω

mεc2

εeBexth̄

m2
εc2

(1.49)

It can be shown that [22, 23]

n
(Df)
∥,⊥ = 1+ I

(Df)
∥,⊥ (χ)AεB2

ext (1.50)

with

I
(Df)
∥,⊥ (χ) =





[
(7)∥ ,(4)⊥

]
for χ ≪ 1

−9
7

45
2

π1/221/3(Γ( 2
3))

2

Γ( 1
6)

χ−4/3
[
(3)∥ ,(2)⊥

]
for χ ≫ 1
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and

Aε =
2

45µ0

ε4α2λ̄ 3
ε

mεc2
(1.51)

in analogy to equation (1.36), and where Γ is the Euler gamma function.

In the limit of large masses (χ ≪ 1) these expressions reduce to the QED case with the

substitution of εe with e and mε with me in equation (1.50). The dependence on Bext remains

the same as for the well known QED prediction. For small masses (χ ≫ 1) the index of

refraction now also depends on the parameter χ−4/3 resulting in a net dependence of ∆n on

B
2/3
ext rather than B2

ext. The induced birefringence is in both mass regimes

∆n(Df) = AεB2
ext





3 for χ ≪ 1

−9

7

45

2

π1/221/3
[
Γ
(

2
3

)]2

Γ
(

1
6

) χ−4/3 for χ ≫ 1.
(1.52)

For the dichroism one finds [23, 36, 37],

∆κ(Df) =
1

8π

ε3eαλBext

mεc





√
3

32
e−4/χ for χ ≪ 1

2π

3Γ(1
6
)Γ(13

6
)

χ−1/3 for χ ≫ 1.
(1.53)

- Spin-0 charged bosons

We obtain very similar expressions to the Dirac fermion case also for the spin-0 (s0)

charged particle case [23, 37]. We define two mass regimes by the same parameter χ of

expression (1.49). In this case, the indices of refraction for the two polarisation states on the

magnetic field direction are

ns0
∥,⊥ = 1+ Is0

∥,⊥(χ)AεB2
ext (1.54)

with

Is0
∥,⊥(χ) =





[(
1
4

)
∥ ,
(

7
4

)
⊥

]
for χ ≪ 1

− 9
14

45
2

π1/221/3(Γ( 2
3))

2

Γ( 1
6)

χ−4/3
[(

1
2

)
∥ ,
(

3
2

)
⊥

]
for χ ≫ 1.

Vacuum magnetic birefringence is therefore

∆ns0 = AεB2
ext

[
Is0
∥ (χ)− Is0

⊥ (χ)
]
= (1.55)

= AεB2
ext





−6
4

for χ ≪ 1

9
14

45
2

π1/221/3(Γ( 2
3))

2

Γ( 1
6)

χ−4/3 for χ ≫ 1
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and vacuum dichroism is given by

∆κ(s0) =
1

8π

ε3eαλBext

mεc





−
√

3
8

e−4/χ for χ ≪ 1

− π

3Γ(1
6
)Γ(13

6
)

χ−1/3 for χ ≫ 1.
(1.56)

Note that there is a difference in sign, in both the birefringence ∆n and in the dichroism

∆κ induced by an external magnetic field in the presence of Dirac fermions compared to the

case where there are spin-0 particles.





Chapter 2

Experimental method

This chapter presents the experimental method followed by the PVLAS experiment to detect

the magnetic birefringence of vacuum. This matter is treated here only in principle; a

characterisation of the actual apparatus is found in Chapter 3. The first idea is due to E.

Iacopini and E. Zavattini [38]. The innovative strategy is still essentially the same as of

1979, while many significant improvements have been devised. The main building blocks of

the scheme are a magnetic field region, a pair of crossed polarisers, heterodyne detection,

and an optical path multiplier. A few technical issues necessary for the comprehension and

the auto-consistency of the presentation have been added; I tried to keep their treatment as

concise as possible.

2.1 Magnetic polarimetry

Figure 2.1: Principle scheme of the PVLAS polarimeter. PDE: Extinction Photodiode; PDT:

Transmission Photodiode.

Figure 2.1 shows a principle scheme of the PVLAS polarimeter. A linearly polarised light

beam (wavelength λ ) is fed to a Fabry-Perot optical cavity, consisting of two mirrors. The

beam in the Fabry-Perot cavity traverses the bore of a dipole magnet, with the magnetic field

direction orthogonal to the light propagation direction and making an angle φ(t), variable in



20 CHAPTER 2. EXPERIMENTAL METHOD

time, with respect to the polarisation direction. The birefringence and/or dichroism induced

in the medium by the magnetic field generates a time dependent effect: an ellipticity, a

rotation or both. An ellipticity modulator adds then a small variable ellipticity η(t) ≪ 1

to the polarisation of the beam transmitted by the cavity. The ellipticity η(t) will beat

with the ellipticity generated by the magnetic field but not with the rotation. For rotation

measurements, a quarter-wave-plate (QWP) is inserted at the exit of the cavity with one of

its axes aligned to the input polarisation, converting the electric field rotation acquired by

the beam in the magnetic field region into an ellipticity (and, at the same time, the ellipticity

into a rotation). Finally, a polariser, crossed with respect to the input prism, extinguishes the

polarisation component of the beam parallel to the input polarisation. The residual intensity

is collected by a light detector, and then Fourier analysed. In the present set-up, the complete

polarimeter depicted in Fig. 2.1 is kept under pneumatic vacuum.

X X

Y

Z = Z

X

θ0

Rotating 
birefringent 

medium

n

n

φ(t)

Y

Y

E

B

Figure 2.2: Reference frame for the calculations. XY : laboratory coordinates; X ′: the

direction of the electric field as defined by the polariser; n∥: the direction of the magnetic

field, rotating around the beam path Z at a frequency νB.

To calculate the effect, we use the Jones matrices [39] to describe the beam and the optical

elements. This technique ignores beam divergence which generates, through the Fresnel

formulas, a polarisation pattern across the surface of the beam. For simplicity, the optical

components are also considered ideal, namely not affecting intensity, and the extinction

factor of the polarisers σ2 is assumed negligible. In these approximations, the ellipticity

modulator is described by the matrix

H =

(
1 iη

iη 1

)
,
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the quarter wave-plate is given by

Q =

(
q 0

0 q∗

)
,

where q = 1 for ellipticity measurements, when the wave-plate is out of the optical path

and Q therefore coincides with the identity matrix I, whereas q = (1+ i)/
√

2 for rotation

measurements. The general optical element representing a linear magnetic birefringence and

a dichroism can be written, in its axes and neglecting an overall attenuation factor, as

X0 =

(
eξ 0

0 1

)
,

where ξ is a small complex number that we write as ξ = i2ψ −2θ (θ ,ψ ≪ η ≪ 1). The

quantity 2ψ is the phase difference between the two polarisation directions acquired in the

birefringent medium and 1− e−2θ is the fraction of the electric field absorbed in the dichroic

medium. Without loss of generality, we consider the x direction (X ′ direction of Figure 2.2)

as the absorbing as well as the slow axis. The quantity ψ is the maximum ellipticity1 that

the light can acquire due to X0, while θ is the maximum rotation. Both correspond to an

angle φ = 45◦ between the polarisation direction and the magnetic field direction. In the

case of the vacuum birefringence of equation (1.40), for a length L = 1.64 m of a magnetic

field Bext = 2.5 T and light wavelength λ = 1.064 µm, the ellipticity ψ due to the vacuum

magnetic birefringence is

ψvac = π
∆nvacL

λ
= 1.2 10−16. (2.1)

In the particular case of QED, dichroism is unmeasurably small.

Placing X0 at an angle φ with respect to the polarisation direction, one finds

X(φ) =
1

2


 1− cos2φ + eξ (1+ cos2φ) −

(
1− eξ

)
sin2φ

−
(

1− eξ
)

sin2φ 1+ cos2φ + eξ (1− cos2φ)


 .

To show the salient features of our polarimetric method, we begin with neglecting the

effect of the Fabry-Perot cavity. The electric field at the analyser is then represented by

E(φ) =

(
E1

E2

)
= E0 H ·Q ·X(φ) ·

(
1

0

)
. (2.2)

1The ellipticity is the ratio of the minor to the major axis of the ellipse described by the electric field vector

of the light.
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Components Frequency Amplitude (in units of I0)

IDC DC η2
0/2

I− νm −2νB η0ψ

I+ νm +2νB η0ψ

I2νm
2νm η2

0/2

Table 2.1: Fourier components of the extinguished intensity signal.

The two polarisation states are spatially separated by the analyser and collected by two

photodiodes. For ellipticity measurements (quarter-wave-plate not inserted), the intensity

collected at the photodiode PDE is

Iell
2 (φ) = I0

(
η2 +2ηψ sin2φ

)
+higher order terms. (2.3)

For rotation measurements, with the quarter-wave-plate inserted,

Irot
2 (φ) = I0

(
η2 +2ηθ sin2φ

)
+higher order terms. (2.4)

The light having the same polarisation as the input is collected at the photodiode PDT and

has intensity

I1 ≈ I0 = ε0c
E2

0

2
.

We employ the heterodyne method to measure ψ and θ : the angle φ is varied linearly as

a function of time as φ(t) = 2πνBt+φB and η as η(t) = η0 cos(2πνmt+φm), with νB ≪ νm.

The sought for values of each of the quantities ψ and θ are extracted from the measurement

of I1 and from the amplitude and phase of three components in a Fourier transform of the

extinguished intensity I2: the component I2νm
at 2νm and the components I± at νm ± 2νB.

The main signal components in the frequency range from 0 to 2νm are shown in table 2.1

in the case of an ellipticity measurement. Similar expressions hold in the case of a rotation

measurement, with ψ replaced by θ . Note that in our approximations no first harmonic of the

modulator (Iνm) should be seen at frequency νm. This frequency component appears in the

spectrum due to the presence of static birefringences on all the optical elements. However, as

will be seen in the next chapter, this component is stably maintained at zero in the normal

functioning of the polarimeter. The ellipticity and rotation values are then obtained as

ψ,θ =
I−+ I+

2
√

2 I0 I2νm

=
η0

4

I−+ I+

I2νm

. (2.5)
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If a lock-in amplifier is used to demodulate the residual intensity at the frequency νm, instead

of I+ and I− one finds a single component at 2νB, and the resulting ellipticity and rotation

signals are

ψ,θ =
I2νB

2
√

2 I0 I2νm

=
η0

4

I2νB

I2νm

. (2.6)

The ellipticity and rotation signals come with a distinct phase that, in the case a lock-in

amplifier is employed, is 2φB. With reference to the Figure 2.2, one can observe that the

value of φB is −θ0, with θ0 the angle between a reference direction X and the polarisation

direction. With this position, the axes of X0 coincide with the laboratory axes (XY ) and the

ellipticity is maximum at the time t0 = (θ0 +π/4)/(2πνB). We will return to this point in

the calibration section.

2.2 Optical path multiplier

Given the smallness of the sought for optical effects, an amplification scheme is necessary.

In the PVLAS experiment, this is obtained by the use of a Fabry-Perot (FP) cavity. This

choice came into the project of the experiment at the beginning of the ’90s [40] to overcome

the limitations of the multi-pass cavities that were used before as optical path multipliers

[35]. In fact, multi-pass cavities require large mirrors and hence a large volume of magnetic

field; moreover, the path multiplication factor is limited to ≈ 103 at most [35]. The FP was

employed for the first time in 1994 by the PVLAS group for a measurement of the Faraday

effect of air [41]. The first published data came only in 1995 [42]. In this section, we make

a broad presentation of the Fabry-Perot cavity. For the purpose of completeness, a brief

account is given in appendix of the topic of dielectric mirrors.

2.2.1 Fabry-Perot cavity

The FP interferometric cavity consists of two aligned mirrors separated by a distance d.

Although interferometers make use of spherical mirrors and Gaussian beams, we analyse

the case of a plane wave of amplitude E0 and frequency ν incident on two plane and parallel

mirrors. This approach is justified as the wavelength is much smaller than the diameter of

the beam; in an appendix we will tackle the argument of the Gaussian beams. In this section,

the optical response of the interferometer is analysed in terms of the multiple interference

of the beams produced by partial reflections on the mirrors (see Fig. 2.3). Let r1,2 and t1,2

be the reflection and transmission coefficients of the reflecting surfaces of the two mirrors.

The back surfaces are assumed to have t = 1 and r = 0. It must be noted that, following the
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where λ = c/ν is the wavelength of the light in vacuum. The phase δ can equally well

be considered a function of the distance d between mirrors, of the wavelength λ or of the

frequency of the light ν .
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Figure 2.4: Left: normalised amplitude of the electric field transmitted by a FP cavity

with d = 3.303 m, r1r2 = 0.9999955 and t1t2 = 2.4× 10−6 as a function of the frequency

difference from the maximum. Right: phase φT of the transmitted electric field.

The transmitted electric field is maximum for cosδ = 1, namely for

d = m
λ

2
or ν = m

c

2d

where m, the order of interference, is any integer. In other words, maximum transmission

occurs when the distance between the two reflecting surfaces is an integer multiple of the half

wavelength, or if the frequency of the light is a multiple of the free spectral range frequency

νfsr =
c

2d
(2.9)

Figure 2.4 shows the relative amplitude and the phase of the transmitted electric field

|ET(δ )| = E0
t1t2√

1+ r2
1r2

2 −2r1r2 cosδ
(2.10)

φT = arctan
r1r2 sinδ

1− r1r2 cosδ
. (2.11)

Coming to intensities, we assume for simplicity that the two reflecting surfaces have the

same transmittance and reflectance:

t2
1 = t2

2 = T r2
1 = r2

2 = R;
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hence

IT(δ ) = I0
T 2

1+R2 −2Rcosδ
, (2.12)

where I0 = cε0E2
0/2. The maximum transmitted intensity is

IT,max = I0
T 2

(1−R)2
,

The transmitted intensity can be cast in the canonical Airy form

IT = IT,max
1(

1+F sin2 δ
2

) , (2.13)

having defined the coefficient F as

F =
4R

(1−R)2
.

As a function of δ , the transmitted intensity appears as a series of equispaced interference

peaks separated by large dark regions. For high reflectance, the peaks are very narrow, and

their frequency full-width at half-maximum νc can be calculated as

1

2
=

1

1+F sin2(πνc/2νfsr)
or νc =

νfsr(1−R)

π
√

R
.

The quantity

F =
νfsr

νc
=

π
√

R

1−R
(2.14)

is called the finesse of the interferometer. It depends only on the reflectance of the mirrors.

The field inside the cavity is a quasi-stationary wave, whose amplitude can be calculated

by summing the contributions of all the partial wavelets. On top of the resonance

Einside =
ET

t2
= E0

t1

1− r1r2
.

The Fabry-Perot cavity is thus an electric field intensifier. In the absence of an input wave,

the internal field decays with a time constant dictated by the reflectance of the mirrors: in

a complete round trip, corresponding to a time interval ∆t = 2d/c = 1/νfsr, the amplitude

decays as E ′
inside = r1r2Einside or

Einside(t) = Einside(0)e−t/τE ,



2.2. OPTICAL PATH MULTIPLIER 27

where

τE =− 1

νfsr

1

lnr1r2
≈ 1

νfsr

1

1−R
≈ 1

νfsr

F

π
.

Reminding that light intensity is the square of the electric field, one has that the decay time

of the intensity is τ = τE/2 and hence

F = 2πνfsrτ =
πcτ

d
.

For the light reflected from the cavity we have

ER = −r1E0 + t2
1 r2eiδ E0 + t2

1 r2eiδ r1r2eiδ E0 + t2
1 r2eiδ (r1r2eiδ )2E0 + . . .=

= −r1E0 + t2
1 r2eiδ E0

∞

∑
n=0

(r1r2eiδ )n =−E0
r1 − r2(r

2
1 + t2

1)e
iδ

1− r1r2eiδ

that with our assumptions can be written as

ER = rE0
1+R(R+T )− (T +2R)cosδ − iT sinδ

1+R2 −2Rcosδ
.

Note that the quantity A = 1−R−T is the fraction of the intensity absorbed or scattered in a

round trip in the cavity. The electric field reflected from the FP bears a phase difference with

respect to the incident light:

φR(δ ) =−arctan

[
(1−A−R)sinδ

1+R(1−A)− (1−A+R)cosδ

]
. (2.15)

As for the reflected intensity:

IR(δ ) = I0
R [1−2(1−A)cosδ +(1−A)2]

1+R2 −2Rcosδ
. (2.16)

In terms of R, T and A, the expression of the transmitted electric field is:

ET = E0
T [(1−Rcosδ )+ iRsinδ ]

1+R2 −2Rcosδ
(2.17)

with phase

φT (δ ) = arctan
Rsinδ

1−Rcosδ
. (2.18)
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2.2.2 Polarimetry with a FP

We now show that the FP cavity amplifies the signals observed in our scheme of measurement

of magneto-optical effects. To this end we write the electric field entering the analyser, taking

into account Eq. (2.7) and in analogy with equation (2.2), as

E(δ ,φ) =

(
E1

E2

)
= E0 H ·Q ·

∞

∑
n=0

[
Reiδ X2(φ)

]n

·Teiδ/2 X(φ) ·
(

1

0

)
=

= E0 H ·Q ·
[
I−Reiδ X2(φ)

]−1

·Teiδ/2 X(φ) ·
(

1

0

)
. (2.19)

In the case of ellipticity measurements, since at resonance δ = 0 (mod 2π), and given that

R ≈ 1, the intensity collected by photodiode PDE, at the lowest order, is

Iell
2 (φ)≃ I0

[
η2 +

4ηψ

1−R
sin2φ

]
. (2.20)

Analogously, in the case of rotation measurements, one has

Irot
2 (φ)≃ I0

[
η2 +

4ηθ

1−R
sin2φ

]
, (2.21)

while

I1 ≈ IT,max = ε0c
E2

0

2

T 2

(T +A)2
. (2.22)

Comparing these formulas with the corresponding ones calculated above without the Fabry-

Perot cavity Equations (2.3) and (2.4), one sees that the expressions are very similar, with the

latter ones having the signals ψ and θ of Equation (2.5) amplified by a factor

N =
2

1−R
≈ 2F

π
,

where F is the finesse of the cavity, that can be up to ∼ 106 [44]. This amplification factor

N is a lengthening of the optical path, as the very form of Equation (2.19) suggests.

The dynamical character of the polarimetric method presented here brings in a frequency

response of the measurement: the measured values of rotation and ellipticity are filtered

by the cavity at the frequency 2νB according to equations (2.7) and (2.11). In fact, in the

polarimetric method presented above, the magnetic birefringence modulates the optical

length of the cavity at twice the rotation frequency of the magnets as d′ = d +L∆ncos2ωBt,

where L is the length of the magnetic region. As a consequence, the resonance frequency of
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the cavity is modulated:
∆ν

ν
= ∆n

L

d
cos2ωBt.

As the electric field inside the cavity responds with a time constant τE , the same applies to

the ellipticity signal.

Besides heterodyne detection, high amplification is another important feature of the

polarimetric technique adopted by the PVLAS experiment. In this way, the ellipticity of

Equation (2.1) becomes of order 10−10.

2.2.3 Intrinsic noise of the polarimeter

We now want to calculate the limit sensitivity of the apparatus in the case a lock-in amplifier

is used to demodulate the signal. Starting from Equation (2.5), if the noise at the frequency

νm −2νB is uncorrelated to the noise at νm +2νB, one must take into account a factor
√

2

due to the folding of the spectrum around νm. If Inoise(2νB) is the rms noise spectral density

of the demodulated light intensity at the frequency of the signal, the expected peak sensitivity

of the polarimeter is

S2νB
=

Inoise(2νB)

I1η0
.

Several intrinsic effects contribute to S2νB
, all of which can be expressed as a noise in the

light intensity impinging on the detector. We consider first the intrinsic rms shot noise due to

the direct current idc in the detector in a frequency band ∆ν

ishot =
√

2e idc ∆ν .

According to Equations (2.3) or (2.4), the direct current inside the photodiode is given by

qI1η2
0/2, where q is the efficiency of the detection process. However, any pair of crossed

polarising prisms has a nonzero minimum extinction coefficient for intensity. For the best

polarisers, the extinction coefficient can be as low as σ2 ≈ 10−8. This effect introduces an

additional term in the detected intensity which is written as I1σ2. This leads to

Ishot =

√
2eI1

q

(
σ2 +

η2
0

2

)
and Sshot =

√
2e

qI1

(
σ2 +η2

0/2

η2
0

)
.

This represents the ultimate sensitivity of the present polarimetric method.
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Other effects contributing to the noise are the Johnson noise of the transimpedance G of

the photodiode

IJ =

√
4kBT

G
, giving SJ =

√
4kBT

G

1

qI1η0
,

the photodiode dark noise

Idark =
idark

q
, with Sdark =

idark

qI1η0
,

and the relative intensity noise (RIN) of the light emerging from the cavity

IRIN(ν) = I1 NRIN(ν),

giving

SRIN(2νB)≈ NRIN(νm)

√
(σ2 +η2

0/2)2 +(η2
0/2)2

η0
, (2.23)

where in the last equation we consider that the contributions of all the peaks in the Fourier

spectrum add incoherently to the intensity noise at νm, and that νB ≪ νm.
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Figure 2.5: Intrinsic peak noise components of the polarimeter as a function of the ellipticity

modulation amplitude η0 in typical operating conditions, with q ≈ 0.7 A/W, I1 = 8 mW,

σ2 = 2×10−7, G = 106 Ω, idark = 25 fArms/
√

Hz, and NRIN(νm)≈ 3×10−7/
√

Hz.
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Figure 2.5 shows all the intrinsic contributions as functions of η0 in typical operating

conditions. The figure shows that the expected noise

Stot =
√

S2
shot +S2

J +S2
dark +S2

RIN (2.24)

has a minimum for a modulation amplitude η0 ≈ 10−2.

2.3 Laser-cavity locking

Figure 2.6: General scheme of a feedback system locking the slave frequency ν0 to a master

frequency νM. The symbol “+" indicates sum, D the discriminator, G the amplifier, A the

actuator. The actuator is incorporated in the slave system.

The use of a Fabry-Perot cavity for polarimetric measurements requires that the frequency

νL of the laser light that enters the cavity coincide with one of the frequencies mνfsr for

which the cavity resonates, and that this situation remains stable for the time necessary to

perform the measurement. In other words, the resonance condition must be maintained stable

in a dynamic equilibrium that contrasts thermal drifts and longitudinal mechanical vibrations

of the mirrors. It is therefore necessary to have a “frequency coupling” between the laser

light source and the FP cavity. This frequency coupling cannot be obtained without an active

feedback system. The general scheme of the feedback system is shown in Fig. 2.6. In the

figure, the two systems are represented as a master and a slave. The symbol “+" indicates

sum, D the discriminator, G the amplifier, A the actuator. The actuator is incorporated in the

slave system. For the output of the slave system, one has

νS = ν0 +AGD(νM −νS) or νS =
ν0 +AGDνM

1+AGD
(2.25)

In the limit in which the open loop gain Gopen loop = AGD → ∞, νS = νM, and the noise in

the frequency difference is strongly suppressed. The coefficients D, G and A are complex
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functions of the frequency difference νM −νS. Bandpass and stability of the locking system

are determined by the frequency response of its components. Control theory describes

the stability of linear systems with reference to the position of the poles of the transfer

functions [45].

The locking scheme adopted in the PVLAS experiment follows the Pound-Drever-Hall

(PDH) technique [46, 47], which features a fast frequency discrimination. To this end, a

sinusoidal frequency modulation of the laser light is used at an RF frequency νPDH, and the

reflected intensity is an input for the discriminator D. In this way, the limitation imposed by

the bandwidth of the FP cavity, which affects the transmitted intensity, is bypassed. This is

mandatory in the case of very high finesse cavities with long lifetimes. Moreover, as it will

be shown below, this locking scheme is relatively insensitive to intensity noise coming both

from the laser source and from the cavity.

For the actuation, one possibility is to modify the instantaneous position of the mirrors of

the cavity, for example by making use of piezoelectric actuators; another option is to adjust

the frequency of the laser. This second possibility, which has a larger frequency bandwidth,

can, in turn, be implemented in two different ways. The traditional technique consists in

adding a frequency modulator to the optical set-up; a simpler solution is to resort to tuneable

laser sources, like for example diode lasers or Nd:Yag NPRO ones [48–50].

As far as the frequency modulation is concerned, the PVLAS experiment has developed

an original method which consists in acting at a single frequency on the very same frequency

control of a solid state laser outside its linear range [48]. A phase modulation introduces an

unwanted noise called residual amplitude modulation (RAM) that can significantly limit the

overall performance of the system. The adopted frequency modulation scheme optimises

the RAM and reaches better results than in the case of a phase modulator [48, 49]. We will

now describe in detail the discriminator of the PDH method. The amplification and actuation

sections will be described in the next chapter.

The principle setup of the PDH frequency locking system is given in Fig. 2.7. With

reference to this figure we analyse the electric field of the light at the sections A, B and C. At

section A the electric field is

EA = E0ei2π(mνfsr+∆ν)t (2.26)

where ∆ν = νL −mνfsr is the difference between the laser frequency and the resonance

frequency of the cavity. The electric field after the phase modulator, i.e at section B, is

EB = E0ei[2π(mνfsr+∆ν)t+β sin(ΩPDHt)] =

≈ E0ei2π(mνfsr+∆ν)t
[
J0(β )+ J1(β )

(
eiΩPDHt − e−iΩPDHt

)]
(2.27)
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Figure 2.8: Phase φR of the reflected electric field for a cavity with d = 3.303 m, R =
0.9999955 and A = 2.1×10−6 as a function of the frequency difference between laser and

cavity.

In principle, the PDH system keeps the cavity in the maximum transmission condition.

The electric field EC of the light reflected from the FP in correspondence of section C is

EC(t)≃ E0 ei2π(mνfsr+∆ν)t [J0(β )hR(∆ν)+

+ J1(β )e
iΩPDHt hR(∆ν +νPDH)− J1(β )e

−iΩPDHt hR(∆ν −νPDH)
]
.

(2.31)

Near the resonance condition, the sidebands are in practice completely reflected by the cavity

with small phases ±φPDH:

hR(∆ν +νPDH) = h∗R(∆ν −νPDH)| ≃ eiφPDH (2.32)

The reflected electric field near the resonance condition becomes then

EC(t)≃ E0 ei2π(mνfsr+∆ν)t [J0(β )hR(∆ν)+ 2iJ1(β ) sin(ΩPDHt +φPDH)] (2.33)

After point C, the beam is focused on the photodiode PDR which generates a voltage

signal VR(t) proportional to PC ∝ |EC|2:

VR(t) = qGPC(t)

where q is the efficiency of the photodiode (at λ = 1064 nm, an InGaAs photodiode has

q ≈ 0.7 A/W), G is the transimpedance of the photodiode and PC the light power at point C.

The signal VR from the photodiode contains terms at frequencies 0, νPDH and 2νPDH. The
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Figure 2.9: Calculation of the DC component of the signal from the PDR photodiode

demodulated at the frequency νPDH of the phase modulation as a function of frequency.

Left: in-phase component; right, quadrature component. This plot does not represent the

small-frequency approximation of equation (2.33); it stems instead from equation (2.31).

The cavity simulated in these plots has a finesse F = 3000, L = 3.303 m, νfsr = 45 MHz,

modulation frequency νPDH = 503 kHz.

νPDH component is:

VR,νPDH
(t) = 4P0qGJ0(β )J1(β )hR(0)sin [φR(∆ν)]sin(ΩPDHt +φPDH) (2.34)

where P0 is the laser power at section A. This signal is then fed to a mixer, together with the

signal from a local oscillator at the frequency νPDH with an adjustable phase φ0 (see Fig. 2.7).

At the output of the mixer, the product

Vmixer(t) = χVR,ΩPDH
(t)sin(ΩPDHt +φ0) (2.35)

is obtained, where χ (≈ 0.5) is the efficiency factor of the mixer.

The DC component of this product represents an error signal VE for the difference in

frequency ∆ν between laser and cavity. The DC component can in fact be written as

Vmixer,DC = 2P0χqGJ0(β )J1(β )hR(0)cos(φPDH −φ0)sin [φR(∆ν)] (2.36)

which is a maximum for φ0 = φPDH (mod π) (in-phase component) and is zero for φ0 =

φPDH ±π/2 (quadrature component). Graphs of the two components are shown in figure 2.9.

Near the resonance (φR ≈ 0), the in-phase component is

VE(∆ν) = 4P0χqGJ0(β )J1(β )hR(0)
FT

A

∆ν

νfsr

(2.37)
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The slope of VE at ∆ν = 0 is

D0 =
∂VE

∂ (∆ν)

∣∣∣∣
∆ν=0

= 4χqG
TF 2

πνfsr

J0(β )J1(β )P0 (2.38)

The product J0J1 has a maximum value ≈ 0.34 for a modulation depth β ≈ 1.1. The

maximum slope of the error signal is then (q = 0.7 A/W)

D0 ≈ 12
TF 2

νfsr

G[Ω]P0[W] mV/Hz. (2.39)

2.4 Calibration of the apparatus: the Cotton-Mouton ef-

fect

The main characteristic of the PVLAS technique is an extraordinary sensitivity to birefrin-

gence. On the contrary, the accuracy that can be reached could be questioned. Even if the

response of the polarimeter, whose mathematics has been treated so far only in principle,

is fully traceable, and prescinding from the systematic effects that will be described in a

following chapter, the complexity of the apparatus strongly suggests the need for a cali-

bration measurement. This is obtained with the so-called Cotton-Mouton (or Voigt) effect,

namely the magnetic birefringence of pure transparent materials observed for the first time

by A. Cotton and H. Mouton [1, 2] in liquids, and predicted by Voigt [51] in gases. Given the

sensitivity of the apparatus, the calibration measurements can be performed with a very low

gas pressure, namely in a condition very similar to vacuum measurements. Moreover, along

the years, the measurements have produced data of interest for the atomic physics research

field [52–59]. A small amount of pure gas (P ∼ 1 mbar) is introduced into the vacuum vessel

hosting the polarimeter through a leak valve. The gas fills the magnetic region and the cavity.

In order not to disturb the light beam, the gas must have negligible absorption at the laser

wavelength. With the Cotton-Mouton effect, a calibration of both the amplitude and the

phase of the effect is obtained.

The theoretical treatment of the CME is due to Langevin (1910) and Buckingham and

Pople (1956) [60]. The macroscopic anisotropy ∆nCM = (n∥−n⊥) is related to anisotropies

in the microscopic molecular hyperpolarisability tensor of the medium. A temperature

dependence of the effect derives from the general energy-dependent molecular orientation

effect [61]. All the PVLAS measurements reported in this thesis have been taken at a single

temperature near the NTP standard of 20◦C: the temperature of the gas is assumed to be that

of the laboratory room. From the calculations as well as from the experiments it comes out
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that ∆nCM is proportional to the square of the magnetic field and varies linearly with the gas

pressure:

∆nCM ∝ B2P

Following Rizzo, Rizzo and Bishop [62], the results of the measurements are given making

reference to the unitary birefringence ∆nu, namely scaling the measured ∆nCM at B = 1 T

and P = 1 atm:

∆nu =
∆nCM

B2P

Species ∆nu (T−2atm−1) λ (nm) Ref.

H2 (8.28±0.57)×10−15 514 [62]

(8.82±0.25)×10−15 633 [62]

He (2.08±0.14)×10−16 1064 [56]

(2.19±0.12)×10−16 1064 [63]

(2.20±0.14)×10−16 1064 [58]

H2O (6.67±0.21)×10−15 1064 [57]

Ne (6.9±0.2)×10−16 1064 [54, 55]

CO (−2.24±0.45)×10−13 546 [62]

(−1.90±0.12)×10−13 633 [62]

(−1.80±0.06)×10−13 633 [62]

CH4 (1.59±0.21)×10−14 633 [62]

N2 (−2.66±0.42)×10−13 1064 [64, 65]

(−2.02±0.18)×10−13 1064 [65]

O2 (−2.29±0.08)×10−12 1064 [52]

(−1.79±0.35)×10−12 1064 [65]

Ar (7.5±0.5)×10−15 1064 [59]

(4.31±0.38)×10−15 1064 [65]

CO2 (−4.22±0.31)×10−13 1064 [65]

Kr (9.98±0.40)×10−15 1064 [53, 55]

(8.28±1.30)×10−15 1064 [65]

Xe (2.85±0.25)×10−14 1064 [53, 55]

(2.59±0.40)×10−14 1064 [66]

Table 2.2: Unitary magnetic birefringence of important inorganic gaseous species. Other

molecules and older values for the species listed here are found in Ref. [62].

An important point to note is that the residual atmosphere in the vacuum system can

contribute to the magnetic birefringence. The knowledge of the Cotton-Mouton effect for

the residual molecular species in the vacuum is thus essential to guarantee that the effect

due to the partial pressure of each and all the residual gases be much smaller than the

effect of the MBV. A list of recent measurements of the unitary magnetic birefringence of a
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few inorganic gaseous species at room temperature is shown in Table 2.2. The molecules

listed in the table are either natural residual gases in the vacuum chamber or are gases that

can be used for calibration. The reported values span four orders of magnitude, from He

(∆nu ∼ 10−16 T−2atm−1) to O2 (∆nu ∼ 10−12 T−2atm−1), the vacuum magnetic birefringence

being equivalent to that of 20 nbar of Helium or 2 pbar of Oxygen. If the direction of B

corresponds to the slow axis of birefringence (n∥ > n⊥, the case of the noble gases and the

vacuum), ∆n > 0. In the case ∆n < 0 (O2 and N2) the direction of B corresponds to the fast

axis.
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Figure 2.10: Left: polar plot of Cotton-Mouton measurements of He at three different

pressures. Right: the amplitude of the measurements as a function of the pressure.

The magnetic birefringence of gases is analysed with the same mathematics presented in

the first sections of the chapter. Hence the measurement of the Cotton-Mouton effect of a gas

of known unitary magnetic birefringence represents an absolute calibration of the apparatus

or a verification of its status. For the calibration measurements, the gas pressure is kept

low enough so that the apparatus is in a condition near to that of vacuum (e.g., in Ref. [58],

PHe = 32 µbar), while the signal is large enough not to require a too long integration.

The phase and amplitude of the detected signal represent the sought for calibration of the

apparatus. An example is shown in Fig. 2.10. In particular, the oriented direction defined by

the result of the measurement displayed on a polar plane defines what in the following will be

called the “physical axis” of the polarimeter: the result of any measurement of birefringence

must fall on this axis (if performed at the same frequency as the calibration).
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.1 Appendix 2.I: Forerunners

The modern history of the measurement of the magnetic birefringence of vacuum begins

in 1979 with the seminal paper by Iacopini and Zavattini [38]. In that article the authors

proposed an experimental scheme for the measurement that is substantially the one adopted

by the PVLAS experiment. The first experiment realised using their technique [67] did not

have the sensitivity for measuring the MBV [68] and produced Cotton-Mouton data [69–71]

in simplified apparatuses with no path multiplier.

The second attempt to make a direct measurement of the vacuum birefringence was in

the framework of an international collaboration between Brookhaven National Laboratory

(BNL), Fermi National Accelerator Laboratory, and Rochester and Trieste Universities

(BFRT collaboration). The experiment was funded for axion search under the name of

Experiment 840 of BNL [72, 35]. Its name in the INFN was LAS (Laser Axion Search). In

this experiment, two superconducting magnets provided a 4 T magnetic field on a length

of 8.8 meters. The light source was an argon laser (λ = 514 nm). The magnetic field

was modulated by pulsing the current of the magnets to give an oscillating component of

amplitude
∫

B2dl = 7.1 T2m at the maximum frequency of about 80 mHz. The cavity was

constituted by a multi-pass cavity that gave the best results amplifying the optical path of a

factor thirtyfour. As a modulator, a Faraday rotator was used. The experiment has put limits

on the existence of axion-like particles.

LNL apparatus

The PVLAS set-up in Legnaro had a long development starting in 1992 [73]. It featured an

ellipsometer with a vertical Fabry-Perot (FP) cavity with the two mirrors spaced 6 m apart. A

superconductive dipole magnet about 1 m long rotated around the FP axis and was operated

with field intensities up to 5.5 T. Running periods after a fill of the magnet cryostat with

liquid He lasted up to 4 hrs. The optical set-up extended vertically about 8 m and included

two black granite optical benches (one above and the second below the magnet) supported

by the same floor (see Fig. 11). The lower optical bench was in a pit whose floor is a thick

concrete slab resting on four 14 m high pillars buried in the ground. The slab and the pillars

are therefore seismically isolated from the surrounding hall floor and the building. Four

granite pillars supported the top optical bench. A quartz tube of 2.5 cm diameter passing

through the warm bore of the cryostat containing the magnet connected an upper and a

lower vacuum chamber. The optical components installed directly onto the optical benches

were exposed to ambient air. Instead, the polariser and the first mirror of the FP, as well

as the second mirror and the analyser plus the ellipticity modulator, were installed inside
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and as an ellipticity [75]. The rotation signals generated quite an interest since, if authentic,

would have been the signature of new physics. After an extensive upgrade, the rotation

signals disappeared [76, 77]. Also, the ellipticity signal disappeared at a lower field (2.3 T),

while it was still present at high fields albeit not well reproducible and not compatible with

the upper limit derived from the 2.3 T data and the B2 scaling law [76, 77]. These signals

were therefore considered as systematics. The 2.3 T ellipticity data have provided the best

limits for the total cross section of low energy γγ interactions [76, 77]. Limits on the vacuum

birefringence and dichroism were also derived as

∆n ≤ 1.1×10−19 and ∆κ ≤ 0.9×10−19.

Calibrations of the ellipsometer have repeatedly been made. They have provided the most

accurate measurements of the CM parameters for noble gases [53–56]. Runs with He have

been made at pressures as low as 0.04 mbar [56].

The experience with the LNL apparatus has demonstrated that two main features are

necessary for a reliable observation of MBV: that the signal is independent of the rotation

frequency of the magnet and that the phase of the ellipticity signal must be aligned with the

physical axis determined during calibrations with gases. A further requirement would be the

ability to verify that the signal depends on B2.

Ferrara test set-up

Between 2008 and 2012, a prototype polarimeter featuring a 140 cm long FP coupled with

two rotating permanent dipole magnets has been in operation as the Ferrara test set-up [78].

This set-up has been a model for the apparatus described in this thesis. Fig. 12a shows

the scheme of the test apparatus and Fig. 12b a picture of it. At the centre one can see the

two permanent dipole magnets, each 20 cm long, with external diameter 19 cm and 15 mm

bore, generating a magnetic field of maximum intensity B = 2.3 T. For these magnets, the

measured
∫

B2dl is 1.85 T2m. The finesse of the cavity was F = 240000. All the optical

components were either fixed directly onto a seismically isolated optical bench 2.4×1.2 m2

or were fixed inside two rigidly connected and communicating vacuum chambers, which in

turn rest on the optical bench. The magnets are supported by a sturdy aluminum structure

which is disconnected from the seismically isolated optical bench and resting on the lab floor.

Ball bearings support the two magnets at their extremities. The magnet on the analyser side

is equipped with a coaxial electric motor which puts the magnet in rotation around the axis of

its bore. The magnet on the polariser side can be connected mechanically to the other magnet

by a home-made mechanical piece so that the two magnets rotate at the same angular velocity
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Figure 12: An optical scheme (upper panel) and photograph (lower panel) of Ferrara test

set-up. At the center, one can see the two dipole permanent magnets. The optics are supported

by a seismically isolated optical bench whereas the magnet supports rest on the floor.

with fixed relative phases equal to 0◦, 90◦, 180◦ or 270◦. The reason for having two magnets

is that the rotating magnets can act on the optics and fake ellipticity signals. It is therefore

desirable to perform measurements of the zero of the ellipticity scale in conditions as close

as possible to those in which an authentic signal is expected. This cannot be obtained with a

single superconducting magnet, because when there is no field in the magnet bore, also the

stray field is absent. With two identical magnets with orthogonal fields, the net ellipticity

generated by a magnetic birefringence is zero. Running the two magnets with the fields

parallel and perpendicular allows to distinguish a real physical signal from spurious signals

due to the stray field.

In the LNL experiment it was observed that mechanical and ellipticity spectra were very

similar. The test set-up in Ferrara, using a seismically isolated optical table, demonstrated a

clear correlation between the seismic noise on the optical components and the ellipticity noise

[79]. As one can see in Fig. 13, the spectral noise density was better with the seismically

isolated optical table. It was not investigated which direction of the seismic noise mostly

influenced the ellipticity spectrum.
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Figure 13: Plot of the ellipticity as a function of frequency measured from the modulator

carrier frequency. The red curve is obtained with the seismic isolation turned off.

The sensitivity of the Ferrara test set-up was Smeas
2νB

= 3×10−7 Hz−1/2 at 6 Hz. With the

test apparatus in a condition in which spurious peaks were not present, a measurement of a

few hours has been done. The measurement led to an upper bound on the magnetic vacuum

birefringence ∆n measured with a magnetic field B = 2.3 T:

∆n ≤ 4.6×10−20 at 95% c.l.

Putting out from the polarimeter the two FP mirrors, a sensitivity Smeas
No−FP = 6×10−9 Hz−1/2

was instead measured.

.2 Appendix 2.II: Competing approaches

The Q&A project (Quantum electrodynamics test & search for Axion like particles), started

in 1996 [80], makes use of a permanent dipole magnet 60 cm long with a magnetic field of

2.3 T. The magnet rotates around its axis. A Fabry-Perot of finesse F = 30000 increases

the optical path through the magnetic field.The two mirrors are suspended with vibrations

attenuators of the type developed for the interferometric gravitational wave detectors. The

experiment has measured the Cotton-Mouton of several gases [65]. A limit on the vacuum

dichroism has been also obtained as

∆κ(Q&A) ≤ 1.5×10−19.



4
4

C
H

A
P

T
E

R
2
.

E
X

P
E

R
IM

E
N

T
A

L
M

E
T

H
O

D

BFRT [35] PVLAS-LNL [76] PVLAS-FE [59] Q & A [64] BMV [82] OVAL [83]

Magnet superconductor superconductor permanent permanent electromagnet electromagnet

B modulation current rotating rotating rotating pulsing pulsing

Bext (T) 3.25±0.62 2.3 2.5 2.3 6.5 11.4

Effective 2νB (Hz) 0.032 0.6 10 13.5 80 130∫
B2 dL (T2 m) 40 5.3 10.25 3.2 5.8 13.8

λ (nm) 514 1064/532 1064 1064/532 1064 1064

Path amplifier Multipass FP FP FP FP FP

N 34 4.5×104 4.5×105 1.9×104 3×105 2×105

Effective NψQED 3.3×10−14 2.8×10−12 5.4×10−11 7.1×10−13 9.6×10−12 9.7×10−12

Detection scheme heterodyne heterodyne heterodyne heterodyne homodyne homodyne

Sψ (1/
√

Hz) 7.9×10−8 1.8×10−6 5×10−7 1×10−6 ≈ 10−7 ≈ 2×10−7

S∆nu
(T−2/

√
Hz) 9.5×10−18 2.6×10−18 3.7×10−20 5.7×10−18 4.2×10−20 8.3×10−20

Duty cycle Dc 1 ∼ 0.01 ≲ 1 ≈ 0.78 5.2×10−6 2.5×10−4

Integration time Tint (s) 1.6×104 6.5×104 2.7×106 3.6×104 ≈ 0.15 0.12

Integrated ∆nu (T
−2) 7.5×10−20 2.0×10−20 4.8×10−23 3.0×10−20 2.5×10−21 1.1×10−18

TSNR=1 (yr) 1.8×105 1.3×106 2.7 7.1×104 6.7×105 5.3×104

Table 3: A synoptic table for the experiments aiming at the magnetic birefringence of vacuum. For the experiments employing pulsed

magnets, the maximum magnetic field is reported; for them, the effective frequency is 1/2πτFWHM. In these experiments, moreover,

the cavity filters the ellipticity generated by the magnetic field, hence the “effective” NψQED. The value of Sψ of the BMV experiment

has been read from the ellipticity spectral density graph of their work; this sensitivity is at least an order of magnitude too high to be

consistent with the integrated ∆nu. The values reported for the integrated ∆nu correspond to the noise values; the BFRT and BMV

experiments have also a central value not compatible with zero at 1σ . As the Q & A experiment has not measured birefringence, their

value of ∆κu is reported. The time required to reach SNR = 1 is given by
(
Sψ/NψQED

)2
/Dc.
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The OSQAR (Optical Search for QED Vacuum Birefringence, Axions, and Photon

Regeneration) experiment [81] is based on a 15 m long LHC dipole magnet that can reach

a 9 T field. The experiment uses Fabry-Perot cavities but has not yet chosen a strategy to

modulate the effect. The set-up has only produced limits on the existence of axion-like

particles by studying the graph of Fig. 1.1f) with the Light Shining through a Wall technique

[35].

The BMV (Biréfringence Magnétique du Vide) project [66] began in 2000 at the Lab-

oratoire National des Champs Magnétiques Intenses of Toulouse. The vacuum magnetic

birefringence is induced by a pulsed magnet capable of 5 pulses per hour with a maximum

field of 14 T with an effective length of 13.7 cm. The coils are immersed in liquid nitrogen,

and a hole of diameter of 12 mm extends along the cryostat to let the laser light pass through

the magnetic field region. The laser light is locked to the cavity with the Pound-Drever-Hall

technique. The amplification of the light path in the magnetic region is realised using a 2.3 m

long Fabry-Perot cavity with a finesse F = 481000. The homodyne technique is employed

for the linearisation of the ellipticity in the extinguished intensity: a known static ellipticity is

added to the polarisation exploiting the intrinsic birefringence of the cavity. The calibration

is made by measuring the Cotton-Mouton effect in gas. The experiment has measured the

Cotton-Mouton effect of several gases, among them Helium at low-pressure [63]. The best

limit for the magnetic birefringence of vacuum is reported in Ref. [82] at a 3σ c.l. as

∆n(BMV)/B2 = (6.1±7.5)×10−21 T−2.

While the sensitivity of the apparatus is not sufficient to measure the magnetic bire-

fringence in a reasonable time, an upgrade is underway to increase the signal of a factor

50.

OVAL [83] (Observing VAcuum with Laser) is a recent experimental effort in Japan

that has developed an original pulsed magnet with a high repetition rate of 0.2 Hz. The

magnet is cooled down with liquid nitrogen, and a maximum magnetic field of 11.4 T has

been obtained over a length L = 17 cm. The Fabry-Perot cavity has a length of 1.38 m and a

finesse F = 320000. Given the pulse width of ≈ 1 ms, an effective
∫

B2dL = 3.4 T2m is

obtained. A static ellipticity is added for homodyne detection as in the BMV experiment.

The measured limit on the magnetic birefringence of vacuum is

∆n(OVAL)/B2 ≤ 1.1×10−18 T−2.

Another proposal aiming at a first measure of the vacuum magnetic birefringence is

the experimental proposal Hera-X (Heisenberg-Euler-biRefringent-ALPS-eXperiment) an-
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nounced in a workshop at DESY in Nov 2015 [84]. The Hera-X proposal plans to make

use of a 177 m long array of HERA superconducting magnets with 5.3 T with a resulting
∫

B2dL = 5×10−3 T2m. The cavity length is estimated to be 200 m. The modulation of the

effect is obtained by ramping the magnetic field with a frequency up to 7 mHz. Another

possibility to modulate the effect without ramping the amplitude of the magnetic field has

been proposed in [59].

At present, the best performances are still those achieved by the PVLAS apparatus

installed at Ferrara [59]. In Tab. 3, the characteristics of the experiments are summarised and

compared.

.3 Appendix 2.III: Multilayer dielectric coating

The reflecting surface of the mirrors of the Fabry-Perot cavity is a multi-layer stack of

dielectric films of calibrated thickness deposited onto a transparent substrate. The deposition

is usually obtained by ion sputtering or evaporation As the PVLAS experiment aims at

high finesse, it is not possible to use mirrors made with metal layers, that have a too large

absorption (5−10%) in the near infrared to ultraviolet region. One must note that higher

reflectivity also provides higher damage threshold.

Figure 14: A light beam impinging on the multi-layer coating of the reflecting surface of

a dielectric mirror, alternating high (nH) and low (nL) indices of refraction of thicknesses

ℓH and ℓL, respectively. The multi-layer stack begins and ends with the material with a high

index of refraction. The ϕ’s are the phases of the reflected partial waves.

Fig. 14, shows a scheme of a multilayer dielectric mirror. According to the Fresnel

formulas, the reflection and transmission coefficients for the electric field of light impinging
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normally on the interface between two media of refractive indices n1 and n2 are

r12 =
(n1 −n2)

(n1 +n2)
t12 =

2n1

(n1 +n2)
.

In the case n1 < n2, the reflection coefficient is r12 < 0, and the reflected field has a π phase

shift with respect to the incident field. The transmitted field is instead always in phase with

the incident one. Consider now an optical substrate with an index of refraction nS coated

with many layers having alternately high (nH > nS) and low (nL) index of refraction. In

this system, if the thicknesses ℓH and ℓL of the layers are such that nHℓH = nLℓL = λ/4,

the electric fields reflected at all the interfaces add in phase. In fact, considering the two

surfaces of the first high-index layer of Fig. 14, one can see that the Fresnel formulas assign

the field reflected at the first (low-to-high index) interface a negative sign. The wave reflected

at the second (high-to-low index) interface suffers no phase shift upon reflection, but before

reaching the first surface, it has traveled a total optical path corresponding to a phase shift of

π . This phase difference implies that the two reflected partial waves have the same phase.

The same conclusion applies to the two surfaces of a low-index layer. It follows then that all

the reflected beams in a multilayer dielectric coating, as well as their multiple reflections,

add in phase. The complementary process happens to the transmitted field: all the partial

waves at the second interface of each layer have opposite phase, and destructive interference

occurs. If a large number of (λ/4) layers of alternating low and high indices are deposited

on a substrate, the overall reflectivity can reach a very high value. The intensity reflectivity

of a dielectric mirror made with a stack of 2NL +1 layers turns out to be [43]

R =




1− n2
H

nS

(
nH

nL

)2NL

1+
n2

H

nS

(
nH

nL

)2NL




2

. (40)

Fig. 15 shows the predicted value of 1−R as a function of the number NL of layer pairs.

One must note that what limits the performance of a dielectric mirror are the losses inside

the bulk of the material of the layers [85].

.4 Appendix 2.IV: Gaussian beams

In a previous section, we described the characteristics of the Fabry-Perot cavity that could be

deduced from the approximation of the light beam as a plane wave. However, laser beams are

not plane waves, but Gaussian beams and optical elements have finite dimensions. This fact
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Figure 15: Logarithmic plot of the coefficient (1−R) as a function of the number of layer

pairs with index of refraction nH = 2.28 (TiO2) and nL = 1.45 (SiO2). The substrate has

nS = 1.54 (BK7 glass).

brings in a specific discipline of optics, that is worthwhile to resume here [86]. One needs to

search for a solution of the wave equation with no translational symmetry. The Helmholtz

equation in an isotropic dissipative medium is

∇2E+ k2E = 0,

where

k2 = ω2µε

[
1+

iσ

ωε

]

and σ is the conductivity of the medium. Let us indicate with z the coordinate along the

beam axis. One looks for a solution in the form

E(r) = A(r) eikz,

where the wave amplitude A is not a constant but instead a function of the position r satisfying

∇2A+2ik
∂A

∂ z
= 0. (41)

.4.1 Fundamental mode

To solve this equation, one assumes that the second derivative of A with respect to z can

be neglected. For the moment, we limit to solutions with azimuthal symmetry. With these
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hypotheses the equation becomes, in the cylindrical coordinates (ρ,φ ,z),

1

ρ

∂

∂ρ

(
ρ

∂A0

∂ρ

)
+2ik

∂A0

∂ z
= 0. (42)

An approximate solution to the above equation can be written as

A0 = exp

{
i

[
P(z)+

k

2q(z)
ρ2

]}
,

where P(z) and q(z) are complex functions. The latter one is responsible for the behaviour

of the electric field as a function of the distance ρ from the beam axis; the shape of the

wavefront is encoded in there. Substituting this expression in the equation above and equating

terms with the same powers of ρ one finds:

dq

dz
= 1 and

dP

dz
=

i

q
.

Integrating these equations one gets

q(z) = z+q0 and P(z) = i ln
z+q0

q0
,

where P(0) = 0.

To make clear the meaning of the q function, one has to rewrite it in terms of the two real

parameters R(z) e w(z):

1

q(z)
=

z+q∗0
z2 +2z ℜ(q0)+ |q0|2

=
1

R(z)
+ i

λ

πw2(z)
.

The parameter R is interpreted as the curvature radius of the wavefront. In fact, for large z, it

grows as z, and the surfaces of constant phase are almost exactly spherical. The w parameter

describes the confinement of the wave amplitude in the vicinity of the beam axis according to

a Gaussian function with standard deviation depending on z; the quantity w is the waist of the

beam; 2w plays the role of beam diameter at position z. We put the origin of the coordinates

where the wavefront is plane [R(z = 0) = ∞]. In z = 0, q is purely imaginary:

q0 =−i
πw2

0

λ
≡−iz0,
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where z0 is the Rayleigh range; we have then

q(z) = z+q0 = z− i
πw2

0

λ
= z− iz0,

and hence

1

q(z)
=

z

z2 +π2w4
0/λ 2

+ i
πw2

0/λ

z2 +π2w4
0/λ 2

=
z

z2 + z2
0

+ i
z0

z2 + z2
0

,

R(z) = z

[
1+

(
πw2

0

zλ

)2
]
= z

[
1+

(
z0

z

)2
]
,

w2(z) = w2
0

[
1+

(
zλ

πw2
0

)2
]
= w2

0

[
1+

(
z

z0

)2
]
.

The curvature radius is thus infinite at z = 0 and at z =±∞; its minimum absolute value is

|R(z0)|= 2z0. The beam diameter is minimum at z = 0 and grows with a hyperbolic law with

an asymptote of slope

θ0 =
λ

πw0
.

This diameter growth is the same of the theory of the diffraction of a plane wave from a

circular hole of diameter 2w0. For this reason, Gaussian beams are said to be diffraction

limited even if they usually do not emerge from a pinhole. Dividing the expressions of R(z)

and w2(z) one obtains

λ z

πw2
0

=
z

z0
=

πw2

λR
,

from which we obtain the expressions of w0 and z as functions of R and w:

w2
0 =

w2

1+

(
πw2

λR

)2
and z =

R

1+

(
λR

πw2

)2
.

We explicitly note that while a spherical wave is completely characterised by total power and

center of curvature, and a plane wave by intensity and propagation direction, to characterise

a Gaussian beam two more parameters are needed. They can be the minimum waist w0 and

its position along the beam path or, in an alternative, the curvature radius and the waist at any

point along z.
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As for the function P(z),

iP(z) =− ln

[
1+ i

zλ

πw2
0

]
=− ln

√
1+

(
zλ

πw2
0

)2

− iarctan

[
zλ

πw2
0

]
.

The real part of P is the Gouy phase correction ΦG(z) of the Gaussian beam with respect to

the phase of the plane wave

ΦG(z) =−arctan

[
zλ

πw2
0

]
,

which is zero for z = 0, and tends to ±π/2 for z = ∓∞. The imaginary part is instead

responsible for an amplitude decrease with the widening of the wavefront, with a factor

w0/w(z).

In conclusion, the electric field is written as

E0(r) ∝
w0

w
exp

[
−ρ2

w2

]
exp

{
i

[
k

(
z+

ρ2

2R

)
+Φ

]}
,

this equation is called the “fundamental mode". In any plane orthogonal to the z axis, the

intensity profile of the beam is Gaussian:

I(ρ,z) = I0

w2
0

w2
exp

[
−2ρ2

w2

]
= I0

1

1+(z/z0)
2

exp

[
−2ρ2

w2

]
.

The wave has its the maximum intensity at z = 0, where a wavefront is a plane and w = w0;

this value halves at z = ±z0 due to the coefficient (w0/w)2. The power passing through a

pinhole of diameter 2ρ0 is given by

Pρ0
(z) =

∫ ρ0

0
I(ρ,z)2πρ dρ = I0

πw2
0

4

√
w2

0

(
1+

z2

z2
0

)




1− e

− 4ρ2
0√√√√w2

0

(
1+ z2

z2
0

)




(43)

The total power of a Gaussian beam is

P0 =
∫ ∞

0
I(ρ,z)2πρ dρ =

1

2
I0 πw2

0.
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.4.2 Higher order modes

The expression found above for E0(r) is called the “fundamental mode". Other solutions to

the equation (41) for A do not enjoy azimuthal symmetry. It can be shown [86] that these

functions can be written as

Elm(r)∝
w0

w
Hl

(√
2ρ cosφ

w

)
Hm

(√
2ρ sinφ

w

)
exp

[
−ρ2

w2

]
exp

{
i

[
k

(
z+

ρ2

2R

)
+Φlm

]}
,

where the phase of the wave is

Φlm(z) =−(l +m+1) arctan

[
zλ

πw2
0

]
.

For higher order modes, the larger the mode number, the larger the phase velocity. Modes

with the same phase velocity are said to be degenerate; degenerate modes have l+m = l′+m′.

The function Hn is the Hermite polynomial of order n. We determine the Hermite polynomials

from the recursive formula

Hn+1(x) = 2xHn(x)−2nHn−1(x).

The first polynomials are

H0(x) = 1,

H1(x) = x,

H2(x) = 4x2 −2,

H3(x) = 8x3 −12x.

The index n is the number of nodes of the polynomial: the (l,m) mode consists of (l +1)×
(m+ 1) lobes. For the same w0 and z, the transverse dimension of the mode grows with

indexes l and m. The curvature radius evolves in the same way for all the optical modes.

.5 Appendix 2.V: Gaussian beams and optical resonators

.5.1 Matrix formulation of geometrical optics: the ABCD law

In the passage through a centered optical system, namely one in which all the surfaces

have rotational symmetry around an optical axis, the mode of a paraxial Gaussian beam is

conserved. The curvature radius of the wavefront and the minimum waist are instead altered.
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In this section, we apply the matrix formulation of geometrical optics [87] to the propagation

of a Gaussian beam to derive the so-called ABCD law.

If a ray is coplanar with the optical axis, one can use a single transverse coordinate in

this plane. In the following we limit to a treatment with a single transverse coordinate. In a

section (x,z) of a centred optical system, a paraxial ray at z is completely characterised by its

transverse position x and its slope with respect to the optical axis ẋ = dx/dz. In the paraxial

approximation, the slopes are approximately the sine of the angle or even the angle. In a

homogeneous medium, from the initial conditions, x0 and ẋ0 one has, at position z,

x(z) = x0 + ẋ0 (z− z0); ẋ(z) = ẋ0.

This can be written in a compact form as

[
x(z)

ẋ(z)

]
=

[
1 z− z0

0 1

][
x0

ẋ0

]
.

Passing from a medium with index of refraction n1 to a medium with index of refraction n2

x+ = x− and ẋ+ =
n1

n2
ẋ−

or [
x+

ẋ+

]
=

[
1 0

0 n1/n2

][
x−
ẋ−

]
.

A spherical diopter at z does not change the distance of the ray from optical axis (x+ = x−);

the position of the object z1 and of the imagine z2 are given by the equation

x+ = x− and
n1

z− z1
+

n2

z2 − z
=

n1 −n2

R

(R is positive if concavity looks into objects space). Substituting in the last one z−z1 = x−/ẋ−
and z2 − z =−x+/ẋ+ =−x−/ẋ+ and solving for ẋ+ one finds

ẋ+ =−n1 −n2

n2R
x−+

n1

n2
ẋ−

or [
x+

ẋ+

]
=

[
1 0

(1−n12)/R n12

][
x−
ẋ−

]
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A spherical mirror is described by

x+ = x− and
1

z− z1
+

1

z2 − z
=

2

R
.

Substituting again z− z1 = x−/ẋ− and z2 − z =−x−/ẋ+ and solving for ẋ+, one obtains

ẋ+ =− 2

R
x−+ ẋ−

and the matrix of a spherical mirror is thus

[
1 0

−2/R 1

]

A thin lens of focal length f is described by

x+ = x− and
1

z− z1
+

1

z2 − z
=

1

f

and hence, for a thin lens,

ẋ+ =−1

f
x−+ ẋ−

and [
x+

ẋ+

]
=

[
1 0

−1/ f 1

][
x−
ẋ−

]

A thin lens of focal length f has the same matrix of a spherical mirror with curvature radius

R = 2 f .

The equations derived above can be interpreted in terms of the propagation of spherical

waves. Let us consider a spherical wave originating in a point P1 at a distance R1 from the

first principal plane of an optical system forming a real image in a point P2 at a distance R2

from the second principal plane. One has

1

R2
=

1

R1
− 1

f

The quantities R1 and R2 are the curvature radiuses of the wavefronts at the input and the

output of the optical system. The following equations hold:

x2 = A x1 +B ẋ1; ẋ2 =C x1 +D ẋ1; R1 = x1/ẋ1; R2 = x2/ẋ2.
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By eliminating x1, x2, ẋ1 and ẋ2, the so called ABCD is obtained:

R2 =
A R1 +B

C R1 +D

Let us list a few properties of the matrices:

1. The determinant of the matrix is the ratio of the indices of refraction of the first and

the last media; this means that in a matrix there can be at most two vanishing elements,

that are found along a diagonal;

2. if B = 0, the coordinates z− and z+ are conjugated and the magnification of the optical

system is A;

3. if C = 0, the system transforms a parallel beam in an other parallel beam (telescopic

system), with angular magnification given by D;

4. if A = 0, a beam parallel to the optical axis (ẋ− = 0) has focus in z+ (x+ = 0);

5. analogously, if D = 0, the light coming from z− emerges as a parallel beam.

.5.2 Matrix optics and Gaussian beams

In the previous section we noted that, in the free propagation of a Gaussian beam, the complex

parameter q evolves like

q = q′+(z− z′)

exactly the same as the curvature radius of a spherical wave. The equation of a thin lens of

focal length f can then be generalised as

1

q′2
=

1

q′1
− 1

f

where q′1 and q′2 are given at the position of the lens. Combining the two relations, one

obtains, for the parameters q1 and q2 respectively measured at the distances d1 and d2 before

and after the lens,

q2 =
(1−d2/ f )q1 +(d1 +d2 −d1d2/ f )

−q1/ f +(1−d1/ f )

As seen before, the matrix of the optical system is given by

[
1 d2

0 1

]


1 0

−1

f
1



[

1 d1

0 1

]
=




1− d2

f
d1 +d2 −

d1d2

f

−1

f
1− d1

f
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Hence, in the case of a thin lens, for the parameter q, the same “ABCD law" describing the

transformation of the curvature radius of the wavefront of a spherical wave traversing an

optical system holds:

q2 =
A q1 +B

C q1 +D

As a consequence, a thin lens of focal length f can be used to transforms a Gaussian

beam characterized by a minimum waist w01 at position z0 = 0 in a beam with a specified

minimum waist w02. This waist is found at a position z2 that we now want to calculate. Let

us remember that the q’s are in this case purely imaginary:

q1 =−i
πw2

01

λ
and q2 =−i

πw2
02

λ

The imaginary part of the ABCD law is written as

Dq2 = Aq1 namely
d1 − f

d2 − f
=

w2
01

w2
02

while the real part is

Cq1q2 = B namely (d1 − f )(d2 − f ) = f 2 − f 2
0

where

f0 =
πw01w02

λ

solving the two equations for d1 and d2 one gets

d1 = f ± w01

w02

√
f 2 − f 2

0 d2 = f ± w02

w01

√
f 2 − f 2

0

A plane mirror simply folds the propagation diagram of the beam. A spherical mirror

with a curvature radius R has the same effect as a lens with f = R/2. If the surface of the

mirror coincides with the shape of the of the incident wavefront, the beam propagation after

the mirror traces back the evolution of the beam before the mirror.

.5.3 Cavity stability

In this section, we describe the geometrical constraint a cavity must satisfy to be employed as

an optical path multiplier. We start considering a system made up of a periodical succession

of thin lenses with alternate focal lengths f1 and f2, separated by a distance d. This system

is the unfolding of the propagation of a paraxial beam between two mirrors of curvature
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radius R1 = 2 f1 and R2 = 2 f2 separated by the distance d. A curvature radius is positive if

the concavity of the mirror points inside the cavity; this corresponds to a converging lens.

Convex mirrors, with a negative focal length, are instead diverging. The propagation of the

beam is obtained by the infinite repetition of a basic matrix describing the propagation of

the beam for a length d, through the first lens f1, again for d and through the second lens

f2. We note that this is the correct description of a multi-pass cavity, while generally in a

Fabry-Perot the first mirror is itself a lens that must be taken into account.

The basic matrix is given by




1 0

− 1

f2
1



[

1 d

0 1

]


1 0

− 1

f1
1



[

1 d

0 1

]
=




1− d

f1
d

(
2− d

f1

)

− 1

f1
− 1

f2
+

d

f1 f2
− d

f2
+

(
1− d

f1

)(
1− d

f2

)




Passing from step n to n+1

xn+1 = A xn +B ẋn; ẋn+1 =C xn +D ẋn

From the two equations one obtains the expressions

ẋn = (xn+1 −A xn)/B and ẋn+1 = (xn+2 −A xn+1)/B

that, substituted into the second (the determinant AD−BC is unitary), give

xn+2 − (A+D) xn+1 + xn = 0

This equations has a solution

xn = x0 einθ

which, substituted in the preceding equation gives

ei2θ − (A+D) eiθ +1 = 0

which results in

e±iθ =
A+D

2
± i

√
1− (A+D)2

4
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and

cosθ =
A+D

2
= 1− d

f1
− d

f2
+

d2

2 f1 f1

The angle θ is thus determined only by the geometry of the system. A general solution can

thus be written as

xn = acosnθ +bsinnθ = xmax sin(nθ +θ0)

Obviously x0 = a, while the value of b is obtained by

x1 = A x0 +B ẋ0 = acosθ +bsinθ

The condition −1 ≤ cosθ ≤ 1 can be put as

0 ≤
(

1− d

2 f1

)(
1− d

2 f2

)
≤ 1

or, in terms of the curvature radiuses of the mirrors

0 ≤
(

1− d

R1

)(
1− d

R2

)
≤ 1

When this condition is not satisfied, the exponential becomes real and the solution diverges.

The stability condition can be represented graphically. With gi = 1−d/Ri, stability is ensured

by

0 ≤ g1g2 ≤ 1

If g1 and g2 are orthogonal coordinates in a Cartesian plane, stable regions are found in

the first and the third quadrants between the coordinate axes and the equilateral hyperbola

of equation g1g2 = 1. To values g < 1 concave mirrors correspond, with 0 < R < d/2 for

g <−1, D/2 < R < d for −1 < g < 0, d < R for 0 < g < 1. One has convex mirrors (R < 0)

for g > 1.

In the case the mirrors are identical, the elemental matrix is simplified. The finite

difference equation is instead the same and one has

cosθ =
A+D

2
= 1− d

2 f
= 1− d

R

The stability equation becomes

0 ≤ d

R
≤ 2
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Material Granite with honeycomb structure

Mass 4 tons

Dimensions 480×150×50 cm3

Position stability ±0.01 mm

Attenuation of seismic noise See Figure 3.4

Table 3.1: Main characteristics of the optical table (see also Figs. 3.2 and 3.25).

to good-quality tempered steel, excellent flatness of the surfaces, nonmagnetic nor conductive

material.

Frequency [Hz]
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Figure 3.3: The transmission function of the membrane air spring BiAir declared by the

manufacturer.

The bench is sustained by four pneumatic air springs produced by Bilz Vibration Tech-

nology AG. These legs are part of the 6 degrees of freedom AISTM-Active Isolation System,

which is based on programmable logic controllers (PLC), high-speed electro-pneumatic

servo-valves and membrane vertical and horizontal air springs. The typical frequency re-

sponse of one of the degrees of freedom is shown in figure 3.3. As one can see, the cut-off

frequency of the insulation system is about 1 Hz. The whole AIS system is insensitive to

magnetic fields. Besides vibration isolation, the system controls the absolute value of all

the six degrees of freedom of the position of the bench. This accurate position control is

reached using position sensors (resolution 0.2 µm), acceleration sensors (resolution 8 µg),

air-pressure sensors (resolution 0.2 mbar) and electro-valves. The overall repeatability of the

feedback system at each of the six position monitors is within ±0.01 mm.

After installation and optimization of the vibration isolation system by the manufacturer,

a measurement of the vertical component of the acceleration of the floor and of the optical

table was acquired. The Fourier spectra of the two measurements are shown in Figure 3.4.

The attenuation of the ambient seismic noise was found compatible with the characteristics

claimed by the manufacturer.
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Figure 3.4: Fourier spectrum of the vertical component of the acceleration on the floor of the

clean room (red curve) and on the seismically isolated optical bench (black curve).

3.3 The two rotating magnets

Magnetic field region

External diameter φext 280 mm

Internal free bore diameter φin 20 mm

Overall length 938 mm

Magnetic field in the center of the bore 2.5 T

Magnetic stray field on axis 20 cm outside 10−4 T

Mass 450 kg

Maximum tested rotation frequency 23 Hz

Magnetic material Nd2Fe14B

Longitudinal sectors 12

Number of wedges per sector 16

Magnetic field profile on axis see Figure 3.9

Table 3.2: Characteristics of the twin permanent magnets.

In the PVLAS apparatus two high-field dipole permanent magnets are installed; their

characteristics are listed in table 3.3. They are 0.94 cm long cylinders of external radius

rext = 14 cm with a clear bore of radius rin = 10 mm. The magnets can rotate around their

axes at a frequency higher than 20 Hz. The magnetic field vectors of the two magnets rotate
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Figure 3.7: Picture of the two types of magnetic elements used for the realisation of the

PVLAS permanent magnets according to the Halbach scheme.

The magnetic structure of the magnets follows the Halbach cylindrical scheme (see

Figure 3.6) generating an intense fairly homogeneous magnetic field in the central bore, with

the return field well confined within the cylinder with, ideally, a zero field outside. To this

end, the magnetisation direction inside the cylindrical corona should continuously rotate as a

function of the polar angle as α = 2ϑ . In the practical realisation of this scheme, the number

and shape of the magnetic elements may vary: a general rule is to rotate the magnetisation

direction while going from one element to the other. The more smoothly the magnetisation

direction turns along the ring, the larger the number of sectors the ring is divided into and the

closer is the field pattern to the ideal one. A picture of the two types of magnetic elements

used during the fabrication of the PVLAS magnets is shown in Fig. 3.7. The field in the center

of a finite length Halbach cylinder is given analytically by the following expression [88]

Bcentre = Brem


ln

(
rext

rin

)
+

z0

2

√
r2

in + z2
0

− z0

2

√
r2

ext + z2
0

− ln




√
r2

ext + z2
0 + z0

√
r2

in + z2
0 + z0




 (3.1)

where rext is the outer radius of the cylinder, rin is the inner radius and z0 = L/2, where L

is the length of the cylinder and Brem is the remanent flux density of the magnetic material.

For Neodymium magnets, Brem = 1.1−1.5 T. A plot of Bcentre as a function of the internal

radius rin is shown in Figure 3.8.

The longitudinal profile of the magnetic field of one PVLAS magnetic is shown in

Fig. 3.9. The magnetic profiles show a maximum field value of 2.5 T for a total
∫

B2dL =

(5.12±0.04) T2m. This value corresponds to an effective length L = 0.82 m for a nominal

value of the field B = 2.5 T. The stray field along the axis 20 cm outside the each magnet is

less than 1 G.
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Figure 3.8: Calculated magnetic field intensity in the centre of a Halbach cylinder [eq. (3.1)]

as a function of the internal radius for Brem = 1.1 T and Brem = 1.5 T, for fixed external

radius rext = 110 mm and length L = 838 mm. The red dot indicates the PVLAS magnets.

Support, alignment and rotation of the magnets

Each magnet is suspended using ball bearings to allow rotation. It is held in an aluminum

cart hanging from an aluminum structure standing on the floor (see Fig. 3.10; the diagonal

bars and the triangular plates stiffening the structures are not displayed). The two support

structures are aligned so that the axis of rotation of each magnet coincides with the path

of the laser light in the FP cavity. The centres of the two magnetic regions are separated

by ≈ 150 cm (see Figure 3.25). Each of the supports of the ball bearings can be adjusted

continuously in the vertical direction to align each magnet along the optical axis of the FP

cavity. The carts with the magnets can slide in the transverse horizontal direction along rails

fixed to the top of the frames supporting the magnets to allow the insertion and the removal

of the vacuum tubes passing through the bores. A fine adjustment of the position of the tubes

is done using the tube holders to better than 0.01 mm. The two support structures have been

recently coupled by horizontal girders not displayed in the figure. The ensemble of the two

structures is supported by four pneumatic feet to reduce the transmission to the floor of the

vibrations generated by the two rotating magnets.

The rotating magnets induces mechanical vibrations in the supporting structure. It has to

be noted that the factory balancing was performed with a different mechanical assembly with

respect to the magnet suspension in the experiment. To reduce the vibrations a balancing
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Figure 3.9: The measured intensity of the magnetic field along the bore for the three axes x,

y and z, and the total transverse magnetic field.

procedure at νB = 4 Hz was done. To balance a magnet two accelerometers (labeled 1 and

2) are mounted to sense the horizontal acceleration on the vertical struts sustaining each

magnet, at the intersections with the horizontal plane passing through the axis of a magnet.

The imbalance of the magnet is arbitrarily chosen to be located on the external surface of the

magnet along two circumferences, 72 cm apart, where four threaded holes are present to host

the eye bolts used to lift the magnets. These holes allow the fastening of small balancing

masses. The accelerations and the imbalances are represented by the complex numbers A1,2

and M1,2, respectively. The magnitude of the complex number is the value of the quantity,

whereas the argument is its angular phase. A linear relation between the masses and the

observed accelerations is assumed at the rotation frequency of the magnet νB :

A1 = k11 ·M1 +k12 ·M2

A2 = k21 ·M1 +k22 ·M2,

where the symmetry relation between the complex coefficients ki j require that k11 = k22 and

k12 = k21. The values of the coefficients are determined by placing a unitary test mass in

different positions on a magnet and measuring the accelerations:

k11 = A1(1)−A1(0), k21 = A2(1)−A2(0)

k12 = A1(2)−A1(0), k22 = A2(2)−A2(0).
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Figure 3.10: The support structure of the permanent magnets.

The argument of the accelerations indicates on which of the two circumferences a unitary

test mass has been placed. The "0" argument, instead, denotes a reference measurement with

no test weight. Once the values of the coefficients have been determined, the magnitude and

phase of the two balancing masses M1,2 are obtained by solving the equations

A1(0)+k11 ·M1 +k12 ·M2 = 0

A2(0)+k21 ·M1 +k22 ·M2 = 0.

By adding masses ∼ 100 g, the balancing procedure has allowed the reduction of the

imbalance below ∼ 10 g, with a residual acceleration signal on the structure of ∼ 10−4 m/s2

@ νB = 4 Hz. The imbalance of ∼ 10 g corresponds to a centrifugal force of about ∼ 22 N

acting on the structure with the magnets rotating at 20 Hz. The balancing limit is due to the

integration time, that has been kept below 100 s, and to the fact that the magnet is fastened

to the rigid structure of the cart that exhibits several mechanical resonances, resulting in an

acceleration signal having periodical low-frequency amplitude oscillations. To improve the

balancing of the magnets, one should work at a higher rotation frequency, at the same time

integrating the acceleration signal for longer times. This improvement will be done in the

next future.
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Three-phase brushless motors

Triplets of coils 10

Number of poles 20

Maximum speed 10 Hz

Maximum torque 7 kNm

Transmission

Cog step on belt and pulleys 8 mm

Number of cogs on belt 180

Tension on belt ≲ 100 kg

Number of V-shaped cogs on driving pulley 80

Number of V-shaped cogs on magnet pulley 18

Table 3.3: Characteristics of motors and transmission.

Motors and transmissions

An electrical motor is mounted in each of the two carts hosting the magnets to allow

independent rotations of the two magnets. The movement is transmitted using a pair of

pulleys and a toothed belt. The characteristics of the motors and of the transmissions are in

table 3.3. The ratio of the number of teeth on the two pulleys is chosen in such a way to keep

the frequencies of at least the first few harmonics of the motors and the magnets separated.

This ratio was 45/42 during the first runs and has been changed to 80/18 to boost the rotation

frequency of the magnets.

Figure 3.11: Left: a photo of the torque brushless synchronous motor mounted on the support

structure of the magnet. Right: a scheme of the rotor with ten couples of dipoles distributed

in a circular pattern.
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The motors are brushless torque synchronous motors in which the coils are on the stator

and the rotor is equipped with permanent dipole magnets. The motors are TK series by

Phase Motion Control, Genova, Italy, featuring high-speed (10 Hz) and high torque (7 kNm).

They consist of a stator and a rotor provided separately, planned for direct assembly in the

structure. The three-phase stator has ten triplets of coils. The configuration of the coils is in

groups of three for a three-phase power supply. The rotor has 10 North-South magnetic pole

pairs distributed along a circular ring (see Figure 3.11). This configuration implies that the

frequency of the rotor is ten times smaller than the frequency of the current in the coils of the

stator.

The factory drive for this type of motor is designed to exploit its high torque: an encoder

applied to the shaft of the motor allows the power supply to maintain a 90◦ phase advance

between the current in the coils and the nearest equilibrium position of stator and rotor. In

this operating condition, the rotational speed can be chosen only approximately. However, in

our application, there is no need for high torque. We thus chose a different way of driving the

motors: three sinusoidal signal generators are phase-locked at the same frequency at 120◦

one from the other. The signals from the three generators are sent to three current audio

amplifiers whose output is given directly to the three phases of the motor. The frequency of

the generators is slowly increased to reach the planned rotation frequency. During operation,

the current in the coils of the stator is close to ∼ 0◦ from the equilibrium position of the rotor.

In this way, the torque delivered by the motor is quite low, with the benefit that any trouble in

the rotation of the magnets ends with the magnet losing synchrony with the drive and slowing

down due to friction. The big advantage of this way of operating is that the two rotating

magnets represent two phase locked master clocks for the experiment, its angular phase being

the time variable. That phase is a crucial feature for data acquisition and analysis.

3.4 The vacuum system

The whole polarimeter of the PVLAS experiment, from polariser to analyser, is kept under

vacuum. In Figure 3.12, is shown a layout of the vacuum system, which features of five

vacuum chambers and two 130 cm long dielectric tubes aligned along the path of the light

beam. The inner volume of the system is less than 50 L, with 20 L for each of the input and the

output chambers, 3 L for each of the mirror chambers, and about 1 L for the central vacuum

chamber. Short bellows between adjacent elements compensate for small misalignments. All

of the vacuum components except the tubes are realised in AISI 316 stainless steel, titanium,

and aluminum, which are all nonmagnetic. Conflat flanges sealed with copper gaskets are

used for all the standard connections.









3.4. THE VACUUM SYSTEM 73

Figure 3.15: Left: picture of a NEG pump. Centre: pumping speed for a few molecular

species. Right: regeneration principle: qf is the final quantity of H2 in the getter material in

Torr·l/g, qi is the initial amount of H2 in the getter material in Torr·l/g.

vacuum. The turbo pump on the central chamber, which sits far from the mirrors, is kept

running permanently to get rid of the Methane and Helium gases. As mentioned above, since

their mechanical vibrations disturb the frequency locking of the Fabry-Perot cavity, the other

two turbo pumps are usually isolated from the system using gate valves and switched off. A

small valve also isolates the exhaust of the turbo pumps when they are switched off to limit

water absorption in the pump body and prevent the entrance of the dust coming from the

scroll pumps.
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Figure 3.16: Typical RGA mass spectrum for a total pressure of 5× 10−8 mbar. Main

contaminants are Hydrogen and water.

The total pressure is measured by three pairs of Pirani and Bayard-Alpert gauges. Ultimate

pressures in the low 10−8 mbar range are achieved. Two Residual Gas Analysers monitor

the quality of the vacuum in the central and output chambers. Since gases exhibit magnetic
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birefringence (Cotton-Mouton effect), knowing the composition of the residual atmosphere

in the vacuum system is essential to be sure that the residual gases have a birefringence much

smaller than the one due to the magnetic birefringence of vacuum. A typical mass spectrum

of the residual atmosphere is shown in Figure 3.16. The main residual gases are Hydrogen

and water vapor (the vacuum system cannot be baked). Their contribution to the magnetic

birefringence is estimated using the values listed in Chap. 2, Table 2.2. From that table,

one finds that a Cotton-Mouton birefringence having the same value as vacuum magnetic

birefringence is obtained with a partial pressure of 5×10−7 mbar of H2 or 6×10−7 mbar of

H2O. From the spectra reported in the Figure 3.16, one can see that the actual contribution of

each of these two species is less than 1% of the effect due to the vacuum.

Non magnetic UHV chambers

Polarisers chambers CF250, h 400 mm, AISI304 steel

Mirrors chambers CF150, h 160 mm, AISI304 steel, Ti bases h 120 mm

Central chamber 5-ways standard CF40 cross

Pyrex tubes ⊘ext (15−18) mm, ⊘i (12−15) mm

Si3N4 tubes ⊘ext 17 mm, ⊘i 10.5 mm

Pumps

3 turbo Pumps Agilent V 70LP, V 81, ultimate pressure ≈ 10−9 mbar

3 NEG pumps SAES Getters, 2 CapaciTorr D1000, 1 Sorb-AC 100 MK5

3 primary pumps Agilent IDP-3 dry scroll, ultimate pressure 3.3×10−1 mbar

Gauges

Pressure gauges 3 Bayard-Alpert + Pirani

Capacitive gauge MKS Baratron 622A, range: 0.1 µbar – 1 mbar

2 Residual Gas Analysers 1 Balzers Prisma QMS200M, 1 Extorr XT100M, range: (10−3 −10−14) mbar

Table 3.4: Characteristics of the vacuum system.

The characteristics of the vacuum chambers, the pumps and the gauges are listed in Table

3.4. The capacitive gauge is used to monitor the gas pressure during the calibrations.

3.5 Laser

The measurements presented in this thesis have been taken with a solid state NPRO (Non-

Planar Ring Oscillator) tuneable Mephisto 2000NE laser by Innolight GmbH, Hannover,

Germany, with λ = 1064 nm and maximum emitted power 2.14 W. Its main characteristics are

summarised in Tab. 3.5. The laser cavity is a single crystal of Nd:YAG (Yttrium-Aluminium-

Garnet) within which the light describes a non-planar optical path by total internal reflection

on three surfaces of the crystal (see Figure 3.17). The beam comes out through a dielectric

film that serves as an output coupler for the laser and allows the longitudinal pump radiation
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Wavelength 1064 nm

Fast control range ±100 V, bandwidth 100 kHz

Fast control tuning coefficient ≈ 1 MHz/V

Slow control range 30 GHz, bandwidth 1 Hz

Thermal tuning coefficient −3 GHz/K

Frequency interval between mode-hops ≈ 8 GHz

Max power 2.14 W

Beam quality M2 1.02

Beam waist 123 µm

Free laser line width < 1 kHz

Temperature drift frequency ∆ν < 15 MHz/h

Table 3.5: Mephisto Innolight NPRO laser characteristics.

Figure 3.17: Typical NPRO cavity of the of tunable 1064 nm laser light.

from two laser diodes to enter the crystal. The power supply stabilises the temperature and

the current of the two pump diodes. The presence in the laser cavity of a small magnetic field

favours the excitement of a single mode propagating in only one direction and reduces the

sensitivity to back reflected light. The beam quality is quantified by the M2 factor (also called

beam quality factor or beam propagation factor). Mathematically, it is the ratio of the square

of the actual beam waist to the ideal Gaussian beam waist. For a theoretical Gaussian beam

waist, M2 = 1; for a real laser beam, M2 > 1. The manufacturer quotes a value M2 = 1.02.

Our measurements of the beam waist as a function of the propagation coordinate are

shown in Figure 3.18. From these measurements, the beam waist is estimated to be

w0 =123 µm, located at −17 cm behind the exit window of the laser. Knowledge of

these values is necessary for mode matching the laser beam to the cavity. The measurements

were made by measuring the laser power as a function of the distance through a pin hole
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Figure 3.18: The data measures of the waist of the laser. Fitting the data we obtain the waist

and its position from the head of the laser: waist w0 = (123±1) µm, located (-17±0.3) cm

behind the exit window of the laser

of diameter 958 µm. The plot also shows the fit with the integrated Gaussian beam power

exiting from the pin hole [see Eq. (43)].

The laser is elliptically polarised with an intensity ratio Is/Ip
∼= 5/1 and the main axis

oriented perpendicularly to the mounting plane (s-pol). As this polarisation state represents

an eigenmode of the monolithic ring laser cavity, it can be transformed without loss into

any linear polarisation state using a suitable combination of a quarter-wave plate and a

half-wave plate. Using the combination of such two wave plates we obtained an extinction

ratio σ2
laser ≈ 1

300
.
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Figure 3.19: Intensity noise of the free running Mephisto 2000NE Innolight laser. The plot

on the left shows the relative intensity noise as a function of the frequency with the “Noise

Eater” deactivated. The plot on the right shows the same measurement with the noise eater

activated.
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The laser is characterised by a low amplitude relative intensity noise (RIN) −140 dB/Hz,

a high-frequency stability and a wide range of frequency tuneability (over 30 GHz). The

laser also has an extraordinarily narrow line-width of 1 kHz, characteristics which derive

from the optical diode laser pumping and the monolithic cavity. The measured spectrum

of the intensity noise of the laser is shown in Figure 3.19 in a range 0.2 MHz to 4 MHz.

The spectrum shows the laser crystal resonance around 1.1 MHz. We can eliminate this

disturbance by activating a feedback system provided by the manufacturer called “Noise

Eater” which is integrated in the laser controller.

The frequency variation of the free running laser over a period of three hours is ∆ν <

45 MHz. The wavelength of the Nd:YAG laser light strongly depends on the crystal temper-

ature; as mentioned above, Nd:YAG laser crystal is therefore temperature stabilised. The

typical drifts allowed by the temperature controller are only a few 100 µK/min, correspond-

ing to a variation of the laser frequency of less than 1 MHz/min. The laser features two

different systems allowing the user to control the frequency of the light. The first system (the

so-called “slow” control) is a thermistor (heater) in contact with the base of the NPRO crystal

(see Figure 3.17). The variation of the frequency is obtained by changing the temperature

and therefore the length of the laser cavity. The laser temperature can be freely chosen

(either manually, with a potentiometer, or with a voltage signal) as long as it is higher than

the ambient temperature. This control system has a bandwidth of about 1 Hz over a tuning

interval of about 30 GHz. The second control system (“fast control”) is a piezoelectric (PZT)

glued to the top surface of the monolithic laser cavity (see Figure 3.17), which exerts a

mechanical pressure, thus varying the dimensions of the resonant cavity. The dynamic range

of the PZT tuning system is ±100 MHz with a 100 kHz linear response bandwidth. These

controls are the basis of the feedback loop used to maintain the frequency of the emitted

radiation in resonance with the Fabry-Perot cavity, described in detail in Section 3.6.2.

A key feature of the frequency locking of the laser to the cavity, is the generation of two

side-bands in the emitted frequency. In the original Pound-Drever-Hall scheme, an external

phase modulator is used for this task. In the PVLAS experiment, this is instead obtained by

modulating at a single frequency the PZT of the “fast” frequency control of the laser outside

its linearity range [48]. The choice of the optimal modulation frequency is made by studying

the Residual Amplitude Modulation (RAM) induced by the modulation. We made a series

of measurements modulating the laser in a range from 490 kHz to 1.1 MHz with a span of

20 kHz. We reach a minimum RAM at 502 kHz. The corresponding frequency spectrum of

the parameter RAM/β (β is the amplitude of the modulation) is shown in Figure 3.20.
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Figure 3.20: A study of the Residual Amplitude Modulation (RAM) of the Mephisto 2000NE

laser as a function of frequency ν . The PZT of the “fast” frequency control of the laser is

modulated with a signal V0 sin(2πνt), where V0 is kept constant. The quantity RAM/β is

plotted against the frequency ν , where β is the amplitude of the generated side-bands.

3.6 Feedback loop

The laser is frequency tuned by a feedback circuit called “servo”. A simplified diagram of

the servo circuit is shown in Figure 3.21. Essentially it is a four stage integrating circuit

providing, at low frequencies, the high gain G necessary for locking. For the locking to be

stable, it is necessary that, at the frequency where the gain (including the frequency response

of the cavity, see below) is unitary, the open loop gain slope be less than 12 dB/octave [45].

The unity gain frequency of the servo (≈ 30 kHz) is much above the frequency cut-off of the

cavity itself (νc

2
≈ 30 Hz). To guarantee the stability of the feedback loop, the gains of all the

integrators flatten out above f2 ≈ 20 kHz. It is the cavity itself that ensures the 1/ f slope of

the gain at the unity gain frequency.

As discussed in Section 2.3, the light reflected from the cavity is collected and demodu-

lated at the frequency of the modulation, thus generating the error signal VE (Eq. 2.37), which

is the input of the servo (IN). The signal is first amplified by a stage of pure amplification

G0. Subsequently, there are the three cascaded integrators I1, I2, and I3, that can be enabled

or bypassed through the use of switches controlled manually or automatically. The signal

is then sent to the inputs of two more integrators, one, IS, connected to the slow frequency

control of the laser, and the second, IF, driving the fast frequency control of the laser. After

the integrator IF, the RF frequency modulation signal necessary for generating the side bands

of the laser frequency is added to the IF output. At this same stage, a calibration signal can be





80 CHAPTER 3. THE PVLAS EXPERIMENTAL SET-UP IN FERRARA.

The system that uses the thermistor as an actuator has a linear response up to 1 Hz. Above

1 Hz we can assume that this actuator also behaves like an RC electronic circuit having a

cutoff frequency fs = 1 Hz and a time constant τs = 1/(2π fs). We can therefore write its

response function (including the ×1/10 amplifier) as

As(ω) =
Ks/10

1+ iωτs
(3.3)

with Ks = 3 GHz/V.

Two circuits act in parallel so the gain loop of the locking circuit is given by the vector

sum of the open circuit functions of the Fast circuit and the Slow circuit, which we indicate

with GF and GS. Figure 3.21 is the simplified electrical diagram of the servo circuit. Referring

to figure 3.21 the first amplification stage G0 has a flat transfer function

S0 =
R1

R0
.

The first integrator stage has a transfer function given by

S1(ω) =
Ri

Ri

+
Rf

Ri

1

(1+ iωCfRf)

where the resistance Ri indicates the input resistance and the first of the two feedback

resistances. The fact that these two resistances are equal ensures that the gain at high

frequency is unitary. The second feedback resistance Rf is necessary to avoid saturation

during initial locking. This stage has a pole at f1 = 1
2πRfCf

= 48 Hz and a zero at f2 =
1

2πRiCf
= 10 kHz.

The next two integration stages have the following transfer functions

Si(ω) =
Ri

Ri

+
1

iωCiRi

where Ri indicates both the input and feedback resistances of each integrator. Both integrators

have a pole at zero frequency. The zeroes of the two stages are fz2 ≈ 10 kHz and fz3 ≈ 882 Hz,

respectively.

Finally, the last integration stage IF has the transfer function

Sf(ω) =
Rf2

Ri

+
Rf1

Ri

1

(1+ iωCfRf1)

where the subscripts f1,2 indicate the feedback resistances shown in Figure 3.21 (b). As

for stage I1, the resistance Rf1 has the function of unloading the integrated voltage at low
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frequencies at the input of the piezoelectric actuator, to avoid saturation and to therefore

allow the search for the resonance of the cavity. The frequency of the pole of this stage is

f1 ≈ 0.16 Hz whereas the frequency of the zero is f2 ≈ 717 Hz.

The transfer function for the Slow stage IS is,

Ss(ω) =
1

iωCsRs

with a pole at zero frequency.

Servo

Integration stages Abbreviation Elements Values

Gain G0
R0

R1

1 kΩ

22 kΩ

First stage I1

Ri

R f

C1

4.7 kΩ

1 MΩ

3.3 nF

Second stage I2
R2

C2

4.7 kΩ

3.3 nF

Third stage I3
R3

C3

22 kΩ

8.2 nF

Fast stage IF

Ri

Rf2

Rf1

Cf

4.7 kΩ

220 Ω

1 MΩ

1 µF

Slow stage IS
RS

CS

1 MΩ

4.7 µF

Table 3.6: Values of the electric components of the Servo circuit labeled in the figure 3.21.

All the values of the circuital components are reported in the table 3.6.

The complete transfer function of the Fast channel of the circuit (without considering the

laser actuator) is,

SF(ω) = S0 ·S1(ω) ·S2(ω) ·S3(ω) ·Sf(ω)

whereas for the thermistor Slow output we have:

SS(ω) = S0 ·S1(ω) ·S2(ω) ·S3(ω) ·Ss(ω)

In Figure 3.22 are shown the calculated frequency response of all the integrators and of the

Fast and Slow loops with the corresponding phases. When the integrators I2 and I3 are

enabled, the slope of the overall gain G increases for frequencies below the zeros of the
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Figure 3.22: Left column: gain and phase for each integration stage as a function of frequency.

Right column: gain and phase of the FAST (solid) and SLOW (dashed) branch of the servo

as a function of frequency.

integrators I1 and IF. This corresponds to frequencies below ≈ 1 kHz. At low frequencies the

gain G is very high to suppress the ≈ 1/ f noise component of the laser and typical acoustic

noises: in particular at 1 Hz we have G ≈ 1014.

3.6.2 Automatic laser locking

The automatic frequency locking of the laser to the cavity was designed and realised at the

same time with the redesign of the electronic components of the feedback system. A picture

of the compact unit is shown in Figure 3.23. The scheme is essentially the same described

in figure 3.21, the main difference being that the feedback resistance of the stage G0 is

programmable. The detailed scheme with the complete electronic component of the circuit is

found in the appendix .1.

The new circuit has the following characteristics with respect to the previous version:

OpAmps with lower noise, ultra low offset voltage and drifts, very low input voltage and

current noise, very low input bias current, a signal input for the study of the Fabry-Perot





84 CHAPTER 3. THE PVLAS EXPERIMENTAL SET-UP IN FERRARA.

3.7 The Fabry-Perot cavity

In the PVLAS apparatus, a high-finesse Fabry-Perot cavity is employed, with length d =

3.303±0.005 m. The length defines the free spectral range of the interferometer

νfsr =
c

2d
= 45.38±0.07 MHz. (3.4)

The dielectric mirrors belong to a batch of seven, manufactured by ATFilms (Boulder, CO,

USA), with super-polished fused silica substrates. The reflecting concave surface has been

designed for the highest finesse, with a stack of 40 layers each having a thickness of λ/4; the

other surface is plane and has a 1064 nm anti-reflective coating. The mirrors have 25.4 mm

diameter and are 6 mm thick; the radius of curvature of the concave mirrors used in the

present thesis is R = 2 m. In general a cavity is stable if

0 ≤ g1g2 ≤ 1 (3.5)

where g1,2 = 1− d
R1,2

. The PVLAS cavity has R1 = R2 = R. For this value, the cavity is

stable because d/R = 1.65 and, therefore

g1g2 = g2 =

(
1− d

R

)2

= 0.42. (3.6)

The minimum w0 waist is in the centre of the cavity with value

w0 =

√√√√λd

2π

√
1+g

1−g
= 0.507 mm (3.7)

with a Rayleigh range z0 given by

z0 =
πw2

0

λ
= 0.759 m. (3.8)

The waist w on the mirrors is

w =

√√√√λd

π

√
1

1−g2
= 1.21 mm. (3.9)
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The separation of the transverse modes for our symmetric cavity is given by

∆ν =
νfsr

π
arccos

√
g2 = 12.44 MHz (3.10)

which guarantees a good separation of the lowest index transverse modes.

To mode-match the cavity to the laser beam, a single lens is employed. The distance

between the minimum waists of the laser and of the Fabry-Perot cavity is D = 4.7 m. The

focal length f of the matching lens and its position x with respect to the laser are given by

the equations of Chap. 2:

x− f

D− x− f
=

w2
0

w2
las

(x− f )(D− x− f ) =
πw0wlas

λ
(3.11)

that give x = 0.94 m and f = 0.76 m. A standard f = 75 cm lens is placed on a xyz lens

holder allowing a fine position adjustment.
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OSA EXPRESS  

Figure 3.24: Decay of the light transmitted by the FP cavity following an abrupt unlocking

of laser and the cavity. The data are fitted with an exponential function a+be−t/τ , giving a

decay time τ = 2.70±0.02 ms. The offset parameter a is compatible with zero. The response

time of the electronics is less than 4 µs.
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The finesse of the cavity is determined by measuring the decay time τ of the intensity

exiting the cavity after switching off of the locking circuit:

τ =
Fd

πc
(3.12)

The finesse of the cavity dramatically depends on the state of cleanliness of the surface of

the two mirrors. The mirrors employed have been installed in the vacuum chambers straight

from the manufacturer’s box without any selection or cleaning. Thanks to the valves that

isolate the mirrors’ vacuum chambers, we could verify that the mirror surface did not change

in vacuum or low pressure pure gases on the time scale of years. Nevertheless, as the surface

of the mirror can be inspected through a window by the aid of an infrared viewer while the

cavity is in resonance, on each mirror we observe a few bright spots due to dust particles or

surface imperfections which act as diffusing and absorbing centers. The finesse of the cavity

is maximised when, by adjusting the cavity mirrors and the alignment mirrors, one obtains

the condition where most of the bright spots are confined to the periphery of the beam spot.

The longest decay time ever found has been τ = 2.70± 0.02 ms, corresponding to a

finesse F = 770,000±6,000 as can be seen in Figure 3.24. This corresponds to a line width

at FWHM

νc =
1

2πτ
= 58.9±0.4 Hz. (3.13)

The value of the finesse in most of the measurements presented in this thesis work is however

about 10% lower, namely F = 700,000, corresponding to νc = 65 Hz. With this value the

enhancement factor is

N =
2F

π
= 446,000. (3.14)

From the value of the finesse, a value of the reflectance of the mirrors can be determined

assuming them to be identical. Considering that R + T + A = 1 where R,T and A are

respectively the reflectance, transmittance and losses of each of the two mirrors:

π

F
= 1−R = A+T ≈ 4.1 ppm (3.15)

To completely characterise the mirrors with the values of A and T , a few more measurements

are needed. The manufacturer provides a value for the transmittance T = 2.9±0.2 ppm, and

an estimate that the losses in the reflecting layers are as low as A = 1 ppm. The values of A

and T determine the transmittance HT and the reflectance HR of the resonating Fabry-Perot
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as a whole. According to the formulas of Chap. 2,

HT ≡ IT

Iin − Inc
=

(
T

A+T

)2

HR ≡ IR − Inc

Iin − Inc
=

(
A

A+T

)2

. (3.16)

where Inc is the intensity reflected by the cavity that does not couple to the Fabry-Perot due

to a not perfect spatial match.With the laser locked to the cavity we have measured the two

quantities:
IT

Iin

= 0.31±0.02 and
IR

Iin

= 0.25±0.02 (3.17)

With these values, equations (3.15) and (3.16) give

T = (2.4±0.2) ppm; A = (1.7±0.2) ppm; Inc/Iin = 0.09±0.04 (3.18)

We interpret the parameter T as an intrinsic property of the mirrors, and we therefore attribute

the current slightly lower finesse to an increased loss coefficient: Aactual = 2.1 ppm.

The values above have been obtained with an input power of Iin = 0.55 W. In fact, when

working at maximum power, the output intensity from the cavity is slightly less stable, with

a higher uncoupled intensity. We interpret this as caused by mirror lensing due to the large

power density on the mirrors. In fact, with a maximum input power of 1.2 W, the power

circulating in the cavity is about 130 kW, corresponding to a power density on the mirrors of

about 3 MW/cm2. For an absorption ∼ 1 ppm this gives an absorbed power of ∼ 3 W/cm2.

This absorbed power density evidently is high enough to locally deform the surface of the

mirrors with consequent thermal lensing thereby reducing the mode matching. Note that the

power density on the mirrors is well below the damage threshold of the mirrors as declared

by the manufacturer.

The characteristic of the Fabry-Perot cavity and of the mirrors are summarised in table

3.7.

3.8 Optical layout

As mentioned before, the optical bench supports the vacuum chambers, all the optical

elements, the instruments of beam manipulation and signal detection. A scheme of the

optical elements is shown in Figure 3.25.

Three optical components, placed near the laser head, are used to condition the beam

polarisation, adjust the power, and isolate the laser from the optical system. The polarisation

of the light generated by the laser has small ellipticity with an extinction ratio of 5/1. A
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Fabry-Perot cavity (λ = 1064 nm)

Length d = (3303±5) mm

Free spectral range νfsr = (45.38±0.07) MHz

Curvature radius of the mirrors R = 2 m

Transverse mode separation ∆ν = 12.4 MHz

Minimun cavity waist w0 = 0.507 mm

Waist on mirrors w = 1.21 mm

Rayleigh range z0 = 0.759 m

Best measured finesse F = (7.7±0.06)×105

Typical operating finesse F ≈ 7×105

Dielectric plano-concave mirrors

Mirrors diameter 25.4 mm

Thickness 6 mm

Number of dielectric layers 40

Best mirrors reflectance R = 99.99959%

Typical mirrors reflectance R = 99.99955%

Mirrors transmittance T = (2.4±0.2) ppm

Minimum mirrors losses A = (1.7±0.2) ppm

Typical mirrors losses A ≈ 2.1 ppm

Table 3.7: Fabry-Perot specification.

quarter-wave plate (QWP) properly oriented compensates the ellipticity of the laser light. The

optical isolator consists of two polarisers with a Faraday cell between them. The light passes

through the first polariser and is rotated by 45◦ in the Faraday cell. The second polariser is

oriented at 45◦ with respect to the first. Light reflected back by the following optical elements

is further rotated by 45◦ by the Faraday cell and is extinguished by the first polariser. In the

PVLAS setup, we have installed a dual stage Faraday isolator (≈ 60 dB). The polarisation of

the beam exiting the last polariser is vertical to impinge on the steering mirrors as a s-wave.

A half-wave plate (HWP), placed before the isolator, adjusts the beam power by rotating the

polarisation with respect to the input polariser of the isolator.

A plano-convex lens after the optical isolator focuses the light at the center of the Fabry-

Perot cavity. The lens has an N-BK7 substrate and a broadband anti-reflection coating for

the 1050−1700 nm range with a focal length f = 750 mm.

After the lens, the light is steered by two deflection mirrors allowing the alignment of the

laser light to the Fabry-Perot cavity. The light passes then through a 10/90 beam splitter. The

10% beam is used for the measurement of the input beam intensity. The 90% beam passes

through a second HWP which aligns the polarisation with the input polariser.
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Figure 3.25: Top view scheme of the optical bench with the PVLAS apparatus. The scheme

shows the optical components, the five vacuum chambers, and the two magnets. HWP=

Half-wave plate; P = Polariser; A = Analyser; QWP = Quarter-wave plate; TR = transmission;

EXT = extinction.

The light enters into the vacuum enclosure via an anti-reflecting window and passes

then through a Glan-Thompson polariser. The polariser has a high extinction ratio 108 : 1

and operates in the broadband range 350 nm – 2.3 µm. The two halves of the prism of the

polariser are joined with optical cement (Canada balsam). This polariser has replaced a

proper air-spaced vacuum-compatible polariser, whose many reflecting surfaces seemed to

contribute to the wide-band noise.

After crossing the polariser, the light enters into the Fabry-Perot cavity. The light reflected

by the cavity impinges back on the beam splitter. The diode PDR detects the 10% fraction of

the light reflected by the beam splitter; its signal is used for the Pound-Drever-Hall locking.

After exiting the FP cavity, the light is modulated in ellipticity by the resonant photo-

elastic modulator (PEM) which introduces a known variable ellipticity η(t) at a frequency of

about 50 kHz.

The light emerging from the PEM goes through the analyser oriented for maximum

extinction. The ordinary ray exits the analyser through a side port. It is collected outside

the vacuum enclosure by the transmission photodiode PDT. The extraordinary beam also

emerges from the vacuum system and is detected by the photodiode in extinction PDE

which is connected to a low noise amplifier typically set to a gain of 106 V/A with a band

width of 200 kHz. The signal from the low noise amplifier contains the signal linearised

in ψ: Ie(t) ∝ η(t)ψ(t). A line filter is placed before of extinction photodiode centred at

λ = 1064 nm with a 10 nm FWHM; its transmittance is F = 0.83.

The attenuation coefficients kx of all the optical elements shown in Fig. 3.26 have been

measured. The values are reported in Tab 3.8.
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Figure 3.26: Scheme for the measurement of the attenuations of the optical components. M:

steering mirror; BS: 10-90 beam splitter; WP: wave plate; W: vacuum window; P: polariser;

FP: Fabry-Perot cavity; A: analyser.

kM =
P1

P0

kBS =
P2

P1

kWP =
P3

P2

kW =
P4

P3

kP = max

[
Pin

P4

]
kFP =

Pt

Pin

kA = max

[
PA

Pt

]

1.00 0.90 0.99 0.98 0.90 0.31 0.90

Table 3.8: Measured attenuation coefficients of the optical elements of figure 3.26.

3.9 Instrumentation and electronics

The experimental apparatus described above is inside the clean room, whereas most of the

electronic equipment is installed outside the clean room to reduce mechanical and acoustic

noise and the presence of operators inside the clean room during data taking. In the following

we summarise the main characteristics of the instrumentation employed by the PVLAS

experiment.

3.9.1 Logistics and instrumentation inside the clean room

The specifications of the electronic components and photodetectors are summarised in Table

3.9 and a scheme of their connections coming in and out the clean room are shown in

Fig. 3.27.

The reflected, transmitted and extinguished intensities I1, I2 and IR are detected by three

fast photodiodes. The laser intensity Iin and again the transmitted one IR are measured by

two power meters. A three axis accelerometers is attached to each tube to measure the

components Aiα,β of their accelerations. The distance sensors Diα,β monitor the relative

position of the optical bench with respect to the structures supporting the magnets in two

points roughly coinciding with the outer (namely, near the mirrors) ends of the two tubes.

By monitoring the tube acceleration we can position the tubes ends in such a way that the

average force of the magnetic field at 2νB is a minimum. This is done using four piezoelectric

motors which position each tube with a precision of 30 nm. Two magnetometers Bα and Bβ
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Instrument Type Characteristics

Power meter, laser side Thorlabs S145C integrating sphere InGaAs photodiode, 3 W

Power meter, output side Thorlabs S121C Si photodiode, diam. 9.5 mm, 0.5 W

Reflection photodiode Hamamatsu, G8376-05 1 mm2, efficiency q = 0.7 A/W

Reflection current amplifier Femto DHPCA-100 DC to 200 MHz, (102 −108) V/A

Transmission photodiode Thorlabs PDA400 ⊘ 1 mm amplified InGaAs, 10 MHz BW

Extinction photodiode Hamamatsu G8376-05 1 mm2, efficiency q = 0.7 A/W

Extinction current amplifier Femto DHPCA-200 DC to 500 kHz, (103 −1011) V/A

Stray field magnetometers Stefan Mayer Fluxmaster 0.1 nT − 200 µT, DC to 1 kHz

One-axis accelerometer Wilcoxon 731A/P31 1000 V/g, (0.05−450) Hz, 0.03 µg/
√

Hz

Triaxial accelerometers PCB 356A17 500 mV/g, (0.5−3000) Hz, 60 µg/
√

Hz

Piezoelectric step motors Newport PZA12 50 N, resolution 30 nm

Distance sensors Panasonic HG-C1030 repeatability 10 µm

Contrast sensor Baumer CH-8501 response time < 50 µs

Temperature sensor Texas Instruments LM35 (−55−+150)◦C, 10 mV/◦C

Table 3.9: Characteristics of the instruments inside the clean room.

are used to track the phase of the rotating magnetic fields. We also use a contrast sensor to

generate a trigger signal in correspondence of a mark drawn on the external surface of the

rotating magnets in correspondence of the direction of the inner magnetic field. This signal

is an absolute zero for the magnetometers signals.

Inside the vacuum chamber the rotators and the translators of the optical components are

installed. These are all compatible with high vacuum and non magnetic. They include: the

angular rotators of the polariser and the analyser; two three-degrees of freedom positioning

mounts for the mirrors; a rotator for the wave plates and a translator for insertion/extraction

in/from the light path; a translator and a rotator for the photo-elastic modulator PEM. All the

signals from the instruments are sent outside the clean room, as shown in Fig. 3.27.

A service structure, shown in Fig. 3.28, is used for the support of instrumentation

(electronics, primary pumps, etc.) above the optical bench.

3.9.2 Logistic and instrumentation outside the clean room

Most of the instrumentation of the experiment is hosted in a control area outside the clean

room; a list is given in Tab. 3.10. Three uninterruptible power supplies (UPS) feed all the

electrical equipment inside and outside the clean room. A first UPS feeds the motors, the

pumps and the vacuum equipment; a second UPS provides the power for all the rest of the

electronics, including the data acquisition; the third UPS is dedicated to the positioning

system of the optical bench. In figure 3.29 the connections of the instruments in the control

area are presented starting from the BNC connector panel. Most of the signals are filtered

(Kemo CardMaster 255G) except the reflected signal. Then they are directly connected
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Instrument Type Characteristics

2 Signal generators Agilent 33500B 2 chs, resolution 1 µHz, range 30 MHz, 1 mVpp

2 Signal generators Agilent 33120A 10 µHz resolution, range 15 MHz, 50 mVpp

Signal generator HP 3325A 1 µHz resolution, range 30 MHz, 1 mVpp

2 Current amplifiers AE Techron LCV2016 2 chs, range DC to 20 kHz

Lock-in amplifier PerkinElmer 5210
ranges: 0.5 Hz to 120 kHz, 1 nV to 1 V,

time constant 1 ms to 300 ks

Lock-in amplifier SRS SR830
ranges: 1 mHz to 104.2 kHz, 2 nV to 1 V,

time constant 10 µs to 30 ks

Programmable filter Krohn-Hite 3364 4 chs, 4 poles, range 0.1 Hz to 200 kHz

Low-pass filter Kemo Mastercard 21.255G 16 chs, 8 poles, range 0.1 Hz to 127 kHz

Acquisition board NI USB-6259 BNC 16 bits, 16 differential chs, sampling rate 1 MHz

Signal analyser Agilent 35670A 4 chs, DC to 102.4, resolution 61 µHz

Signal analyser HP 35665A 2 chs, DC to 102.4, resolution 122 µHz

Table 3.10: Specifications of the electronic instrumentation outside the clean room.

from the second channel, at the same frequency and with the proper phase, is sent to the

mixer for the demodulation of the sidebands present in the reflected intensity. The output of

the mixer is low-pass filtered at 2 MHz and amplified by a factor ten; it enters then the Servo

unit as an error signal for the locking of laser and cavity.

A sine signal at νm ≈ 50 kHz, generated from an HP3324A signal generator, is sent to

the ellipticity modulator and to the reference inputs of two lock-in amplifiers (PerkinElmer

5210 and SRS SR830). The first one demodulates the extinguished signal I2 at 2νm; from

the amplitude of the lock-in output we obtain the modulation amplitude η0 of the ellipticity

modulator; the phase of the Fourier component of I2 at frequency 2νm represents a monitor

of the resonance inside the crystal of the ellipticity modulator. The SR830 demodulates

the extinguished signal I2 at νm. We are interested in the components at 2νBi of the FFT

of the demodulated signal, which are related to the phase and the amplitude of the induced

ellipticity.

The computer managing the acquisition is also connected via ethernet to a hub com-

municating with all the rotators and translators of the optical elements under vacuum and

to the four piezoelectric step motors defining the position of the outer tube ends. The user

interface are LabVIEW programs. The transverse acceleration of the two tubes, {AHα , AVα ,

AHβ , AVβ } are acquired and then analysed for correlations between the acceleration and

the spurious ellipticity signals. The relative distances {DHα , DVα , DHβ , DVβ } between the

magnet and the optical bench are monitored by four laser distance sensors.

An oscilloscope is dedicated to the trigger signals of the acquisition system. A second

oscilloscope displays online the signals of the transmitted intensity I1, of the reflected

intensity IR, of the Fast signal IF and of the extinguished intensity I2.
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In parallel with the acquisition board, a four-channels spectrum analyser Agilent 35760A

acquires the demodulated extinguished signal and calculates the ellipticity. To provide the

correct phases, it uses the same start trigger at frequency νT as the acquisition board. The

channels used to calculate the ellipticity are I1 and the demodulated signal demodulated

signal at 2νm, which gives the modulation amplitude η0 of the PEM ellipticity modulator.

The reflected signal is used as a trigger when the laser gets unlocked from the cavity.

3.10 Data acquisition and data analysis

All the signals coming from the clean room are acquired by two different instruments: the

first instrument is a spectrum analyser Agilent 35670A which provides a fast analysis in real

time. The second instrument is a NI USB-6259 acquisition board that samples and stores the

data on the hard drive of the PC-DAQ.

Channel Signal

1 Extinguished intensity I2, demodulated at νm

2 Extinguished intensity I2, demodulated at 2νm

3 Transmitted intensity I1

4 Reflected intensity IR

Table 3.11: Voltage signals acquired by the spectrum analyser Agilent 35670A. The analyser

inputs are floating and DC coupled.

The spectrum analyser Agilent 35670A performs a simplified analysis based on the

signals listed in Table 3.11. The first three channels are the signals necessary to calculate the

values of ellipticity and rotation. We use the fourth channel as an enable signal to pause the

analyser when the laser unlocks.

The second instrument is a digital data acquisition board from National Instruments

which records the sampled data on the hard drive of the PC-DAQ for a detailed analysis. A

list of the channels acquired is in Table 3.12.

3.10.1 Data acquisition

The two magnets rotate at frequencies να and νβ . Normally να ̸= νβ , so that the mea-

surements taken with one magnet are a counter check for the results of the other. The two

frequencies are chosen so to have no common low-order harmonics. The acquisition is

started by a trigger of frequency νT equal to a common submultiple of να and νβ . In practice,
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Channel Signal

1 Extinguished intensity I2, demodulated at νm

2 Extinguished intensity I2, demodulated at 2νm

3 Transmitted intensity I1

4 Extinguished intensity I2

5 Magnetometer Bα

6 Magnetometer Bβ

7 “Slow” feedback signal IS

8 Temperature of the clean room

9 Horizontal relative distance DHα of tube and magnet α

10 Vertical relative distance DVα of tube and magnet α

11 Horizontal relative distance DHβ of tube and magnet β

12 Vertical relative distance DVβ of tube and magnet β

13 Horizontal tube acceleration AHα

14 Vertical tube acceleration AVα

15 Horizontal tube acceleration tube AHβ

16 Vertical tube acceleration AVβ

Table 3.12: Voltage signals acquired through the NI USB-6259 acquisition board, whose

inputs are configured DC. The board has two more input for the sampling trigger with

frequency νS and for the start trigger, with frequency νT .

νT = |να −νβ |. When the acquisition starts, the magnetic fields inside the two magnets have

the same direction.

The sampling is different for the spectrum analyser and the acquisition board. In the

spectrum analyser, the sampling depends on the frequency span and number of bins. To

take full advantage of the measurement time of the spectrum analyser by using a uniform

window, the frequencies of the two magnets are limited to the central frequency values of the

bins. For example: with a frequency span of 50 Hz and 800 frequency bins in the spectrum,

the frequency resolution is 50/800 Hz = 62.5 mHz: the allowed rotation frequencies of the

magnets are the multiples of 62.5 mHz.

Coming to the acquisition board, the numbers of samples per magnet turn, Nα and Nβ ,

are both integers; the smaller one is usually equal to sixteen. The values of Nα and Nβ are

related to the rate of sampling νS as

Nανα = Nβ νβ = νS.

A practical example: if να = 8.5 Hz and the sampling rate is νS = 8.5×16 = 136 Hz, the

magnet β can have either Nβ = 17 and νβ = 8 Hz, or Nβ = 20 and νβ = 6.8 Hz. In the first

case νT = 0.5 Hz, in the second νT = 1.7 Hz.
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Figure 3.30: Phase drift of the magnetic field of the two magnets as a function of time. Left

panel: magnet α rotates at 6 Hz with a drift of (3.86±0.01) µdegrees/second. Right panel:

magnet β rotates at 6.75 Hz with a drift of (5.76±0.01) µdegrees/second.

As said before, all the generators are synchronised by a common 10 MHz master clock.

We have verified that the phase relations between all the generators and the rotation of

the magnet are maintained during each run. For very long runs, a small drift is observed,

compatible with the frequency resolution of the generators. In Fig. 3.30 an example of such

a drift is given. In any case every few days we adjust this phase drift.

3.10.2 Control program and feedbacks utilised during the acquisition

A series of LabVIEW control programs necessary for feedbacks and for acquiring and saving

the data on a hard drive has been realised on our PC-DAQ. The acquisition is divided in

subfiles of given length. The data are continuously acquired in segments of size equal to a

common multiple of Nα and Nβ ; a user defined number of segments compose a subfile. The

start trigger guarantees that all the segments start with the same phase of the magnetic fields.

A filled subfile is ready for analysis while the acquisition program opens a new subfile. A

practical example: with να = 8 Hz, νβ = 8.5 Hz and a sampling frequency of νS = 136, a

segment can be made of 1360 samples, a subfile of 2048 segments.

Another LabVIEW program communicates with the signal generators feeding the Three

Phase Generators which drive the magnets. The frequency of the generators is linearly

increased, normally at 10 mHz/s, to reach the planned rotation frequency. The phase of the

magnetic fields is then manually aligned to a rising edge of the start trigger.

Feedback programs

We have implemented two low-frequency control feedbacks: one for keeping the PEM at

maximum resonance and the other to compensate for the slow drifting static birefringence of

the polarimeter.
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The first program keeps stable the phase of the extinguished intensity I2 demodulated at

the frequency 2νm by adjusting the frequency νm. The sign of the phase change gives the

sign of the required frequency change. Typically, the program checks the phase every three

seconds; a typical step for frequency change is 1 mHz.

The second program minimises the amplitude of the extinguished intensity I2 demodulated

at the frequency νm, due to a static birefringence of the polarimeter, by acting on the angular

position of the polariser. The sign of the required rotation is given by the phase (positive or

negative) of the demodulated signal. A typical value of static ellipticity requiring correction

is ∼ 10−4; the program typically moves the polariser in steps of the order of a millidegree.

The analyser is then rotated to maintain maximum extinction. One must note, however, that

this procedure minimises the total static ellipticity acquired by the light beam between the

two polarisers. This includes the ellipticity due to the PEM and, in the case of the rotation

measurements, the contribution of the quarter-wave plate. A manual intervention is required

from time to time to better adjust the situation, in particular during the rotation measurements.

In these case we extract the PEM and the quarter-wave plate from the beam path and we

extinguish the intensity I2, thus minimising only the static birefringence due to the cavity.

After re-insertion of PEM and quarter-wave plate, the best extinction is reached aligning only

these two optical components.

3.10.3 Offline data analysis
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Figure 3.31: FFT of the signal from the magnetometer Bβ in a 40 µHz window around

νβ = 6.75 Hz. The integration time T = 1.24×106 s corresponds to a frequency resolution

of 0.82 µHz.
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To analyse the data I wrote a C program. During the three years of the thesis, the program

has grown with internal functions and macros which automatically import and analyse the

data. After importing the data, the program performs a series of checks. The first check is on

the phases of the stray magnetic fields (see Fig. 3.30), to look for a possible loss of samples.

The next step is the data selection, discarding the time intervals in which any anomaly appears

(laser unlocked, lock-ins saturation, etc.). In doing this, one must always cut from the file an

integer number of turns of both magnets. After data selection, the phases of the magnetic

fields are checked again. The residual data from all the subfiles are collected into a single file,

to reach the best frequency resolution in the Fast Fourier transform. Moreover, files taken

with the same rotation frequencies and the same sampling rate are normally analysed as a

single file; we name this file a “block”. The frequency resolution is given by the width of the

νB component of the Fourier transform of the signal from the magnetometers. Even for the

longest runs, this line is found to occupy a single bin. An example is shown in Fig. 3.31 where

the data set had an integration time T = 1.24×106 s with a bin width ∆ν = 1/T = 0.82 µHz

.

We then calculate an ellipticity file through Eq. 2.5. The i-th element of the block is

obtained as

Ψ(i) =
1

4

√√√√2
√

2 I
(i)
2νm

S2νm

qGFI
(i)
1

I
(i)
νm

Sνm

I
(i)
2νm

S2νm

where I1 is the intensity transmitted by the Fabry-Perot and Iνm
and I2νm

are the extinguished

intensity I2 demodulated at the frequencies νm and 2νm. The S’s are the sensitivities of the

lock-ins used for the demodulations, q is the quantum efficiency of the extinction photodiode,

G its transimpedance, and F = 0.83 is the transmission of the optical filter placed before the

extinction photodiode.

The ellipticity is Fourier transformed to obtain the amplitude and the phase of the

components at 2νBα and 2νBβ and to obtain a value for the noise around these two frequencies.

The noise is extracted performing an FFT of the data array. A histogram of the ellipticity

values of the 10000 bins around each of the two frequencies 2νBα and 2νBβ is fitted with a

Rayleigh distribution

f (x;σ) = A
x

σ2
e
− x2

2σ2

where A is a normalisation parameter. The noise value corresponds to the value of σ .

The values of the ellipticity at 2νBα and 2νBβ are calculated also with Discrete Fourier

Transforms (DFTs). Comparing the ellipticity values at 2νB with the position of their bins in

the histograms defines the probability of their compatibility with zero. We note that, as we

have seen before, a true ellipticity signal must have a well defined phase corresponding to
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the one measured in the calibration obtained with the Cotton-Mouton effect. The values of

Ψ2νBα and Ψ2νBβ
are then projected along the physical and non-physical axes. The results

obtained in the analysis of the block are then quoted as the components on the physical axis,

with uncertainty given by σ :

Ψ2νBα cos(φ2νBα −φCM)±σ and Ψ2νBβ
cos
(

φ2νBβ
−φCM

)
±σ

where φCM is the phase of the calibration.

We perform the same analysis also as a function of the time, by considering short intervals

usually of 1024 s. In this way we can study how the ellipticity evolves and how it is correlated

with other signals, what indicates the presence of a spurious effect. As we will see in the

next chapter, the acceleration of the tube and the acceleration of the optical bench generate

spurious signals; their correlations can be put in evidence by means of a time analysis. We

observe also that, if the static ellipticity grows beyond a certain value, a correlation with the

sensitivity appears. A detailed discussion of all these phenomena is found in the next chapter.

An important strength of our analysis is the resolution in frequency we reach in the long

runs. As will be seen in Chapter 5, we have observed that mechanical vibrations modulate the

diffused light inside the tube generating unwanted signals. In the FFT spectra of a long run,

these signals are often found to occupy more than one bin around 2νB, with some structure.

Finally, to put everything together, the results obtained from blocks with different rotation

frequencies of the magnets are averaged by using a weighted vector average procedure.
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.1 Appendix 3.I: Automatic locking circuit scheme

.1.1 Scheme of the analogic circuit
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.1.2 Scheme of the digital circuit
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Chapter 4

Systematics, spurious signals and

wide-band noise

In fall 2013, we were finishing the mounting of the essential components of the PVLAS

apparatus. In that year, the Cotton-Mouton effect of water vapour had been measured [57]

with a low finesse cavity. The main task of my thesis work has been to set-up and tune the

PVLAS apparatus for the measurement of the vacuum magnetic birefringence. This chapter

presents most of my experimental work performed in the last three years. My activities

included the study of the systematics affecting the experiment, the identification of spurious

signals and the characterisation of the polarimeter.

4.1 Systematic effects: birefringence of the mirrors

4.1.1 Polarimetry with a birefringent cavity

In chapter 2 the polarimetry with a Fabry-Perot cavity has been treated from a principle point

of view. In this section, we describe the modifications brought in by the anisotropy of the

mirrors. The mirrors, in fact, behave as birefringent wave-plates with small phase differences:

a linearly polarised light becomes slightly elliptical after reflection. The cavity amplifies this

small ellipticity by the factor N, and this causes a substantial change in the performances of

the polarimeter. Mirror birefringence has been the subject of many studies (see for example

refs. [89, 90]) and it is attributed to the stress generated during the deposition of the dielectric

films onto the mirror substrate and to the stress associated with the mirror mount. Here the

mirror birefringence is considered as a characteristic of the FP cavity: the two mirrors act as

an equivalent wave-plate.
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The features of a birefringent cavity have been treated in ref. [91]. We call α1 and α2 the

small phase differences acquired by light after each reflection from the mirrors M1 and M2.

This introduces in the calculations the wave-plates

M1,2 =

(
eiα1,2/2 0

0 e−iα1,2/2

)
, (4.1)

where one can consider the α’s as positive quantities without loss of generality. If the slow

axes of the mirror wave-plates are both aligned to the input polarisation, the polarisation

auto-states of the Fabry-Perot cavity are given by



[
1−Rei[δ+(α1+α2)/2]

]−1

0


 and




0[
1−Rei[δ−(α1+α2)/2]

]−1


 .

This means that the resonance curves of the two orthogonal polarisations are no longer

centred at δ = 0, but are separated by the quantity

α = α1 +α2.

In other words, if we lock the laser to the first polarisation component, the other polarisation

is not in resonance. Namely, if the input light is at the top of the resonance curve (δ =−α/2),

the orthogonal component is out of phase of the quantity α . Accordingly, the extinguished

beam and the ellipticity signal may be filtered significantly. Hence, in calculating the

ellipticity signal in the presence of mirror birefringence it is necessary to take into account

the fact that the extinguished intensity is reduced by the factor

k(α) =
1

1+N2 sin2(α/2)
≤ 1 (4.2)

with respect to the other polarisation.

With the same formalism of Chap. 2, the electric field at the exit of a birefringent cavity,

taking into account the matrices M1,2, is

E out(φ ,δ ) = E0

[
I−Reiδ X ·M1 ·X ·M2

]−1

·Teiδ/2X ·
(

1

0

)
.

The electric field after the analyser is given by

E(δ ,φ) = A ·H ·Q ·Eout(δ ,φ). (4.3)
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Figure 4.1: Transmitted intensity (yellow curve) I1, amplitudes of the ellipticity signal I ell
2 (φ)

(blue curve) and of the rotation signal I rot
2 (φ) (red curve) given by Equations (4.4) and

(4.5) in the case of the measurement of a pure birefringence (θ = 0), as functions of the

Fabry-Perot cavity phase δ , for α = 10−5 and N = 4×105. The Airy curves are normalised

to unity; the rotation signal bears the same normalisation coefficient as the ellipticity.

One has to note that small static ellipticities or rotations acquired by the beam before or after

the cavity do not interfere with the signal at 2νB, and can thus be neglected. The intensities,

considering that the phase delay α induced by one passage is small and R ≈ 1, are given by

I ell
2 (φ) = I1


η2 +η

2Nψ −N2θ sin
(
δ − α

2

)

1+N2 sin2
(

δ
2
− α

4

) sin2φ


 (4.4)

for the measurements of ellipticity, and

I rot
2 (φ) = I1


η2 +η

2Nθ +N2ψ sin
(
δ − α

2

)

1+N2 sin2
(

δ
2
− α

4

) sin2φ


 (4.5)

for rotation measurements. Here the transmitted intensity I1 is

I1 = ε0c
E2

0

2

T 2N2/4

1+N2 sin2
(

δ
2
+ α

4

) . (4.6)

From equations (4.4) and (4.5), one can see that there is a cross-talk between the ellipticity

and the rotation signals as can be determined by Equation (2.5): with ψ ̸= 0 a rotation is

measured even in the case θ = 0. Conversely, in the case, ψ = 0 and θ ̸= 0, an ellipticity is
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observed. In Figure 4.1, we plot the last three equations as functions of δ for the case θ = 0

(pure birefringence), for N = 4×105 and α = 10−5. The transmitted intensity is centered at

δ =−α/2, the other two curves, which refer to the other polarisation, at δ = α/2. It should

be noted that the amplitudes of the ellipticity and rotation signals, which are normalised to

unity in the figure, are in reality a factor k(α) = 0.2 smaller than the maximum.

Note in passing that the same mixing of ellipticity and rotation appears also in a non

birefringent cavity if the cavity is not locked on top of the resonance curve. In fact, in this

case (α = 0) the equations (4.4) and (4.5) become

Iell
2 (φ ,δ )≃ I0

[
η2 +η

2Nψ −N2θ sinδ

1+N2 sin2(δ/2)
sin2φ

]
(4.7)

and

Irot
2 (φ ,δ )≃ I0

[
η2 +η

2Nθ +N2ψ sinδ

1+N2 sin2(δ/2)
sin2φ

]
. (4.8)

In all these cases, measuring the ellipticity and rotation signals is not enough to determine the

birefringence and the dichroism of the medium under study. In fact, to this end, information

about the degree of mixing of the two quantities is needed.

When the laser is locked on top of the resonance curve at δ =−α/2, by using the factor

k(α) defined by Eq. (4.2), Equation (4.4) for an ellipticity measurement becomes

I ell
2 (φ) = I1

[
η2 +ηk(α)(2Nψ +N2θα) sin2φ

]
, (4.9)

while for a rotation measurement, Equation (4.5) reads

I rot
2 (φ) = I1

[
η2 +ηk(α)(2Nθ −N2ψα) sin2φ

]
. (4.10)

With respect to equations (2.20) and (2.21), in which the birefringence of the mirrors is not

taken into account, the expected signals of ellipticity and rotation are attenuated by the factor

k(α). Moreover, a cross talk between the two measurement channels appears. In fact, even

with θ = 0, a rotation −kN2αψ is observed: the ratio R0 of the “spurious” rotation over the

“true” ellipticity is

R0 =−N

2
α. (4.11)

Since N/2 is the number of passes of the light beam through the equivalent wave-plate, R0 is

precisely the total phase difference experienced by the light beam. The measurement of the

ratio between the rotation and the ellipticity signals provides thus a direct measurement of α .

The case of pure dichroism (ψ = 0) is entirely analogous: an ellipticity kN2αθ appears.
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4.1.2 Measurement of the birefringence of the mirrors

In this section we discuss the experimental work done to minimise the phase difference of the

equivalent wave-plate ∆α = α1−α2 by aligning the slow axis of one mirror with the fast axis

of the other. This configuration ensures that the peak of the I ell
2 (φ) approaches the peak of I1

as much as possible; in this case the value of α = α1 +α2, of the formulas (4.4) and (4.5)

is given by ∆α = |α2|− |α1|. In general, the phase difference of the equivalent wave-plate

depends on the angular orientation of one mirror with respect to the other [92]. Let us

suppose that one mirror is placed with its axis of birefringence at an azimuthal angle φWP

with respect to the other. The composition of the two birefringent wave plates is equivalent

to a single wave-plate [92] with a phase difference αEQ given by

αEQ =
√
(α1 −α2)2 +4α1α2 cos2 φWP (4.12)

and placed at the angle φEQ with respect to the slow axis of the first mirror, where

cos2φEQ =
α1/α2 + cos2φWP√

(α1/α2 −1)2 +4(α1/α2)cos2 φWP

. (4.13)

The equivalent wave plate could be neutralised if α1 were equal to α2 and φWP = 90◦. In this

case, the resonance curves of the two polarisation auto-states would appear superimposed

on a plot like that of Figure 4.1. If α1 ̸= α2, the effect of the equivalent wave plate can

only be minimised but never extinguished. In the previous section, we always supposed

that the laser polarisation was aligned to the axes of the equivalent wave-plate. If this is

not the case, a large ellipticity is observed in the polarisation of the extinguished beam, at

the frequency νm of the ellipticity modulator (PEM) without affecting the signal at 2νm. In

Chapter 3 we have shown that the Fourier component at νm is maintained at zero by rotating

the polariser. This procedure means that the input polarisation is aligned to the sum of all the

static birefringences existing in the polarimeter in the path from the polariser to the analyser,

an amount that does not coincide exactly with the birefringence of the cavity. Nevertheless,

we assume alignment to occur in a first approximation, namely that the laser polarisation is

aligned with the axis of the equivalent wave plate of the mirrors.

In order to study the equivalent wave-plate of the cavity, we have performed the measure-

ment of the ellipticity and of the rotation generated by the Cotton-Mouton effect in a gas as a

function of the relative azimuthal position of the two mirrors. In this experimental condition

there is no dichroism (θ = 0). In the measurements, the magnets rotated at νB = 4 Hz;

this corresponds to a negligible correction factor due to the cavity first order filtering [see
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Figure 4.2: Rotation-to-ellipticity signals ratio plotted as a function of the azimuthal angle

φWP of the input mirror for a Cotton-Mouton effect of 230 µbar of Ar gas. The fit line

corresponds to NαEQ/2 phase difference of the amplified equivalent wave-plate of the

mirrors given by Equation (4.12).

Eq. (2.7)]:

hT ≡ ET(ν)

E0
=

T√
1+R2 −2Rcosδ

= 0.97 (4.14)

for the signals at ν = 8 Hz. In each measurement, the laser polarisation direction has been

adjusted to minimise the ellipticity at frequency νm in the extinguished beam. In Figure

4.2, we show the ratio R0 plotted as a function of the azimuthal angle φWP of the first

mirror (the second mirror was never moved). Each rotation step, of about 15◦, has been

followed by cavity realignment through the adjustment of the two tilt stages of the mirror,

by optimisation and measurement of the extinction ratio, and by a measurement of the

finesse. The experimental points are fitted with Equation (4.11), where α is given by αEQ of

Equation (4.12). The best fit produces values for the quantities Nα1/2, Nα2/2, and for the

angular position of the maxima with respect to the initial angular position of the input mirror

(φWP = 0). With N/2 ≈ 2.2×105, the phase differences of the two mirrors are calculated to

be

α1,2 = (2.4±0.1) µrad and α2,1 = (1.9±0.1) µrad (4.15)

but it is not possible to associate α1 and α2 unequivocally to M1 or M2 with this single

measurement. According to the relative angular position of the two mirrors, the value of

αEQ can be found between 0.6 µrad and 4.3 µrad, which is equivalent to saying that the

Airy curve of the ellipticity resonance is 5 Hz to 31 Hz away from the resonance of the

input polarisation. Correspondingly, the k(α) parameter can be found between ≈ 1 and
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≈ 0.5. By substituting one of the mirrors with a third one, it is likely that the new one would

exhibit a different value of phase shift, thus allowing to tag each of the three mirrors with a

unique value. Moreover, having at one’s disposal a number of mirrors, and by repeating the

procedure, one could select the pair of mirrors giving the smallest minimum value of ∆α .
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Figure 4.3: Polariser angle as a function of the azimuthal angle φWP of the mirror in a

Cotton-Mouton measurement of 230 µbar of Ar. Data are fitted with φEQ as given by

Eq. (4.13).

As said before, for each rotation step of the entrance mirror M1, the best extinction ratio

is obtained by rotating the polariser. This condition ensures the alignment of the polarisation

with the axis of the equivalent wave-plate. Figure 4.3 shows the azimuthal angle φEQ of

the polariser for which the best extinction ratio is obtained, as a function of the mirror

rotation angle φWP. These points are fitted with Equation (4.13). The best fit gives a value

of α1/α2 = 0.62± 0.08, allowing the assignment of the phase delay of each mirror. This

value is slightly different from the one obtained by the fit in Figure 4.2, but is compatible

within the fit uncertainties. However, the zero references of φWP in the two fits appear to be

different by about 10◦, well beyond the fit uncertainty. This can be interpreted as evidence

of the contribution of other birefringent elements (mirror substrates and PEM) between the

two crossed polarisers. The apparent discrepancy of the two measurements is due to their

different character: the positioning of the polariser in the measurement of the extinction ratio

is made following the indications of the νm signal in the Fourier transform of the extinguished

beam, which is the DC component of the demodulated intensity, whereas the measurement

of the CM effect is performed at twice the rotation frequency νB of the magnet.

A unique feature of our apparatus is the possibility to modify the set point of the electronic

feedback which locks the frequency of the laser to the resonance frequency of the cavity. This
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Figure 4.4: From left to right: ellipticity, transmitted intensity, and rotation, measured in the

Cotton-Mouton effect of 230 µbar of Ar gas, plotted as functions of the set point of the laser

locking feedback circuit. The continuous lines are the fits obtained with formulas (4.9), (4.6),

and (4.10). For a comparison with the theory, see Fig. 4.1.

allows for polarimetric measurements with arbitrary values of δ , opening the possibility for

testing experimentally the mathematics presented in Section 4.1.1. In these measurements,

the azimuthal coordinate of the first mirror are kept fixed and δ is changed. Figure 4.4 shows

the experimental data that correspond to the model of Figure 4.1. The solid lines are the

fits obtained with the formulas (4.6), (4.9), and (4.10). In the three fits, a common value

has been used for the resonance width. The ellipticity and rotation data are forced to have

the same resonance frequency. From the fits, one determines the scale factor between the

feedback set point and the phase δ . The distance between the two Airy curves correspond to

a phase delay of the two orthogonal polarisations, α = 1.5 µrad (with negative sign). This

corresponds to a difference in the resonance frequencies of the two orthogonal polarisation

of about ∆ν = 11 Hz.

4.2 Systematic effects: frequency response of a birefrin-

gent Fabry-Perot cavity

As we will see, the wide-band noise decreases with a certain power law as a function of the

frequency. As a consequence, and in principle, the higher the working frequency, namely

the rotation frequency of the magnets, the better the signal to noise ratio (SRN) of the

measurement (see section 4.4). One has to note, however, that the Fabry-Perot cavity is a
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whose amplitude is obtained by multiplying the parent amplitude by iψ0 sin2φ , where

ψ0 = π
∆nL

λ

is the maximum ellipticity per passage through the magnetic field and φ(t) = ωBt +φ0 is the

angle between the input electric field and the magnetic field. Grouping the passages in the

first cavity two by two one obtains the following scheme for the relation between the two

orthogonal inner fields:

E0
1 = E0t1 =⇒ E0

2 = E0t1iψ0 sin2φ

E1
1 ≈ E0t1(r1r2) =⇒ E1

2 = E0t1(r1r2) i2ψ0 sin2φ

E2
1 ≈ E0t1(r1r2)

2 =⇒ E2
2 = E0t1(r1r2)

2 i2ψ0 sin2φ

. . . . . .

Ek
1 ≈ E0t1(r1r2)

k =⇒ Ek
2 = E0t1(r1r2)

k i2ψ0 sin2φ (4.17)

The above relations are all written at the same time t. In fact, as already said, the reflection

pattern in the first cavity is not time dependent, but stationary. We want now to calculate

the electric field at the exit of the cavity with orthogonal polarisation at time t. This is done

taking into account all the multiple reflections of the radiation generated by the magnetic

birefringence in the second cavity during a time interval τ at time t: at each reflection a

fraction t2 filters out of the cavity. In doing this, however, since the radiation in this second

cavity is not stationary but time dependent, one has to pay attention to synchronising all the

output. This is done by taking, at each reflection, the radiation generated at a previous time:

E0
2 = E0t1 iψ0 sin2φ =⇒ E

0 j
out,2 = E0t1t2

∞

∑
j=0

(
r1r2eiα

) j
iψ0 sin2φ j

E1
2 = E0t1 (r1r2) i2ψ0 sin2φ =⇒ E

1 j
out,2 = E0t1t2 (r1r2)

∞

∑
j=0

(
r1r2eiα

) j
i2ψ0 sin2φ j

E1
2 = E0t1 (r1r2)

2 i2ψ0 sin2φ =⇒ E
2 j
out,2 = E0t1t2 (r1r2)

2
∞

∑
j=0

(
r1r2eiα

) j
i2ψ0 sin2φ j

. . . . . .

E1
2 = E0t1 (r1r2)

k i2ψ0 sin2φ =⇒ E
k j
out,2 = E0t1t2 (r1r2)

k
∞

∑
j=0

(
r1r2eiα

) j
i2ψ0 sin2φ j

(4.18)

where φ j is φ − jωBτ and α is the phase due to the birefringence of the mirrors acquired by

the light in a round trip in the cavity with orthogonal polarisation. Taking into account all the
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transmitted components in the E2 cavity, the transmitted electric field is:

Eout,2 = E0t1t2

∞

∑
j=0

[
iψ0 sin2φ j

(
r1r2eiα

) j
]
+

+E0t1t2

∞

∑
k=1

(r1r2)
k

∞

∑
j=0

[
i2ψ0 sin2φ j

(
r1r2eiα

) j
]
. (4.19)

The first term in this equation, differing from the other terms for lacking a factor two, is

simply the first line of the Equations (4.18) and corresponds to the radiation generated in the

single first passage in the primary cavity. In the following we will use an approximation of

the radiation coming out of the second cavity written as:

Eout,2 ≈ E0t1t2

∞

∑
k=0

(r1r2)
k

∞

∑
j=0

[
i2ψ0 sin2φ j

(
r1r2eiα

) j
]
. (4.20)

We obtain the final expression for the transmitted electric field as:

Eout,2 = E0
ψ0t1t2

1− r1r2

[
e2iφ

1− r1r2ei(α−2ωBτ)
+

e−2iφ

1− r1r2ei(α+2ωBτ)

]
. (4.21)

The Jones matrix for the transmitted electric field is:

Eout =

(
Eout,1

Eout,2

)

with Eout,1 given by Eq. (4.16). Following the optical scheme of Chapter 2 we introduce the

ellipticity modulator H, the analyser prism A, and the quarter wave plate Q, inserted before

the ellipticity modulator for rotation measurements:

H =

(
1 iη

iη 1

)
, A =

(
0 0

0 1

)
, Q =

1√
2

(
(1+ i) 0

0 (1− i)

)

where η = η0 cosωmt. We treat now separately the cases of the ellipticity and rotation

measurements.

Ellipticity measurements

The orthogonal electric field after the analyser A is:

Eell
2 = (A ·H ·Eout)2 = iηEout,1 +Eout,2. (4.22)
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The intensity Iell
2 associated to Eell

2 is demodulated at the frequency of the ellipticity modulator

νm. We consider only the term linear in the product η0ψ0. With r1r2 = R and t1t2 = T , one

has

Iell
2νB

≈ 4I0η0ψ0 sin2φ
1+R2 (1+ cos2α + cos4ωBτ)−R

(
R2 +3

)
cosα cos2ωBτ

[1+R2 −2Rcos(α −2ωBτ)] [1+R2 −2Rcos(α +2ωBτ)]
+

+ 4I0η0ψ0 cos2φ
R2 sin4ωBτ −

(
R3 +R

)
cosα sin2ωBτ

[1+R2 −2Rcos(α −2ωBτ)] [1+R2 −2Rcos(α +2ωBτ)]
.

(4.23)

Substituting 2ωB with a generic signal angular frequency 2πν , the phase of the ellipticity

signal is

Φell = tan−1

[
R2 sin2δν −

(
R3 +R

)
cosα sinδν

1+R2 (1+ cos2α + cos2δν)−R(R2 +3)cosα cosδν

]
(4.24)

where δν = 2πντ . The amplitude of the ellipticity signal is:

|Aell|= I0

√
8ψ2

0 [2−4Rcosα cosδν +R2(1+ cos2α)]

[1+R2 −2Rcos(α −δν)] [1+R2 −2Rcos(α +δν)]
. (4.25)

Rotation measurements

To detect rotations, a quarter wave plate is inserted before the ellipticity modulator, thus

transforming rotations into ellipticities. The orthogonal electric field after the analyser is:

Erot
2 = (A ·H ·Q ·Eout)2 =

1+ i√
2

ηEout,1 +
1− i√

2
Eout,2. (4.26)

The linear term in the demodulated intensity is then

Irot
2νB

≈ 4I0η0ψ0 sin2φ

[
Rsinα

[(
1+R2

)
cos2ωBτ −2Rcosα

]

[1+R2 −2Rcos(α −2ωBτ)] [1+R2 −2Rcos(α +2ωBτ)]

]

+ 4I0η0ψ0 cos2φ

[
Rsinα(1+R)sin2ωBτ

[1+R2 −2Rcos(α −2ωBτ)] [1+R2 −2Rcos(α +ωBτ)]

]
.

(4.27)

The phase of the rotation signal is

Φrot = tan−1

[ (
1−R2

)
sinδν

(1+R2)cosδν −2Rcosα

]
(4.28)
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and the amplitude of the rotation signal is:

|Arot|= I0

√
16ψ2

0 R2 sin2 α

[1+R2 −2Rcos(α −δν)] [1+R2 −2Rcos(α +δν)]
. (4.29)
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Figure 4.7: Left: Calculated frequency response of the amplitude of the ellipticity (continuous

curves) and of the rotation (dashed curves) generated by magnetic birefringence in gas in the

PVLAS polarimeter, for F = 662×103. The frequency scale is expressed in units of the

cavity line-width νc; the vertical scale is normalised to the low-frequency amplitude of the

R0 = 0 filter [Eq. (4.30)]. The ellipticity curves are drawn for the values of the low-frequency

ratio of rotation to ellipticity [Eq. (4.11)] R0 = 0 (black), 0.5 (blue), 1.0 (brown) and 1.5

(red); the rotation curves have R0 = 0.5, 1.0 and 1.5. Right: Calculated frequency response

of the phase of the ellipticity (continuous curves) and of the rotation (dashed curves), drawn

for the values of R0 = 0, 0.5, 1.0 and 1.5. The curves have been arbitrarily chosen to start at

zero phase and have negative trend.

In Figure 4.7 the amplitude and phase of the equations (4.24), (4.25), (4.29) and (4.28)

for several values of the parameter R0 of Eq. (4.11) are shown.

In the limit α → 0, the phase and amplitude of the ellipticity become:

lim
α→0

Φell = tan−1

[
Rsinδν

1−Rcosδν

]
≡ ΦI(ν)

lim
α→0

Aell ∼
√

1

1+R2 −2Rcosδν
≡ HI(ν). (4.30)

Phase and amplitude of the ellipticity have thus the same frequency dependence as the

transmitted electric field derived in Chapter 2: the ellipicity is subject to a first order filter.

On the contrary, the rotation amplitude disappears for α = 0 (no rotation is generated in

a non birefringent cavity). Nevertheless, in the same limit, the phase of the rotation Φrot

reduces to the phase of a second order filter. We remind that the frequency response of a
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second order filter is

HII = H2
I and ΦII = 2ΦI. (4.31)

In the limit ν → 0 the static case of the previous section is found:

lim
δν→0

Φell = 0 (4.32)

lim
δν→0

|Aell| = 4I0η0ψ0
1−Rcosα

1−2Rcosα +R2
≈ 2I0k(α)Nψ0 (4.33)

where the last passage holds for small α . For the rotation signal we have:

lim
δν→0

Φrot = 0

lim
δν→0

|Arot| = 4I0η0ψ0
Rsinα

1−2Rcosα +R2
≈ I0k(α)N2ψ0α. (4.34)
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Figure 4.8: Left: ratio of rotation and ellipticity in a dynamic FP. The frequency is expressed

in units of the cavity line-width νc = νfsr/F for F = 660× 103 and a value of α = 2×
10−6 rad. Right: phase difference between the signals of rotation and ellipticity.

Also the ratio R0 of rotation and ellipticity [see Eq. (4.11)] is now a function of frequency:

|Arot|
|Aell| =

√
2R2 sin2 α

2+R2 cos2α +R2 −4Rcosα cosδν
. (4.35)

A plot of the frequency dependence of R0 is shown in Fig. 4.8 for the cavity of the PVLAS

experiment. The static value holds only up to ∼ 5 Hz (νB = 2.5 Hz). At higher frequency the

ratio is filtered as a first order filter.

This mathematics was developed for the case of a pure birefringence, but equally well

applies to the case of a pure dichroism. The formulas are easily obtained from the ones
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already shown with the substitution of ψ0 with θ0 and of the exchange of the superscripts

“ell” and “rot”:

|Arot|= I0

√
8θ 2

0 [2−4Rcosα cosδν +R2(1+ cos2α)]

[1+R2 −2Rcos(α −δν)] [1+R2 −2Rcos(α +δν)]
, (4.36)

Φrot = tan−1

[
R2 sin2δν −

(
R3 +R

)
cosα sinδν

1+R2 (1+ cos2α + cos2δν)−R(R2 +3)cosα cosδν

]
, (4.37)

|Aell|= I0

√
16θ 2

0 R2 sin2 α

[1+R2 −2Rcos(α −δν)] [1+R2 −2Rcos(α +δν)]
, (4.38)

Φell = tan−1

[ (
1−R2

)
sinδν

(1+R2)cosδν −2Rcosα

]
. (4.39)

4.2.2 Polarisation dynamics: experiment

We have confirmed the frequency dependences presented above with two different mea-

surements. The first one is the Cotton-Mouton effect in 880 µbar of Ar gas, measured as

a function of frequency between νB = 0.5 Hz and νB = 23 Hz with a measurement every

0.5 Hz. Each ellipticity and rotation point has been integrated for a time of 256 s. For this

measurement, a single magnet was employed. The phase of the magnet was measured with

respect to a trigger signal generated by a contrast sensor in correspondence of the passage of

a mark drawn on the external surface of the rotating magnet. The response time of the sensor

is < 50 µs; this leads to a maximum phase uncertainty < 0.8◦ at 2νB = 46 Hz.

As we are not aware of the existence of any magnetic dichroism in the optical range, we

have used a solenoid coil to place a magnetic field on the reflecting surface of one of the

cavity mirrors, thus generating a Faraday effect (FE) [93]. Since in this second experiment the

vacuum vessel is kept in vacuum, no gas birefringence is generated and the above formulas

apply. The effect appears at the first harmonic of the oscillating magnetic field and is linear

in the magnitude of the magnetic field. In Fig. 4.9 a scheme of this measurement is shown;

the two permanent magnets are not represented. The coil roughly aims at the center of

the mirror, thus generating an alternating magnetic field on its surface, with a significant

component orthogonal to the surface of the mirror. Precise values of the magnitude and of

the orientation of the magnetic field at the position where the light beam impinges on the

mirror are unknown, but on the other hand unnecessary. The position and the orientation of

the coil has been chosen so as to maximise the observed effect.
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Figure 4.10: Left: Scheme of the solenoid used in the tests, LF = 112 mm, ρ1 = 47 mm and

ρ2 = 60 mm. The coil has Nt = 408 turns. Right: magnetic field on the axis of the solenoid

traversed by a current I = 1 A. Red dots represent the experimental points.

0 to 50 Hz with 400 frequency bins and a sweep time of 8 s. For the rotation signal, the

integration time was ≈ 2 hours, which corresponds to an integration time of 18 s per bin.

The ellipticity signal, which was approximately three times smaller, was integrated for a total

time of ≈ 5.5 hours, corresponding to an integration time of 50 s per bin.
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Figure 4.11: Phase of the signal from the lock-in amplifier SRS830 demodulating at νm =
50 kHz the extinguished intensity, measured as a function of the frequency. The lock-in had

a time constant of 30 µs and a sensitivity of 50 mV.

A small correction (see Fig. 4.11) has been subtracted from the measured phase of both

the Cotton-Mouton effect and the Faraday effect, due to the frequency response of the lock-in

amplifier used to demodulate the signal from the diode PDE collecting the extinguished

intensity. This frequency response as been obtained by demodulating an amplitude modulated

signal at ν = 50 kHz. The frequency response of the current amplifier Femto DLPCA-200

that follows the diode PDE was instead neglected. In fact, given its nominal 200 kHz
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bandwidth, one expects that, in a 100 Hz band around 50 kHz, the amplitude should be

constant and the phase should change by less than 0.1◦ (first order filter).
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Figure 4.12: Decay of the intensity I1 transmitted by the Fabry-Perot cavity after having

switched off the system that locks the frequency of the laser to the cavity. The experimental

curve is fitted with an exponential function Ae−t/τI +C with τI = 2.32 ms, corresponding to

a finesse F = 662×103.

During the Cotton-Mouton and the Faraday measurements, the finesse of the cavity has

been measured by observing the decay of the intensity I1 recorded by photodiode PDT. No

difference was found between the measurements taken with and without gas in the cavity.

A typical datum is shown in Fig. 4.12, fitted with an exponential function. From the fit we

obtain the decay time τI and the corresponding finesse F as

τI = (2.32±0.02) ms and F = (662±6)×103.

Cotton-Mouton measurements

The data of the frequency response of the CME are presented in Fig. 4.13. A constant

phase, measuring the zero-frequency relative position of the signals and the trigger, has been

subtracted from the phase data, so as to have both curves starting at zero phase. The data are

fitted simultaneously with the four functions given in Eqs. (4.24), (4.25), (4.29) and (4.28),

and the values of the reflectance R (and hence the finesse F of the mirrors) and the phase

difference α of their equivalent wave-plate have been obtained:

F = (640±4)×103 and α = (1.78±0.01) µrad.
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Figure 4.13: Measured frequency response of the CME of 880 µbar of Ar gas, as a function

of the frequency. Top: amplitude of the ellipticity (upper curve) and the rotation (lower

curve) signals. Bottom: phase of the ellipticity (upper curve) and the rotation (lower curve)

signals. The amplitude and phase data are simultaneously fitted with Eqs. (4.24), (4.25),

(4.29) and (4.28). The values of the finesse F and the phase difference α are obtained as

F = 640×103 and α = 1.78 µrad.

with a normalised χ2
o.d.f. = 181/174. The value of the finesse is 4% smaller than the one

obtained recording the decay of the intensity (see Fig. 4.12). The uncertainties used in the

fit are the piecewise standard deviations of the residuals obtained by fitting the four curves

separately. In a first tentative of a global fit, the residuals of the phase data exhibited a marked

linear behaviour of a few degrees over the whole frequency interval. This behaviour can be

attributed to the fact that, during the measurements, the polarisation direction of the light

entering the Fabry-Perot cavity is varied by small quantities to compensate for the slow drift

of the static birefringence of the cavity. We have then added two linear functions to the two

phase fit functions. The values of the slopes obtained through the fit are (0.1◦±0.01◦) Hz−1

for the phase of the ellipticity, and (0.05◦±0.01◦) Hz−1 for the phase of the rotation. Note
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that the duration of the ellipticity and rotation measurements were, respectively, eight hours

and four hours, leading to an identical drift of 160 µdeg/s in the two measurements. This

strongly supports the suggested interpretation. It is worth noting that the value of α is

small enough that fitting simultaneously the four data sets with the expressions of the first

and second order filters (4.30) and (4.31) still produces a reasonable fit, with a similar χ2

probability, but at the expenses of an unreasonable 20% reduction of the value of F and of

completely incompatible drifts of the ellipticity and rotation phases.

Faraday effect measurements
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Figure 4.14: Top panel: relative amplitude of the rotation signal (upper curve) and of the

ellipticity signal (lower curve) measured as a function of frequency for the Faraday effect on

the reflecting surface of a mirror of the FP cavity. Bottom panel: phases of the rotation signal

(upper curve) and of the ellipticity signal (lower curve). The continuous lines are the global

fit obtained with Eqs. (4.36), (4.37), (4.38) and (4.39).

The data of the frequency response of the Faraday effect are shown in Fig. 4.14. A

constant phase, measuring the zero-frequency relative position of the signals and the trigger,
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has been subtracted from the phase data, so as to have both curves starting at zero phase. The

data are fitted simultaneously with the four fit functions (4.36), (4.24), (4.38) and (4.39). The

fit gives a unique value for the mirror reflectance R and the phase delay α:

F = (691±0.08)×103 and α = (1.87±0.02) µrad

with a normalised χ2
o.d.f. = 1472/1434. The value obtained for the finesse is about 4% larger

than the value obtained from the analysis of the decay of the transmitted intensity (see

Fig. 4.12). The value of α is 5% larger than the one found in the Cotton-Mouton experiment.

This small difference could be accounted for by the fact that the two data sets were taken

in different days and that we know that α is subject to small drifts. As in the case of the

Cotton-Mouton measurement, the uncertainties used in the fit are the piecewise standard

deviations of the residuals obtained by fitting the four curves separately. Differently from

the Cotton-Mouton case, no linear addition to the phase fit function was necessary. This is

consistent with the interpretation of the feature observed in the Cotton-Mouton effect: in

fact, in the case of the Faraday measurements, the phase is electronically defined. By fitting

the four curves with the expressions of the first and second order filters (4.30) and (4.31)

we obtained F = 594×103, with a χ2 probability of 5×10−3, justifying the necessity of

introducing the parameter α .

4.3 Spurious signals

This section concerns the spurious ellipticity signals at several harmonics of the rotation

frequency of the magnets that were plaguing the PVLAS experiment during the first period

after installation and that showed up already after a few thousands seconds of integration.

Spurious signals in ellipticity and rotation have been observed in all the past experimental

PVLAS setups since the Legnaro one, with similar characteristics of apparent randomness as

in the present apparatus. Their sources were not identified. We have explored several possible

phenomena from which spurious signals could originate, dealing with one hypothesis at a

time. As mentioned before, one of the main strengths of the experiment is the possibility

of obtaining the Fourier transform of very long data runs; disturbances not exactly at 2νB,

for example due to a beat, are likely to show up in a nearby but different bin. Nevertheless,

mechanical disturbances have broad frequency responses, thus bypassing the exceptional

resolution. In the following we discuss some of the possible causes of spurious peaks, and

describe the tests done, the successes and the questions still open.
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Figure 4.15: Left: Fourier transform of the ellipticity in vacuum, integrated for a time of

4080 s. The magnets rotate at frequencies νBα = 3.5 Hz and νBβ = 4 Hz. Several harmonics

of the rotating magnets are observed. Right: Polar plot showing the components 2νBα and

2νBβ .

4.3.1 Spurious signals: residual gases

In the presence of a rotating magnetic field, residual gases generate in the Fourier ellipticity

spectrum a signal at the second harmonic of the rotation frequency with a well defined

amplitude and phase. Indeed we use the CME to calibrate the apparatus by introducing a

controlled amount of a pure gas in the vacuum vessel. The amplitude and phase of the CM

signal can be predicted by knowing the partial pressures of the residual gas composition. By

monitoring the residual pressure, one can be sure to be in a situation in which the CM signal

from the residual gas species is much smaller than the signal expected from the magnetic

birefringence of vacuum. In the current condition, no observed signal could be attributed to

an effect of the residual gas.

As already said before (see the calibration section in Chap. 3), a general method to

identify a signal in the PVLAS apparatus as due to a true magnetic birefringence effect is

to compare the signals obtained by running the two magnets at two different frequencies:

true birefringence signals should have, after correction for the dynamical response of the

Fabry-Perot, the same amplitude and phase; moreover, each phase should coincide with the

“zero frequency” phase determined in the CM calibration measurements with gases.

Figure 4.15 shows a typical spectrum featuring spurious signals. The rotation frequencies

of the two magnets were νBα = 3.5 Hz and νBβ = 4 Hz and peaks appeared at several

harmonic frequencies. The amplitudes and phases at the second harmonics of the two

magnets are different from each other and the phases do not correspond to signals observed
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in the CM calibration with gases. These spurious signals cannot be attributed to the residual

gas in the vacuum system.

4.3.2 Aliases and ground loops

As a second point, we checked that the observed signals were real and not generated by

ground loops in the electric circuits or by aliases in the acquisition boards. The rotation

frequency of the magnets enters explicitly in the electronic chain only through the signals

from the two magnetometers that pick-up the stray field of the magnets and that we use to

track the phase of the rotation. As these instruments are not essential, the polarimeter was

run without them, essentially with no modification in the spurious peaks.

The coincidence of the observed signals in the spectra recorded by independent systems

such as the signal analysers and the acquisition board, excludes the possibility that they might

be due to some sort of alias generated inside the acquisition boards. Since we plan to acquire

data for long times with the two magnets running at different frequencies, the acquisition

system has a limited number of optimal configurations, but it enjoys of maximum flexibility

in the case of short tests. None of the different configurations employed has ever had effect

on spurious peaks.

Finally, an extensive series of test has been performed modifying the ground connection

of several instruments, in particular of the circuit which locks the laser frequency to the

resonance frequency of the cavity. In fact, if the spurious signal would enter this device and

modulate the laser frequency, this would be equivalent to a modulation of the phase δ of

the FP cavity. Modulation of δ generates ellipticity and rotation signals, most likely with

all the harmonics. This tests brought us to modify a few of the ground connections of the

electronics. However, a complete separation of the various sections of the electronics has

never been necessary.

4.3.3 Stray fields and pick-ups

Another possible origin for spurious signals could be the stray field of the rotating magnets.

The magnetic stray field is ≲ 1 G along the magnet axis at a distance ≈ 40 cm outside

the magnet extremity, which is about the distance of the magnets from the mirrors. The

oscillating stray fields could also act on some piece of optics, thus modulating directly the

light, or could be picked-up by one or more electric circuits. From there, the signal could

end up in the ellipticity signal directly, or via ground loops, or by means of some other

mechanism. Notice, however, that harmful spurious signals which may be confused with
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an ellipticity signal are only at the second harmonic of the frequency of oscillation of the

magnetic field.

Figure 4.16: Left: Fourier Transform of the magnetic field at the position of the laser.

The rotation frequencies of the two magnets, 4 Hz and 5 Hz, are visible together with the

oscillation frequency of the current in the Faraday coil at 13 Hz. Note that the stray fields

of the rotating magnets also have second and third harmonics. A small non linearity of the

magnetic field sensor causes a slight mixing. Right: Corresponding ellipticity spectrum in

vacuum showing only the spurious signal at 2νBβ .

In a first series of tests we tried to identify possible targets of the stray field. To this end

the coil of Fig. 4.10 was employed to place a magnetic field on the various components of

the experiment. The coil was positioned in proximity of a piece of optics (first suspect the

laser itself) or of an electronic instrument, and peaks at the frequencies νF and 2νF were

searched for in the ellipticity spectrum. The integration time of the spectra was such that the

integrated noise value at 2νF was less than the observed height of the spurious peak under

study. In Fig. 4.16 we show the result of one of the tests performed. In this case, the laser

was investigated. The left graph is the Fourier spectrum of the magnetic field at the position

of the laser. In the spectrum, the rotating frequencies of the two magnets νBα = 4 Hz and

νBβ = 5 Hz can be seen together with the oscillation frequency of the current in the solenoid

νF = 13 Hz. Note that the stray fields of the rotating magnets also have second and third

harmonics. A small non linearity of the magnetic field sensor causes a slight mixing.The

Faraday coil was positioned right by the laser. The sensor head of the magnetometer was

aligned in the horizontal direction transverse with respect to the light path; quite similar

spectra have been recorded for the other two directions of the sensor. The corresponding

ellipticity spectrum shows a single peak at 10 Hz = 2νBβ , allowing to exclude a direct

sensitivity of the laser to magnetic fields.

The search has given a negative result for all the elements investigated except when the

solenoid aimed at the mirrors of the cavity. This, however, is nothing new for the PVLAS

set-up, since in the ellipticity spectra we have always observed small rotation and ellipticity

signals at the frequency νB (see Fig. 4.17). We explain them as due to a Faraday effect on the
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Figure 4.17: Ellipticity and rotation spectra showing peaks at νBα = 5 Hz and at νBβ = 4 Hz.

Integration time T ≈ 9×105 s.

dielectric layers of the mirrors producing a rotation that the birefringent cavity transforms

into ellipticity. To generate a Faraday effect inside the dielectric layers of the mirrors, the

stray field must have a small longitudinal component. Moreover, since the magnetic field is

rotating with the magnet, one needs that the rotation axis does not coincide with the beam.

However, it is not difficult to imagine that all these conditions are met; one can also suppose

that the magnetic field inside the mirror vacuum chambers might be somewhat distorted. Let

us try an order of magnitude estimation for the observed rotation. The rotation signal should

have an amplitude

θ = N Bθ0

where N is the amplification factor of the Fabry-Perot. The Verdet constants of the materials

composing the dielectric layers of the mirrors was measured by Iacopini et al. in 1983 [93];

they found a value for the induced rotation per reflection of θ0 = 0.37×10−9 nrad/G. The

estimated longitudinal component of the stray magnetic field at the position of the mirror is of

the order of 2×10−4 G. This results in a calculated rotation of θ = 3×10−8 rad. This value

is in good agreement with the measured rotation shown in Fig. 4.17. Remember rotations are

transformed into ellipticities with a conversion factor R0 ≈ 0.3.

4.3.4 Mechanical coupling and spurious signals

Mechanical noise from the rotating magnets

As another possible source of noise and spurious signals, we have investigated the mechanical

vibrations transmitted by the rotating magnets to the optical components through the ground

and the seismic isolation of the optical bench. The PVLAS experiment was designed with the
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Figure 4.18: Vertical component of the acceleration on the floor and on the optical bench.

Harmonics of the rotating magnet (4 Hz) are also present on the optical bench.

structure supporting the magnets separated from the optical bench, but both systems stand

on the same concrete ground plate. The vibrations excited by a small unbalancing of the

magnets are transmitted to the ground plate and filtered by the pneumatic air springs of the

optical bench. This mechanism may play a significant role in the generation of the spurious

peaks, in particular now that the rotation frequency of the magnets is being increased. In

Fig. 4.18 we show the vertical component of the acceleration of the optical bench and of

the ground, measured with the magnets rotating at 4 Hz. The magnets had been balanced

in 2013, and I tried to improve the balancing, with the same method described in Chap. 3.

The results were quite ambiguous: in the measured acceleration of the bench, the amplitude

of the first harmonic of the magnet rotation decreased below the noise, while the second

harmonic seemed not to be affected by the procedure.
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Figure 4.19: First harmonic of the horizontal component of the acceleration of the structure

measured as a function of the rotation frequency of one of the magnets after balancing the

magnets at 4 Hz.
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We observed also the resonances of the structures supporting the magnets. In Fig. 4.19,

we show the horizontal acceleration measured on one of the two structures as a function of

the frequency of rotation of the magnets. It is evident that, as a general trend, the acceleration

increases with frequency. As we will see in the next chapter, the measurements of the vacuum

birefringence have been taken initially with the rotation frequency of the magnets ranging

from 3 Hz to 5 Hz, and only in 2016 the frequency νB has been increased to 8 Hz to exploit

the relative minimum of the noise around 16 Hz.
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Figure 4.20: Position of the support structure of the magnets with respect to the optical bench

as a function of time. The support structure is slowly drifting.

Quite recently, as a last attempt to reduce the mechanical noise associated with the rotation

of the magnets, we have devised to lift the structures supporting the magnets on anti-vibration

feet. This should reduce the vibrations transmitted to the ground. We have identified the

FAEBI® Rubber Air Springs by Bilz as possible candidates. To do this operation, we had

first to surmount a general problem concerning the mechanical stability of the structures: the

centre of mass of each support structure is too high compared to the width of the structure to

guarantee stability on the FAEBI springs. The solution we found to this problem has been to

connect the two structures with two girders placed down near the floor. We obtained a single

1.6 ton structure which fullfills the stability requirements, and the structure has been lifted

on four pneumatic feet. The new mechanical system is presently under study; preliminary

measurements seem to indicate that the acceleration measured on the bench at the frequency

of rotation of the magnets are significantly reduced, but not at 2νB. Another problem is the

long stabilisation time that required by the pneumatic feet, causing drifts in the position of

the structure (see Fig. 4.20). Air pressure should be controlled by a feedback.
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Figure 4.21: Ellipticity as a function of the acceleration of the optical bench due to the mass

oscillation at 11 Hz and to the magnet rotation at νB = 4 Hz. Points on the two linear curves

are the 11 Hz components due to the parallel (top) and perpendicular (bottom) oscillation of

the mass. The isolated point is the 8 Hz component.

Acceleration of the optical bench

Here we investigate the connection between the acceleration of the optical bench and the

spurious ellipticity signals. For this study, we have placed a mass of 10 kg on a linear

translator mounted horizontally on the optical bench. By substituting the fine thread screw

with a piezoelectric ceramics, the mass could be put in oscillation at a chosen frequency

in the directions parallel or orthogonal with respect to the light propagation in the FP

cavity. While the mass was oscillating, we measured the acceleration of the optical bench

in the direction of the oscillation and the spurious ellipticity signals at the frequency of

oscillation. The observed ellipticity signals are linear in the acceleration, with a linearity

coefficient (3.6± 0.3)× 10−3 s2/m for the direction perpendicular to the light path, and

(17.6±0.4)×10−3 s2/m for the parallel direction as shown in Fig. 4.21. From the figure one

can see that the 8 Hz spurious signal associated with the rotation of the magnet is at least

one order of magnitude too intense to fit in the linear relations, suggesting the existence of a

different mechanism of coupling between the rotation of the magnets and the ellipticity.

The oscillation of the 10 kg mass generates a modulation at the same frequency also in

the correction signal of the feedback system locking the laser frequency to the cavity. This

modulation indicates that there is a phase modulation of the electric field reflected by the

cavity with respect to the incident beam. From equation (4.4), one can see that a modulation

of the phase δ , with the laser locked to the cavity, is a direct modulation of the ellipticity.
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Figure 4.22: Correlations between the ellipticity and the correction signal. Integration time

was 1600 s for the ellipticity and 160 s for the correction signal. Top graph: the experimental

points are the amplitudes of the first four harmonics of the mass oscillation frequency (11 Hz).

The numbers above each data point indicate the corresponding harmonic. The straight line

is the best fit with slope 1.24× 10−4/V. Bottom graph: the experimental points are the

amplitudes of the harmonics of the rotation frequency of the magnet (4 Hz). Note that the

eleventh harmonic indicated by the red circle is common to the two graphs.

In Fig. 4.22 we show the correlation of the ellipticity and the correction signal of the

feedback system locking the laser to the cavity. The measurement is taken while the mass

oscillates at 11 Hz along the cavity direction and both magnets rotate at 4 Hz. The top panel

plots the amplitude of the harmonics of the mass oscillation; the bottom panel plots the

amplitude of the harmonics of the magnets rotation. While the correlation of the first graph

is clear, the correlation shown in the second graph is fuzzy, again indicating that the two

noise sources, the oscillating mass and the rotating magnets, have different mechanisms of

coupling with the ellipticity.
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o-rings with external diameter equal to the internal diameter of the tube and chord thickness

∼ 1 mm. The sequence of the positions of the o-rings inside the tube was such that the

internal surface of the glass tube could not be seen from any position inside a round spot in

the centre of the mirror (see Fig. 4.23). The first o-ring is placed just at the end of the tube

near the mirror; the second o-ring intercepts the light that grazes the edge of the first o-ring

coming from the periphery of the blind spot; the position of the third o-ring is further away,

chosen with the same criterion, and so on. The improvement obtained can be appreciated

already by looking through the tube with the naked eye (see figure 4.24). The diameter of

the blind spot grows with the number of baffles, in principle allowing to screen the whole

surface of the mirror; however, as the edges of the o-rings themselves are reflective in grazing

incidence, we never used more than 20 o-rings per tube, with blind spot dimensions of the

order of twice the waist of the laser light on the mirrors.
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Figure 4.25: Left: ellipticity spectrum before the insertion of the o-rings inside the tubes;

signals are observed at harmonics of the magnet rotation frequency νB = 5 Hz. Right:

ellipticity spectrum after installation of the baffles.

The effect of the installation of the o-rings was a sudden reduction of the spurious signals.

The spectra reported in Fig. 4.25 prove this beyond any doubt: the signal at 2νB disappears,

being reduced by a factor at least 10. We note that the peak at νB, which is due to a Faraday

effect on the mirrors, is reduced but does not disappear, unlike the other harmonics. The

remedy we found to the problem of the spurious signals was quite effective, indicating that

the spurious signals are actually generated by a modulation of the diffused light (amplitude

or phase). The nature of this modulation is still unclear. In the next section we will show that

the movement of the tube induces ellipticity signals, thus suggesting that the movement of

the tube might modulate the diffused light.

4.3.6 Magnetic forces on the tube

Fig. 4.26 shows that the acceleration of the tube is correlated to the measured ellipticity. The

acceleration is measured with a three-axes accelerometer fastened at the outer (namely, near
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Figure 4.26: Correlation of measured ellipticity and tube acceleration. The spectra are

obtained forcing the movement of the tube with a piezo at νpiezo = 7.5 Hz. In the acceler-

ation spectrum three harmonics were observed. The three points shown correspond to the

harmonics at 7.5, 15.0 and 22.5 Hz.

the mirror) end of the tube. In the data presented here, a piezoelectric crystal is used to induce

an oscillation of the (glass) tube in the horizontal direction with a nominal amplitude of

1 µm. The piezoelectric crystal applies a force between the optical bench and the tube (also

supported by the optical bench); given the difference of masses, the results are interpreted

here in terms of the movement of the tube (not the bench) with respect to the magnets (we

point this out because we have seen that the oscillations of the bench play a role in generating

spurious signals). We conclude that the movement of the tube generates spurious ellipticity

signals.

Figure 4.27 shows one component of the acceleration of the tube compared to the position

of the tube relative to the rotating magnet, recorded for a time of a few days during which the

pneumatic positioning systems of the optical bench (top graph) or of the support structure

of the magnets (bottom graph) were misbehaving. For the acceleration in the two plots, the

amplitude of the second harmonic of the rotating magnet integrated for a time of 1024 s is

reported. The two graphs bear the clear evidence of a correlation between acceleration and

relative position of the tube with respect to the magnet.

The data presented in Fig. 4.28 refer to the same situation as the bottom graph of Fig. 4.27:

the structure supporting the magnets had been lifted on new pneumatic support feet which

were settling down after installation and were therefore drifting. The direction of drift was

mainly in the vertical direction, with a displacement of 0.9 mm, but also in the transverse

direction (∼ 0.35 mm). In the figure the two components of the acceleration signal at 2νB

are shown on a polar plot. They both describe in the polar plane straight lines that do not

intercept the origin.
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Figure 4.28: Polar plot of the tube acceleration at twice the frequency νB. The two accel-

eration components in a plane perpendicular to the tube are shown separately. During this

measurement, lasted a few days, the relative position of magnet and tube was drifting in a

straight line about 1 mm long.

ideal, the net force on the tube would be zero. The magnet, however, is made of several

layers of magnetic materials, which produce the somewhat irregular field map reported in

Fig. 3.9; moreover, the position of the tube coincides only approximately with the axis of

the magnet. The asymmetry of the magnetic field with respect to the tube position results

in a net transverse force on the tube. This force rotates with the magnet; since the force

field described by Eq. (4.41) has rotational symmetry of order two, the principal Fourier

component of the force appears at 2νB as is experimentally observed.

In a first attempt to solve this problem, we tried to compensate for the diamagnetism of

the glass by lining the tube with a paramagnetic material [95]. The operation proved to be too

difficult, and we were led, as a tentative solution, to a fine positioning of the tube inside the

magnet. To this end, I have designed and realised a fine xy positioning system for the two ends

of each tube (see Fig. 4.29). On the inner side of the tubes, the position is defined by two 100-

threads-per-inch screws. On the outer ends, NanoPZTM piezoelectric actuators by Newport

with minimum step-size of 30 nm are employed. Accelerations are measured with three-axes

accelerometers fastened at the outer extremity of each tube. For each accelerometer, the

signals of the two transverse axes are sent to two lock-in amplifiers referenced to the signal of

the magnetometer. The lock-in amplifiers demodulate the acceleration at the second harmonic

of the reference frequency; a long integration time of hundreds of seconds is employed to

extract the average value of the acceleration at 2νB.
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magnets and at same time to the ground and the optical bench. As a matter of fact, at high

frequency, the noise is still too high to allow for a measurement free from systematics. This

topic has to be tackled in the near future.

4.4 Wide band noise

In this section we discuss the wide band noise of the experiment, or better the noise which

is not in phase with the rotating magnets. The mechanism that produces wide band noise

is still not completely understood. As seen in Chapter 2, the estimated intrinsic ellipticity

wide band noise at frequencies around 10-20 Hz, considering the budget of all known noise

contributions, is 8× 10−9 1/
√

Hz. On the contrary, the measured ellipticity noise during

data acquisition is 4×10−7 1/
√

Hz @ 12 Hz and depends on frequency. The experimental

evidence is about a factor ≈ 50 worse than the expected sensitivity.

10
-11

10
-10

10
-9

10
-8

In
te

g
ra

te
d
 e

lli
p
ti
c
it
y
 n

o
is

e

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100
2 3 4 5

Time integration T [2048*bin s]

Expected signal from QED with one magnet

Fit function a*/T^b:
a =1.09e-08 ±  1e-11
b =0.501 ±  1e-4
Integation time T=2048*bin s

Figure 4.30: Integrated ellipticity noise as a function of integration time T at 10 Hz with one

magnet in rotation at 5 Hz. The time separation between two consecutive points in the graph

is 2048 s. The fit shows a decrease of the integrated noise as 1/
√

T . The signal in ellipticity

expected from the vacuum magnetic birefringence with one magnet in rotation is also shown.

One important feature of the PVLAS apparatus is the capability of integrating data for

long periods with duty cycle almost 100%. The integrated noise in the PVLAS polarimeter

decreases as function of time precisely as 1/
√

T as can be seen in figure Fig. 4.30, as expected

for uncorrelated noise. As will be reported in Chapter 5, the total integration time of the

PVLAS apparatus is a few millions of seconds and it is not thinkable to integrate 100 times

longer to improve the present noise floor by another factor 10. Experience gained during

these three years of PhD activity have shown that a reasonable integration time of about

T = 106 s is a maximum, in practical terms, because longer integration times would make

systematic studies and checks too time consuming.
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introduced extra light in all the other vacuum chambers, again without any variation of the

sensitivity. We conclude that the excess wide band noise present in the apparatus is not due

to scattered light in the chambers.

What cannot be investigated directly is the diffused light having a direction very close to

the propagation of the laser beam. To try to verify this contribution we made the following

assumption: the diffused light exiting the cavity should diverge much more rapidly than

the Gaussian laser beam exiting from the cavity. If this is true, we sought for changes

in sensitivity moving the photodiodes away from the cavity. No change in the ellipticity

sensitivity was observed.

Another way to seek for the same effect is to study the shape of the beam at the photodiode

PDE in different conditions. One would expect that the presence of diffused light would

change the beam profile at maximum extinction with respect to the beam profile slightly

out of extinction. We therefore analysed the beam shape, along one direction, at different

intensities of the extinguished beam. Firstly we examined the beam shape at maximum

extinction without the PEM in the light path. Then we inserted the PEM and used it at various

modulation depths to add controlled amounts of light to the extinction condition; from this

study a reference beam profile was measured. The data without and with PEM were acquired

keeping the polariser and analyser at maximum extinction.
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Figure 4.34: Intensity profiles of the extinguished beam scanned in the horizontal direction.

Left: reference profile with the PEM turned on. Right in red: beam profile with the PEM out

of the light path. Extinction ratio was σ2 = 5×10−8. Right in black: difference between the

extinction profile and the reference profile, having taken into account the relative amplitudes

and having subtracted the background values.

Figure 4.34 shows the two profiles taken by translating sideways a plano convex lens with

a focal length f = 100 mm focusing the beam on the sensitive surface of the photodiode PDE.

The lens was moved in the horizontal direction in steps of 5 µm. The measured extinction

of the beam was σ2 = 5×10−8 and the corresponding profile is shown in red in the right

panel of Figure 4.34. In the left panel of the same figure the profile of the beam with the
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PEM turned on is reported; this is the reference profile. The curve shown in black in the

right panel of Figure 4.34 is the difference of the two profiles, the one with the PEM on and

the one obtained with the PEM off. To make the difference, the two amplitudes have been

normalised after having subtracted the backgrounds. As can be seen, there is no significant

deformation of the beam profile as would be expected from the hypothesis of diffused light

travelling along with the Gaussian beam.

4.4.2 Ambient noise

Previous experiments showed a clear evidence that seismic insulation reduced the noise

in ellipticity [79]. They concluded that a seismic isolation system supporting the optical

bench was necessary to reduce noise and for stable laser locking. One could suppose that the

residual mechanical noise present on the optical bench might be the source of the observed

ellipticity noise. In fact, the mirrors have of a birefringence pattern and each surface point

corresponds to a different phase delay [89]. Mechanical noise moves the mirror and therefore

the beam spot scans different points on the surface of the mirror, possibly inducing a phase

modulation in a wide frequency range. As already said in a previous section, one of the

tests for the spurious peaks implied putting the whole optical bench in oscillation at various

frequencies. In that experiment, a linear relation was found between the oscillation amplitude

of the bench and the ellipticity. The same linear relation applied to the observed mechanical

noise measured by an accelerometer mounted on the optical bench would imply a level of

ellipticity noise much lower than the one observed. In fact, the observed acceleration noise

density measured on the optical table is about 5×10−7g/
√

Hz, corresponding to an ellipticity

noise 8×10−8/
√

Hz or lower (see Fig. 4.21). We conclude that mechanical vibrations of the

bench cannot account for the observed sensitivity of the polarimeter. What remains to be

explored is the acoustic noise and the ventilation in the clean room. The air flow generates

turbulences which affect the propagation of the laser. We performed a study of the influence

of ambient noise on light intensity noise and on the noise in ellipticity.

A comparison of the amplitude noise of the incident beam with the air flow on and off was

performed. We measured the relative intensity noise (RIN) of the beam in two points: 0.5 m

from the laser and after a further distance of about 2 m. In Figure 4.35 the intensity noise of

the laser beam in the two positions with the air flow on and off are shown. Let us consider the

two spectra with the air flow off (black graphs in the two panels). They have different slopes

at low frequencies up to about 50 Hz; the worse RIN is found in the light that has travelled a

longer distance. The data with the air flow on are plotted in red in the two graphs; the second

graph presents structured noise in the frequency ranges {(95-99), (114-133), (168-172)} Hz.

We have identified this noise as due to resonances of various optical mounts excited by the
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Figure 4.35: Comparison of the relative intensity noise (RIN) of the laser with air conditioning

on and off. Left: measurements taken 0.5 m from the laser head. Right: measurements taken

at a distance of 2.5 m from the laser head.

air flow. The same structures can be seen in ellipticity measurements, but they are outside

the frequency region of interest.
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Figure 4.36: Ellipticity sensitivity with air flow on (black points) and off (red points). Each

point in the two graphs is the average over the 32 bins in a 1 Hz frequency interval. Integration

time for the two graphs is T = 4.1×103 s and T = 5.6×103 s, respectively.

In Figure 4.36 we show two measurements of the sensitivity in ellipticity as a function of

frequency with the air flow off and on. As can be seen, differently from the case of RIN, the

air flow has little or no influence on the sensitivity in ellipticity. This indicates that intensity

noise is not a limiting noise source. The dominant ellipticity noise seems to be of a different

nature. To complete this series of test, we have also performed measurements with all the

other sources of acoustic and vibrational noise, such as the turbo and scroll vacuum pumps,

switched off. Again, the sensitivity did not change.
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Furthermore, the electronics used to lock the laser to the cavity has been completely

redesigned implementing OpAmps with lower noise and, more importantly, lower offset

drifts. None of the above operations resulted in an improvement in ellipticity sensitivity.

4.4.3 The role of the finesse

The design of the PVLAS experiment was fundamentally based on the following considera-

tions:

1. With a Fabry-Perot cavity, the total acquired ellipticity is Ψ = Nψ , where ψ is the

ellipticity acquired for a single pass in the birefringent medium. With
∫

B2 dL≈ 10 T2m

and a finesse F = 7×105 this gives Ψ = 5×10−11. In order to reach a unitary signal

to noise ratio in an integration time T = 106 s, a sensitivity of 5 ·10−8 1√
Hz

is needed.

2. In principle, at a modulation η0 = 0.01, near shot-noise sensitivity of 6 · 10−9 1√
Hz

should be possible. Since shot noise is always very difficult to achieve, the PVLAS

apparatus was designed with a contingency factor about ten.
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Figure 4.37: Ellipticity sensitivity measured as a function of the frequency in the optical

scheme of the PVLAS experiment but without the FP cavity. At lower frequency, the noise is

dominated by the pointing stability of the laser. Instead, in the frequency region from 6 up to

25 Hz the sensitivity is flat and reaches the expected value from the known noise budget.

As can be seen in Figure Fig. 4.37, in the case of a polarimeter without a Fabry-Perot

cavity, the ellipticity sensitivity is indeed limited by the expected noise budget above about

7 Hz. It is clear that the measured sensitivity from 6 to 25 Hz has a flat distribution over

the frequency range and is compatible with the theoretical known noise value discussed in

section 2.2.3. At lower frequencies the sensitivity is worsened due to the pointing instability
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of the laser beam. What we observe is that the introduction of the very high finesse Fabry-

Perot cavity changes the wide band noise distribution as a function of the frequency in an

unexpected way. The fundamental role of the Fabry-Perot cavity is the amplification of the

signal to noise ratio by the number of the passages N. This is the case for relatively low

finesses, but it might be possible that for very high finesses the signal to noise ratio reaches a

plateau, if both the noise and the signal increase together. We have not yet systematically

studied the noise introduced by the cavity as a function of the finesse of the cavity. Such a

study should allow to choose the optimal cavity finesse for the experiment.

4.4.4 Ellipticity modulation

In this section we discuss the ellipticity modulator PEM as a source of ellipticity noise. A

theoretical plot of the noise contribution as a function of the modulation η0 is shown in

Chapter 2, Fig. 2.5. In that figure, the total intrinsic noise density has a minimum at η0 ≈ 10−2.

Since the noise is a function of the modulation amplitude, a series of measurements of the

ellipticity sensitivity was performed to study the discrepancy between the measured data and

the calculated sensitivity.

We made a series of measurements of the sensitivity in ellipticity at frequencies ranging

from 2 to 25 Hz, as a function of the amplitude modulation η0. Each of the first four panels of

Figure 4.38 presents the data relative to a 6 Hz frequency interval. In the first frequency range

from 2 to 7 Hz, the noise is almost independent from the modulation amplitude and is far

from the calculated noise of the polarimeter. Passing on to the higher frequency regions, the

noise distribution as a function of the modulation amplitude changes. In the interval from 8 to

13 Hz the sensitivity is slightly better and at small modulation amplitudes of η0 ≈ 3.8×10−5

the measured noise densities seem to have the same slope as the calculated one but with a

slightly higher value. At higher frequencies, the ellipticity noise becomes almost frequency

independent, whereas, as a function of η0, it flattens off earlier than the calculated curve. The

measured minimum is reached at values of η0 ≈ 10−3 in contrast to the minimum reached at

about η0 ≈ 10−2 for the calculated curve.

The 24 sensitivity curves are fitted using the function of Eq. (2.24) to which a constant,

uncorrelated, frequency-dependent noise Aν is added:

S′tot(ν) =
√

S2
tot +A2

ν .

Free parameters are NRIN(νm) [see Eq. (2.23)], which is common for all the curves, and Aν .

A value NRIN = (1.6±0.3)×10−5 1√
Hz

is obtained. An example of the fits is shown for the
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Figure 4.38: First four panels: measured ellipticity noise density (red dots) compared to

the theoretical intrinsic noise density Stot (dashed line) of Eq. (2.24), plotted as a function

of the modulation amplitude η0. Each of the panels presents measurements at six different

frequencies, up to 25 Hz, in steps of 1 Hz. The twenty-four data sets are fitted with the

theoretical noise of Eq. (2.24) plus a frequency dependent uncorrelated noise Aν , with NRIN

left as a free parameter common to all the curves. In the fifth panel, the fit of the 25 Hz points

is shown. The sixth and last panel shows the 24 values of Aν .

25 Hz case in the fifth panel of Figure 4.38, for which A25 Hz = (1.99±0.05)×10−7 1√
Hz

.

The values of Aν are plotted as a function of frequency in the sixth panel of the same figure.

The value obtained for the RIN from the fit is about a factor 50 greater than the value

measured at 50 kHz: NRIN(50 kHz) ≈ 3× 10−7 1√
Hz

. It seems as if there exists another

contribution to the sensitivity that is proportional to the modulation η0: Sψ = kη0 with

k ≈ (1.6±0.3)×10−5 1√
Hz

. This hypothetical contribution, though, remains unexplained.

4.4.5 Cavity frequency difference for the two polarisation states

An important property of the PVLAS locking scheme is the possibility to scan the laser

frequency in a small interval around the resonance. In our case, the FWHM of the resonance
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Figure 4.39: Schematics of the reflected intensity as function of the frequency. The quantities

α and β are respectively the fractions of the intensity not locked and locked to the cavity.

is about 65 Hz, with the possibility of adjusting the laser away from the resonance of about

±5 Hz; we term this shift as an “offset”. Due to the birefringence of the cavity mirrors [59],

we observe that modulating the laser frequency around the resonance, there is an induced

ellipticity proportional to the amplitude of the modulation. We modulated the offset with

the laser locked to the cavity. We used this modulation to determine the slope coefficient
∂VE

∂ (∆ν) = Dν of the error signal near resonance [see Eq. (2.38)]. The quantity Dν is the

discriminator as discussed in Chapter 2 [Sec 2.3]. A direct measurement of the coefficient

Dν by observing the error signal at the Monitor output of the locking circuit while scanning

the frequency of the input light is extremely difficult due to the narrowness of the resonance.

For its determination we recall the expression of the light intensity reflected from the cavity

[Eq. (2.16)]

HR ≡ IR(δ )

I0
=

R
[
1−2(1−A)cosδ +(1−A)2

]

1−2Rcosδ +R2
.

When the laser is locked to the cavity (δ = 2mπ) the reflected intensity is

IR(δ ) = I0

(
A

1−R

)2

.

In practice, the reflected intensity is slightly higher due to imperfect mode matching [44].

From last equation, the quantities α and β defined in Figure 4.39 are obtained as α =

A2/(1−R)2 and β = T (T +2A)/(1−R)2 since α +β = 1. For the voltage signal from the

reflection photodiode for small values of δ , the following relation can be written starting

from HR(δ ):
VR(δ )

Vref

≈ β
δ 2

(1−R)2
+α (4.42)
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where VR(δ ) is the intensity reflected by the cavity near resonance and Vref is the reference

signal when the laser is unlocked. Modulating the offset is equivalent to modulating δ

δ =
4πd∆ν

c
=

4πd

c

(∆V +V0)

Dν

where ∆ν is the amplitude of the frequency modulation, ∆V the voltage modulation sent to

the locking system and V0 is a DC voltage shift from the top of resonance. The introduction of

of the parameter V0 is necessary to allow for the laser to be locked slightly off the resonance

due to some small electronic offset. The signal sent to the feedback system is a sinusoidal

signal expressed as ∆V = Acos(ωofft), where A is the amplitude of the modulation signal and

ωoff is its angular frequency. By substituting the expressions of δ and ∆V into equation (4.42)

one has two frequency components: one at ωoff and the other at 2ωoff.

VR(δ )

Vref

≈ α +2β

(
F

Dννfsr

)2 (
A2 +2V 2

0 +4AV0 cosωofft +A2 cos2ωofft
)

(4.43)

The measured parameters are A, α , β , F and νfsr, whereas the unknown ones are Dν and V0.

The coefficient Dν can be extracted from the amplitude of the component at 2ωoff whereas

the value of V0 is obtained from the amplitude of the component at ωoff.

The following parameters correspond to our Fabry-Perot cavity: νfsr = 45.4 MHz, F =

6.7×105, β = 0.61±0.01. We set an amplitude modulation A = 9.9 mV measured at the

output of the monitor channel of the feedback circuit shown in Figure 3.23, corresponding to

the same point in the feedback loop where Dν needs to be measured. In this situation the

amplitude of the reflected voltage signal at VR(δ )|2ωoff
was 54 µV. One finds for Dν

1

Dν
=

√
VR(δ )

Vref

∣∣∣∣
2ωoff

ν2
fsr

2βA2F 2
= 190 Hz/V.

The offset modulation corresponds to a frequency modulation ∆ν = A/Dν = 1.9 Hz.

From this value we can determine two interesting quantities: the approximate frequency

noise of the laser with respect to the cavity and the ellipticity induced noise due to the

frequency noise. The relative frequency noise of the laser with respect to the cavity can

be obtained by measuring the voltage noise spectrum at the monitor output of the locking

circuit with the laser unlocked. This represents the limit in the relative frequency noise

between the laser and the cavity, that can be reached if, as in our case, the locking circuit

has a sufficiently high gain. The voltage noise is transferred to the laser as frequency noise

with a coefficient Dν . The resulting noise at the monitor output with the laser unlocked is
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∆Vunlock = 3.5 µV/
√

Hz and has a flat spectrum, resulting in a relative laser-cavity frequency

noise of Sν = 6.6×10−4 Hz/
√

Hz.

With the modulation active, peaks are present at ωoff and 2ωoff in both the ellipticity

spectrum and in the reflected signal spectrum. The peaks at ωoff depend on V0. To cancel the

effect of V0 we set the static offset of the locking circuit so that in the reflected signal there is

no signal at ωoff, indicating that the laser is locked at the top of the resonance. The residual

ellipticity peak at ωoff was ψ = 2.0×10−4. Since the induced ellipticity is proportional to

the offset amplitude modulation, we determined a coefficient:

∂ψ

∂ (∆ν)
=

2.0×10−4

1.9 Hz
≈ 1×10−4 1

Hz
(4.44)

To evaluate if this effect can justify the measured ellipticity sensitivity one can estimate

its contribution as

Sfeedback =
∂ψ

∂ (∆ν)

∆Vunlock

Dν
= 6.6×10−8 1/

√
Hz

This value cannot account for the measured noise at least up to 25 Hz, as can be seen in Figure

4.38 bottom right, thereby excluding the locking system as the wide band noise source.

We now take into consideration the normal functioning of the interferemeter without

modulations. The ellipticity noise at 10 Hz Sψ = 5×10−7 1/
√

Hz can also be interpreted as

a noise in the frequency difference between the two orthogonal polarisations. One cannot

compute this noise using the conversion factor obtained above with equation (4.44) because

what was determined there is the phase difference between the two polarisation states due

to the simultaneous scanning of the two resonances. In this case we are interested in, the

laser is locked to the resonance of one polarisation while the orthogonal resonance frequency

is shifting back and forth due to the mirrors birefringence noise while being slightly off

resonance due to the static component of the birefringence of the mirrors. The phase

difference between the two polarisation states is

tanφ =
(1+R)sin α

2

(1−R)cos α
2

≈ α

1−R
=

2π

1−R

∆ν

νfsr

= πN
∆ν

νfsr

(4.45)

Given that tanφ ≈ φ and that Sψ = Sφ/2 one finds a relative frequency noise between the

two polarisation states

S∆ν =
2Sψνfsr

πN
= 3.2×10−5 Hz√

Hz
(4.46)
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This frequency noise corresponds to a noise in optical path difference S∆ℓ of

S∆ℓ = d
S∆ν

νlaser

=
Sψλ

πN
= 3.8×10−19 m√

Hz
(4.47)

One can estimate the relative frequency noise of Eq (4.46) as due to a variation of the cavity

length. A fluctuation S∆ν of the relative frequency shift between the two polarisation states is

related to a fluctuation of the inverse of the cavity length as

S∆ν = νlaser ∆ℓ ∆

(
1

d

)
= νlaser ∆ℓ

∆d

d2
= ∆ν

∆d

d
.

From this one obtains

∆d = d
S∆ν

∆ν
= 6.6

µm√
Hz

(4.48)

The cavity length stability is far better than this value, excluding this effect too as a source of

wide band noise: again, the vibrational noise of the mirrors of the cavity cannot account for

the observed ellipticity noise.

4.4.6 Final discussion on wide band noise
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Figure 4.40: Birefringence noise densities measured in polarimeters set up to measure the

magnetic vacuum birefringence plotted as a function of their working frequency. Data from

the experiments BFRT [35], PVLAS-LNL [76, 77], PVLAS-2013 [78], PVLAS-FE [59] are

normalised to the length of the optical cavities, to the number of passes and to the wavelength.

The leftmost point has been measured during the 2015 data taking campaign of the PVLAS

experiment. The two almost equivalent points from BFRT were measured with two different

cavities, one having 34 passes and the other 578 passes. The error bars are an estimated 50%.
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At present we have no explanation for the origin of the wide band noise which is limiting

the sensitivity of the PVLAS experiment. It is interesting to note, though, that by plotting the

sensitivity in birefringence S∆n as a function of the working frequency for PVLAS and for

other past efforts to measure vacuum magnetic birefringence, one finds the plot shown in

Figure 4.40. As can be seen, the sensitivities seem to follow on a power law. The experiments

are very different in size, in the number of passes through the magnetic field region (Fabry-

Perot and multi-pass cavities) ranging from 34 to 4.5×105, type of modulator and the use of

homodyne versus heterodyne detection.

One point seems to be clear: the noise is due to the presence of the cavity. One common

aspect to all the experiments is the use of dielectric interferential mirrors for the cavity. It

is known that these are birefringent but their stability in birefringence is not known. The

excess noise seems to be a real ellipticity generated in the cavity proportional to the number

of passes. It is a noise which is multiplied in the same way as the signal induced by the

magnetic field.
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Figure 4.41: Ellipticity sensitivity measured as a function of frequency at two different values

of the circulating power in the Fabry-Perot cavity. Integration time is T = 7×103 s for the

2.6 kW spectrum and T = 2.6×103 s for the 27.9 kW spectrum.

We believe that the source of this noise is thermal but the thermal noise we are thinking of

is not due to the presence of the power inside the cavity because the sensitivity at frequencies

above about 5 Hz is unaffected by changing the input power by a factor 10. This is shown in

Figure 4.41. The two sensitivity curves correspond to circulating powers of 27.9 kW and

2.6 kW. With the higher power, instabilities in the static birefringence are seen but at very

slow frequencies. We are thinking instead of an intrinsic thermal noise generating stress

in the coating which fluctuates and generates birefringence noise through the stress-optic
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coefficient. One way to verify such a hypothesis is to cool the mirrors to see whether the

sensitivity improves or not.





Chapter 5

Measurements of the optical properties

of vacuum

5.1 Data analysis procedure

In this section we present the polarimetric vacuum measurements performed in the attempt

to test its optical magnetic properties. Every year, after an optimisation of the apparatus,

we dedicated time to performing long measurements. For the purpose of this presentation I

divide the data into three groups, corresponding to the three solar years: I have labeled them

Run2014, Run2015, Run2016. For each run presented in this thesis the alignment of the FP

cavity and the rotation of the mirrors was optimised. Each run has thus a different value of

the parameter α describing the mixing of ellipticity and rotation. The runs are subdivided

into blocks, each block being characterised by the rotation frequency of the magnets and

hence the sampling frequency of the signals; each block has a different sensitivity S∆n.

The procedure of the data analysis of each block was the same for all the runs and took

the following steps:

• A verification that there are no lost data points. This is performed by verifying that the

sampled magnetic stray field has a regular sinusoidal oscillation without phase jumps,

in particular before and after data taking interruptions, e.g. laser unlocks, magnets

unlock from the trigger, saturation of signals voltage or other anomalies occurring

during the run. After data selection, we calculate the ellipticity according to equation

2.5. The amplitude ψ2νB
and the phase φ2νB

corresponding to the bin at the frequency

2νB are obtained by a discrete Fourier transform (DFT) of the ellipticity data array

(this is done because the FFT needs a number of point that are a power of 2). The noise

frequency amplitude spectrum is obtained by a Fast Fourier Transform (FFT) of the
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ellipticity data. All the transformed values are divided for the k(α) coefficient [see

Eqs. (4.9) and (4.10)].

• The ellipticity noise amplitude around 2νB, σ2νB
, is extracted by making a histogram

of 10 000 bins centred at 2νB of the FFT. The ellipticity histogram follows a Rayleigh

distribution P(ρ) = (ρ/σ2)e
− ρ2

2σ2 , in which the parameter σ represents the standard

deviation of two identical independent Gaussian distributions for the two variables x

and y and ρ =
√

x2 + y2. In our case, x and y represent the projections of the ellipticity

value at 2νB along the physical and the non-physical axes as determined from a Cotton-

Mouton calibration. The average of P(ρ) is related to σ by ⟨P⟩= σ
√

π/2 allowing a

determination of σ2νB
around 2νB for each data block. This value is used in the next

step as the uncertainty for the ellipticity value at 2νB.

• The unprojected values of ∆n and σ∆n are determined for each block as:

(∆n±σ∆n) =
λ

πNL
(ψ2νB

±σ2νB
) .

The birefringence ∆n is then projected onto the physical as well as the non-physical

axes.

• The mixing of ellipticities and rotations due to the cavity birefringence permits also

to derive, from the ellipticity data, the rotation of the electric field and vice-versa.

From the birefringence noise measurements we can thus determine also a value for the

dichroism ∆κ .

• Finally we determine the weighted average of the values of ∆n and ∆κ for the various

blocks to get a value of ∆n and ∆κ for the Run. In doing this one is assuming a linear

dependence of the ellipticity and the rotation with the length of the field region. As

we will see, when putting limits on ALPs with different magnet lengths, this is not the

case.

To correctly determine the phase and amplitude calibration of an ellipticity signal, we

performed calibration measurements for each configuration of magnet length and rotation

frequency by using the Cotton-Mouton effect (CME) in gases. The actual phase of the

ellipticity directly depends on the angle θ0 of the polariser and on the angular position of the

magnets at the starting time of a measurement. These parameters do not necessarily always

have the same values but may be adjusted from block to block. Furthermore, electronic

components (lock-ins, filters, etc.) introduce a phase which depends on the signal frequency.

Therefore, for a correct phase calibration, the Cotton-Mouton signal is used, defining what we
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call the physical axis of the measurements; we expect that the signal of the vacuum magnetic

birefringence comes with the same phase as that of the corresponding Cotton-Mouton signal

of the noble gases [62]. The CME measurements provide two more fundamental parameters,

namely the amplitude of an ellipticity signal and the value of the mixing parameter α . To

determine this last parameter one has to measure also the rotation spectrum and to analyse the

data taking into account the frequency dependence of the signals as discussed in Sect. 4.2.1.

The values obtained for the amplitude are compared with theoretical calculations as well as

with the experimental data in the literature [62]. In this way we calibrate the apparatus in

amplitude and phase. Signals in quadrature to the physical phase are considered spurious

and, if present, indicate a problem. The Cotton-Mouton measurements at various pressures

of the gas employed permit also to check the linear response of the polarimeter.

5.2 Run 2014

5.2.1 Characteristics of the 2014 run

In this run, Viton o-rings were installed inside the glass tubes. The analog locking circuit

was still the first generation version and when the laser unlocked from the cavity resonance,

locking had to be performed manually. The power of the light at the output of the cavity was

I0 = 70 mW corresponding to a power stored inside the FP cavity of IFP ≈ 30 kW. The runs

consisted of three data blocks:

1) acquisition trigger 96 Hz and frequency of both magnets να = νβ = 3 Hz, sampling

rate 32 samples/turn and acquisition time T = 370000 s;

2) acquisition trigger 80 Hz and frequency of both magnets να = νβ = 2.5 Hz, sampling

rate 32 samples/turn and the acquisition time T = 240000 s;

3) acquisition trigger 96 Hz and frequencies of the magnets να = 2.4 Hz and νβ = 3 Hz,

sampling rate for magnet α was 40 samples/turn and for magnet β was 32 samples/turn.

The acquisition time was T = 287000 s.

The ellipticity modulation amplitude of the PEM was η0 = 6× 10−3 and the finesse was

F = 670000.

Of the Cotton-Mouton calibrations performed, we report here only the one at να = νβ =

3 Hz. We filled the vacuum chamber with 0.98 mbar of Helium gas with a purity of 1 ppm. In

Figure 5.1 two spectra are shown: on the left the ellipticity and on the right the rotation, for

an integration time T = 640 s. The signal at 2νB is present in both the rotation and ellipticity



168 CHAPTER 5. MEASUREMENTS OF THE OPTICAL PROPERTIES OF VACUUM

10
-9

10
-8

10
-7

10
-6

10
-5

E
lli

p
ti
c
it
y

2520151050

Frequency [Hz]

10
-9

10
-8

10
-7

10
-6

10
-5

R
o

ta
ti
o

n

2520151050

Frequency [Hz]

Figure 5.1: Cotton-Mouton effect measurements for 0.98 mbar of He gas: Fourier spectra of

the extinguished intensity demodulated at the modulator frequency νm. The two magnets

were rotating at να = νβ = 3 Hz. Left panel: ellipticity measurement. Right panel: rotation

measurement (λ/4 plate inserted). Integration time T = 640 s for both spectra.

spectra. From the ratio of the amplitudes of the two peaks [see Equations (4.9) and (4.10)]

one finds a value α = 4.5 µrad, corresponding to an attenuation factor k(α) = 0.50. This

value is used to extract the real ellipticity generated in the cavity. The corresponding unitary

birefringence of Helium at room temperature is:

∆n (He)
u = (2.2±0.1)×10−16 T−2 atm−1.

This value agrees well with the experimental values present in the literature.

5.2.2 2014 vacuum magneto-optical measurements

Figure 5.2: Vacuum ellipticity data with integration time T = 370000 s. Left: the amplitude

of the Fourier transform of the ellipticity in a window centered at twice the frequency of

the rotating magnets να = νβ = 3 Hz. Right: histogram of the data points of the left panel

fitted with a Rayleigh distribution. The vertical arrow indicates the value of the bin at 6 Hz;

the strips at the bottom of the plot correspond to the 68.3%, 95.5%, and 99.7% integrated

probabilities.
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Block να , νβ (Hz) Quantity In-phase Quadrature Noise floor σ Smeas
2νB

(
1/
√

Hz
)

k(α)

1 3.0, 3.0 ∆n +1.8×10−21 −0.05×10−21 1.8×10−21 1.0×10−18 0.50

2 2.5, 2.5 ∆n −0.63×10−21 −2.0×10−21 2.0×10−21 1.3×10−18 0.50

3 2.4, 3.0 ∆n −2.3×10−21 8.8×10−21 3.4×10−21 2.5×10−18 0.50

1 3.0, 3.0 ∆κ ′ +1.8×10−21 1.8×10−21 1.0×10−18

2 2.5, 2.5 ∆κ ′ −0.63×10−21 2.0×10−21 1.3×10−18

3 2.4, 3.0 ∆κ ′ −2.3×10−21 3.4×10−21 2.5×10−18

Table 5.1: 2014 measured values of the magnetic birefringence and the magnetic dichroism

of vacuum for B = 2.5 T corrected for the factor k(α). The primed quantities are obtained

through the use of Equations (4.9) and (4.10). The parameter σ represents the ellipticity

standard deviation of the integrated noise along the physical axis obtained by fitting the

Rayleigh distributions for each block. The Smeas
2νB

is the sensitivity of each data block.

In Figure 5.2 the ellipticity spectrum measured under vacuum conditions (with residual

pressure p ≲ 10−7 mbar) is shown with both magnets rotating at the same frequency να =

νβ = 3 Hz (first block of 2014). The integration time was 370 000 s. The noise histogram

around the second harmonic and a fit with the Rayleigh distribution are also shown. The

birefringence ∆n obtained from the three data blocks are given in the first half of table 5.1.

Due to the mixing of ellipticities and rotations and due to the absence of signals, each line

can also be interpreted in terms of the reciprocal quantity. The second half of the same table,

with primed ∆κ ′, presents the values of this quantity obtained by applying Equations (4.9)

and (4.10).

The limits on the magnetic birefringence and the vacuum magnetic dichroism obtained

by the weighted averages of the in-phase values of Table 5.1, expressed at 68% c.l, are:

∆n (2014) = (3±13)×10−22 @ B = 2.5 T, (5.1)

∆κ (2014) = (3±13)×10−22 @ B = 2.5 T. (5.2)

The quadrature value of ∆n results to be (4±13)×10−22. All the numbers found are

compatible with zero. These results were published in the Physical Review D journal [58].

5.3 Run 2015

5.3.1 Characteristics of the 2015 run

The vacuum measurements of 2015 were preceded by a study of the cavity birefringence

performed by rotating one of the two mirrors of the cavity while keeping the other one fixed

(see Chapter 4) whereby the cavity took different equivalent wave-plate values. Furthermore,
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the analog locking circuit was substituted with an improved automatic locking circuit. A

fundamental property of the automatic locking is the increase in duty cycle to ≈ 24/24 hr.

Another important advantage is that the polarimeter’s stability shows an improvement due to

the reduced unlocked time. The power of the light stored inside the FP cavity was reduced

by a factor ≈ 8 (I0 = 9 mW, IFP = 3.7 kW) with respect to the Run2014 again to improve the

stability. This reduction in power did not affect the sensitivity of the polarimeter. This run

featured three different data blocks, two in ellipticity and one in rotation:

1) ellipticity: acquisition trigger 160 Hz; frequency of the magnets να = 4 Hz and

νβ = 5 Hz; sampling rate 40 and 32 samples/turn respectively. The acquisition time

was T = 1000000 s;

2) ellipticity: acquisition trigger 100 Hz with να = 5 Hz and νβ = 6.25 Hz resulting in a

sampling rate of 20 samples/turn for magnet α and 16 samples/turn for magnet β . The

acquisition time was T = 890000 s;

3) rotation: acquisition trigger 160 Hz with να = νβ = 5 Hz, resulting in a sampling rate

for both magnets of 32 samples/turn. The acquisition time was T = 140000 s.

The ellipticity modulation amplitude of the PEM was η0 = 4× 10−3 and the finesse was

F = 700000.
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Figure 5.3: Cotton-Mouton effect measurements for 230 µbar of Ar gas: Fourier spectra of

the extinguished intensity demodulated at the modulator frequency νm. A single magnet was

rotating at νB = 6 Hz. Left: ellipticity spectrum. Right: rotation spectrum. Integration time

is T = 640 s for both spectra.

Again here we present only one of the calibrations of this run. This calibration was made

by filling the vacuum chamber with 0.230 mbar of Argon gas with a purity of 1 ppm and

then measuring the CME. Figure 5.3 shows the two spectra for the ellipticity and the rotation.

Taking the ratio of the amplitudes of the two peaks [see Equations (4.9) and (4.10)] one finds
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Figure 5.5: Results for Run2015. Left column: Fourier spectra of the signals in a narrow

interval around 2νB. The values are corrected for the attenuation factor k(α). Right column:

histograms of the corresponding spectra plotted in the left panel; the data are fitted with the

Rayleigh distribution; the vertical arrows mark the amplitude values at 2νB. The strips at the

bottom of the plots correspond to the 68.3%, 95.5%, and 99.7% integrated probabilities. Top

row: magnet β rotating at νβ = 5 Hz, with integration time T = 106 s. Middle row: magnet

α rotating at frequency να = 5 Hz, T = 8.9×105 s. Bottom row: two magnets rotating at

the same frequency να = νβ = 5 Hz.
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to the measurement of the rotation. The histograms are fitted with the Rayleigh distribution;

a blue arrow indicates the value of the bin at 2νB.

Block Magnet frequency Quantity In-phase Quadrature Noise floor σ S meas
2νB

(
1/
√

Hz
)

k(α)

1 νβ = 5 Hz ∆n −0.6×10−22 +2.4×10−22 4.5×10−22 4.5×10−19 0.65

2 να = 5 Hz ∆n −3.8×10−22 +9.3×10−22 5.0×10−22 4.7×10−19 0.65

3 (να , νβ ) = (5, 5) Hz ∆n′ +0.4×10−22 8.2×10−22 3.0×10−19 0.65

1 νβ = 5 Hz ∆κ ′ −0.9×10−22 6.2×10−22 6.2×10−19

2 να = 5 Hz ∆κ ′ −5.2×10−22 6.8×10−22 6.4×10−19

3 (να , νβ ) = (5, 5) Hz ∆κ −0.3×10−22 −8.8×10−22 6.0×10−22 2.2×10−19

Table 5.2: Results of the 2015 measurements, corrected for k(α), of the magnetic bire-

fringence and dichroism of vacuum for B = 2.5 T. The primed measurements are obtained

through the use of Equations (4.9) and (4.10).

The values obtained for σ define the noise floor level of each measurement achieved after

the integration time T . A summary is presented in Table 5.2 in terms of ∆n and ∆κ . In the

first half of Table 5.2, we summarise the results of all the measurements in vacuum. Due to

the mixing of ellipticities and rotations and due to the absence of signals, each line can also

be interpreted in terms of the reciprocal quantity. The second half of the same table, with

primed ∆n′ and ∆κ ′, presents the values obtained by applying Equations (4.9) and (4.10).

The weighted averages are

∆n (2015) = (−1.7±3.1)×10−22 @ B = 2.5 T, (5.3)

∆κ (2015) = (−1.9±3.6)×10−22 @ B = 2.5 T. (5.4)

The quadrature value of ∆n results to be (+5.5±3.3)×10−22. All the values found for ∆n

and ∆κ are compatible with zero.

5.4 Run 2016

5.4.1 Characteristics of the 2016 run

Before run 2016 some improvements were introduced. We substituted the glass vacuum tubes

with more rigid ceramic material (silicon nitride). The interior of the ceramic tubes is rough,

and we found that this roughness does not permit the insertion of o-rings without generating

dust and thereby creating serious problems to the cavity stability when the magnets rotate.

All the attempts of inserting the o-ring baffles in the ceramic tubes (as in the glass tubes)

failed.
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The observed noise level of the polarimeter has a frequency dependence and therefore

one should work at the highest possibile frequency of rotation of the magnets to have a better

sensitivity. By upgrading the transmission system, we were able to reach a rotating frequency

of the magnets of 23 Hz with the polarimeter working. However, the vibrations induced

by the rotating magnets excited resonances of the structure sustaining the magnets and of

the vacuum tubes which rendered the measurements unfeasible. In fact, at high rotation

frequencies, spurious peaks were present in the ellipticity spectrum at 2νB. At a rotation

frequency of 8 Hz it was possible to integrate for long times with low accelerations of the

tubes and of the bench. We set the frequencies of the magnets at να = 8 Hz and νβ = 8.5 Hz.

We also reduced the power circulating inside the FP cavity to IFP = 1 kW corresponding to

an output intensity I0 = 2.5 mW.

The 2016 run features only one ellipticity data block:

1) ellipticity: acquisition trigger 136 Hz, frequency of the magnets να = 8 Hz and

νβ = 8.5 Hz, sampling rate is 17 samples/turn for the magnet α and 16 samples/turn

for the magnet β and acquisition time T = 2000000 s.

The ellipticity modulation amplitude of the PEM was set to η0 = 4×10−3 and the measured

finesse was F = 700000.
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Figure 5.6: Cotton-Mouton effect measurements for 228 µbar of Ar gas: Fourier spectra

of the extinguished intensity demodulated at the modulator frequency νm. Only magnet

Alpha was rotating at να = 5 Hz. Left panel: ellipticity measurement. Right panel: rotation

measurement. Integration time is T = 128 s for both spectra.

By filling the vacuum chamber with 0.228 mbar of Argon gas with a purity of 1 ppm,

we made the Cotton-Mouton calibration. Figure 5.6 shows two spectra of the extinguished

intensity after the analyzer, demodulated at the frequency νm: the left panel shows the

Cotton-Mouton ellipticity signal at 10 Hz. The right panel shows the observed rotation signal.

Taking the ratio of the amplitudes of the two peaks [see Equations (4.9) and (4.10)] one finds

a value α = 1.9 µrad, corresponding to an attenuation factor k(α) = 0.85. The frequency
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distance between the two Airy curves for the two orthogonal polarisation states corresponds

to 14 Hz. From these data one can extract a value for the unitary birefringence of Ar gas at

room temperature:

∆n (Ar)
u = (7.6±0.5)×10−15 T−2 atm−1

in agrement with value obtained during Run2015. It must be noted that during this calibration

the magnet used was rotating at νB = 5 Hz rather than at one of the frequencies used during

the vacuum measurements. The correct physical axis was determined from this calibration

by using the phase dependence on frequency as determined in Chapter 4.

5.4.2 2016 vacuum magneto-optical measurements

Some data segments that featured an excess wideband noise were discarded reducing the

useful integration time to T = 1600000 s. Furthermore we continuously monitored the

acceleration of the ceramic tubes keeping it at a minimum.

In Figure 5.7, top and middle rows, an FFT of the data blocks for the two magnets and

relative histograms are shown. These refer to ellipticity measurements. In the top row, the

amplitudes of the complex Fourier transform of the signal in a narrow interval around 2νB

confirm the absence of structures due to spurious signals. In the middle row, the histograms

of the values of the ellipticity noise amplitudes plotted in the top row, are shown, and are

fitted with the Rayleigh distribution. The arrow in blue indicates the value of the bin at 2νB.

The bottom row shows the Fourier transforms of the magnetic field probes used to monitor

the rotation of the magnets. These refer to the whole data set lasting 2×106 s. As can be

seen, each Fourier spectrum has a single bin above the noise in correspondence of the rotation

frequency of the magnet. The small pedestal is due to very slow drifts of the phase locked

frequency generators which have their intrinsic frequency resolution. Every few days we

corrected for this slight drift causing a small phase mismatch and hence the small pedestal. It

is important to note that a birefringence signal, if present, must occupy a single bin in the

Fourier spectrum just as the magnetic field probes.

Magnet frequency Quantity In-phase Quadrature Noise floor σ Smeas
2νB

(
1/
√

Hz
)

k(α)

(να ) = 8.0 Hz ∆n 6.0×10−22 2.1×10−22 3.0×10−22 3.8×10−19 0.85

(νβ ) = 8.5 Hz ∆n −0.7×10−22 −5.4×10−22 2.8×10−22 3.7×10−19 0.85

(να ) = 8.0 Hz ∆κ ′ 14×10−22 7.1×10−22 8.8×10−19

(νβ ) = 8.5 Hz ∆κ ′ −1.7×10−22 6.7×10−22 8.6×10−19

Table 5.3: 2016 values of the magnetic birefringence and dichroism of vacuum for B = 2.5 T.

The primed measurements are obtained through the use of Equations (4.9) and (4.10).
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Figure 5.7: Ellipticity data blocks for Run2016: Top row: the amplitude of the complex

Fourier transforms of the signal in a narrow interval around 2νB. The values are corrected

for the factor k(α). Middle row: histograms of the values plotted in the top row; we fit the

data with the Rayleigh distribution; the vertical arrows mark the unprojected values at 2νB

for each magnet. The strips at the bottom of the plots correspond to the 68.3%, 95.5%, and

99.7% integrated probabilities. Left colum: magnet α rotating at να = 8 Hz, with integration

time T = 1.6× 106 s. Right column: magnet β rotating at να = 8.5 Hz, T = 1.6× 106 s.

Bottom row: Fourier spectra, in a narrow frequency band around νB, of the magnetic field

monitors for each of the two magnets. As can be seen the signal occupies a single bin at

exactly the right rotation frequency. The slight pedestal is due to small phase adjustments

during the run (see text).
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The summarised data and the complete data analysis are reported in Table 5.3. Due to

the mixing between ellipticities and rotations we also interpret each line in terms of the

reciprocal quantity. The second half of the same table, with primed ∆κ ′, presents the values

obtained by applying Equations (4.9) and (4.10). The weighted averages of the numbers

listed in the “In-phase” column of Table 5.3 are:

∆n (2016) = (2.4±2.0)×10−22 @ B = 2.5 T, (5.5)

∆κ (2016) = (5.7±4.8)×10−22 @ B = 2.5 T. (5.6)

The quadrature value of ∆n results to be (−1.9± 2.0)× 10−22. All the values found are

compatible with zero within 95% c.l..

5.5 Vacuum measurement summary and time evolution

The summary of the vacuum magnetic birefringence measurements for runs Run2014,

Run2015, Run2016 are:





∆n (2014) = (+3.0±13)×10−22 @ B = 2.5 T,

∆n (2015) = (−1.7±3.1)×10−22 @ B = 2.5 T,

∆n (2016) = (+2.4±2.0)×10−22 @ B = 2.5 T.

where the errors indicate the 68 % c.l.. The weighted average of all values gives:

∆n (PVLAS) = (12±17)×10−23 @ B = 2.5 T. (5.7)

We must note that the magnetic birefringence predicted by Euler and Heisenberg is ∆n (EH) =

2.5×10−23 at B = 2.5 T, i.e. the noise level is a factor seven larger than the predicted signal

at 68 % c.l.

Figure 5.8 shows the historical evolution of the limits on the absolute value of the

magnetic birefringence of vacuum for PVLAS and other experimental efforts. All values

have been normalised to B2
ext. As can be seen, the PVLAS experiment has reached the best

limit. A detection of the signal predicted by QED will be possible only if the sensitivity of

the polarimeter is improved by an order of magnitude.

As far as dichroism is concerned, and again assuming a linear dependence of the measured

rotation on the length of the magnetic region, we obtain the following limits from the

measurement of ellipticity and rotation expressed at 68% c.l..
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∆κ (2014) = (+3.0±13)×10−22 @ B = 2.5 T,

∆κ (2015) = (−1.9±3.6)×10−22 @ B = 2.5 T,

∆κ (2016) = (+5.7±4.8)×10−22 @ B = 2.5 T.

By computing the weighted average one obtaines:

∆κ (PVLAS) = (9±28)×10−23 @ B = 2.5 T (5.8)

5.6 Limits on hypothetical particles

5.6.1 Axion Like Particles

The ellipticity and rotation measurements can be used to draw exclusion plots in the plane

(m,g) for Axion-like particles. However, it is not possible to use the birefringence and

dichroism results presented above since they are obtained with different magnet lengths. In

fact the dichroism due to ALPs has an L2 dependence [cf. Equations (1.48)]. In the ellipticity

measurement, the best limits for (m,g) are obtained considering each magnet separately at
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Figure 5.9: Comparison of laboratory experiments which put limits on the existence of ALPs

particles at 95% c.l. The shaded regions of the graph are excluded. The limits obtained by

PVLAS are for both scalar and pseudoscalar ALPs. The figure also shows the measurements

by the OSQAR [81] and the ALPS [96] collaborations.

different rotation frequencies, while for the rotation measurements the best limit is obtained

with both magnets rotating at the same frequency and in phase. The results are shown in

Figure 5.9. The limits exist for both scalar and pseudoscalar ALPs. Below 0.5 meV for

the model independent laboratory experiments the most stringent limits are given by the

OSQAR experiment [81], whereas the exclusion plot obtained using the PVLAS ellipticity

measurement dominates the m ≥ 1 meV region. Between these two values, our rotation limit

almost coincides with the 2010 ALPS result [96]. One must remind the reader that the CAST

solar helioscope has already excluded the whole region down to the level g ∼ 10−10 GeV−1

[97, 98]. However, the CAST results depend on the model assumed for the axion production

and emission by the sun.

In the low mass limit with m ≪
√

4ω
L

= 10−3 eV, where the coupling constant does not

depend on the mass of the ALP, one can do slightly better by taking the weighted average of
∆κ
L

for the single and double magnet configurations. In fact in the limit above,

g ≈
√

π∆κ

λL

4

Bext
(5.9)
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By averaging lines 4 and 5 of Table 5.2, lines 3 and 4 of Table 5.3, all divided by L, and line

6 of Table 5.2 divided by 2L and inserting it in the expression (5.9) one finds

〈
∆κ

L

〉
= (1.3±2.7)×10−22 m−1 (5.10)

having used L = 0.82 m corresponding to the length of one magnet. The resulting 95% c.l.

limit on g is therefore (1 T =
√

h̄3c3

e4µ0
= 195 eV2 and 1 m= e

h̄c
= 5.06×106 eV−1)

g =

√〈
∆κ

L

〉
π

λ

4

Bext
< 6.5×10−8 GeV−1. (5.11)

5.6.2 Millicharged Particles

Figure 5.10 shows the PVLAS exclusion plots on the existence of millicharged particles. Two

independent limits are derived from the birefringence and the dichroism values of Equations

(5.7) and (5.8), the latter being more stringent in the low-mass range (mε ≤ 0.1 eV), whereas

the former is dominating the high-mass range. We explicitly note that the Fermion exclusion

plot also applies to all types of neutrinos, limiting their charge to be less than ≈ 3×10−8e

for masses smaller than 10 meV.
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Figure 5.10: Exclusion plots for MCP particles at 95% c.l. derived from the dichroism and

birefringence values of Equations (5.7) and (5.8). The top panel shows the Fermion MCP,

and the bottom panel shows the scalar MCP. The excluded regions are above the curves. The

limit derived from rotation dominates at small masses, whereas the birefringence limit is

effective at large masses. The two branches of the birefringence curve are not connected in

the mass range around χ = 1 (dashed line), where ∆n changes sign. A cubic spline joins the

two branches of the dichroism curve.





Chapter 6

Conclusions

The work described in this thesis was carried out as part of the experiment PVLAS, de-

veloped at the INFN of Ferrara (Italy) and at the Department of Physics of the Ferrara

University. Heisenberg’s Uncertainty Principle together with the existence of the positron

lead to corrections of Maxwell’s equations in vacuum, giving rise to new effects including

the interaction between photons. These corrections show that vacuum, in the presence of a

magnetic field, becomes birefringent. The aim of the PVLAS experiment is to perform a first

measurement of the magnetic birefringence of vacuum (MBV). Experimentally this is done

by measuring the ellipticity acquired by a linearly polarised laser beam that propagates in a

direction orthogonal to a magnetic field which fills a vacuum region. In this configuration,

a rotating magnetic field will induce a modulated ellipticity on the laser beam at twice the

rotation frequency. An ellipticity and a rotation (due to a dichroism) of the polarised beam in

a transverse magnetic field can also be generated due to a coupling of two photons with an

axion like particle or a millicharged particle.

The activities during the three years of PhD studies were centered on a characterisation

of the two main issues for the detection of MBV: systematics and wide band noise. The first

part was dedicated to systematic effects or, better, the noise in phase with the rotation of the

magnetic field. We have identified two types of systematic signals: one is due to the coupling

between the diffused light and the vacuum tubes passing through the magnets and the second

to the mechanical acceleration of the optical bench induced by the rotating magnets. As a

consequence of the magnetic gradients inside the magnets, a coupling force between the

vacuum tube and the magnets pushes laterally the diamagnetic tube during rotation. This

displacement modulates the diffused light inside the cavity and generates both spurious

ellipticity and rotation signals. Similarly to the effect of a birefringence, this systematic effect

is present at twice the frequency of the rotation of the magnets. The acceleration of the optical

bench also generates fake signals. Although the optical bench is seismically isolated by
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means of air springs, it presents small components of acceleration in phase with the rotating

magnets. This acceleration is transmitted to the optical bench by an unbalance of the magnets.

This residual acceleration, reaching the elements of the optical bench, modulates the phase of

the locking system and generates spurious signals in ellipticity and rotation. After a detailed

study of these two phenomena, we concluded that the systematics due to the tube and diffused

light dominates in the low-frequency range (0-16 Hz). Instead, the systematics due to the

optical bench dominates in the high-frequency range and both phenomena generate spurious

signals in ellipticity and rotation measurements.

We also identified a cross talk between ellipticities and rotations in a birefringent Fabry-

Perot cavity by measuring the Cotton-Mouton effect in gases. To correctly measure these

signals in a high frequency range one must first determine the frequency dependence of

the signal. A characterisation of a birefringent cavity by analytical calculations, followed

by a measurement of the birefringence of the mirrors, was then performed. Furthermore,

the dynamic behaviour of the cavity is also explained showing how the measured signal is

filtered. This analytical study and experimental measurements show how the birefringence of

the mirrors modify the frequency response of the cavity from a standard first order filter. This

effect must also be taken into account for a correct interpretation of the signal of ellipticity

or rotation. Since the birefringence of a mirrors is never zero, this characterisation of the

dynamical behaviour of a cavity will be useful for other similar experimental setups. Up to

now only a simple first order linear filter correction was considered in the literature.

The wide band noise has also been investigated experimentally and is the only obstacle

limiting the present apparatus from reaching of the final goal. We have done tests by changing

a number of parameters of the apparatus: different modulation amplitudes of the ellipticity

modulator, different circulating power in the Fabry-Perot cavity, redesign of the electronics of

the locking system, further reduction of the diffused light and possible correlations between

the wide band noise level and mechanical and environmental noise. The results of these tests

always brought us to conclude that these are not limiting the present wide band noise.

The comprehension of the systematic effects has allowed long integration times limited

by the present wide band noise. In fact, after curing the diffused light, by mounting a series

of baffles inside the vacuum tube between the two mirrors of the Fabry-Perot cavity, it was

possible to integrate for a long time T with the noise scaling as 1/
√

T . The automatic

laser locking circuit played an important role for 24/24 hrs data taking, and a total time

of T ≈ 5×106 s was obtained. We measured at rotation frequencies of the magnets up to

8.5 Hz (signal at 17 Hz). A further increment of the frequency was not been possible due to

resonances of the vacuum glass tube and to the vibrations of the structures supporting the

magnets.
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Although the present sensitivity of the PVLAS experiment has not yet reached the level

that would guarantee the capability of measuring MBV in a reasonable time, it is the best

sensitivity S∆n/B2 in the unitary birefringence ever realised:

Smeas
∆n/B2 = 4.1×10−20 1

T2
√

Hz
.

This sensitivity would require an integration time T ≈ 108 s to reach the predicted QED

birefringence signal with a signal to noise ratio of 1. By comparing the different MBV

detection experiments, at present the PVLAS apparatus has reached the lowest noise level in

the measurement of magnetic birefringence of vacuum:

∆n (PVLAS) = (12±17)×10−23 @ B = 2.5 T.
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Figure 6.1: Plot of the missing factor of the baseline noise at 3σ c.l. to reach the predicted

QED value for different experimental efforts.

In Fig. 6.1 we report the missing factor, at a 3 σ level, to reach the first detection of

MBV. The significant improvement of the last PVLAS-FE data was made possible due to the

extensive search and determination of systematic sources of spurious signals. This allowed

long integration time leading to a noise floor without signals at 2νB at a 1 σ level.
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The result for the dichroism is:

∆κ (PVLAS) = (9±28)×10−23 @ B = 2.5 T

The new results on the magnetically induced dichroism and birefringence have also set new

limits on the existence of hypothetical particles which couple to two photons, both axion-like

and milli-charged.

Regarding our current limiting noise, i.e. the wide band noise, a hint on the origin of the

excess wide band noise may come from the fact that this noise seems to be present in all

experiments that want to measure the MBV. In fact the sensitivities in birefringence of all

the experiments at their working frequency follow a common law approximately given by

1/ f α law with α between 0.5 and 1. Without the presence of a Fabry-Perot cavity, the noise

measured is compatible to the predicted one (usually shot-noise). This experimental fact is a

hinting that this noise may be due to a fundamental intrinsic noise which may have a thermal

origin. A attempt to cool the mirrors may clarify this hypothesis. An analytical estimation of

this hypothesis is needed. This will be a future project of the experiment.

In any case there are two possible ways to increase the signal-to-noise ratio. The first

method is to increase the
∫

B2dl for example resorting to superconductor high-field magnets.

The second is to increase the frequency of the effect on the basis the 1/ f α law. These two

possibilities are correlated because typically intense magnetic fields may be modulated at

relatively low frequencies. In the case of weak magnetic fields of the order of ≈ 2− 3 T

higher rotation frequencies are possible at the cost of a smaller effect due to the filtering

by the cavity. A possibility to uncouple the two methods, which still has to be verified

experimentally, is the rotation of the polarisation inside the magnetic field but keeping its

direction fixed on the mirrors. This modulation can be realised by inserting two rotating half

wave plates inside the cavity. This proposal is described in detail in ref. [99].

As for the cooling of the mirrors, some preliminary tests are underway within the PVLAS

collaboration. By using a liquid nitrogen cooled, an almost 4π shield surrounding a mockup

mirror, has given a temperature of ≈ 160 K through radiative cooling [100]. The system for

cooling the interferometer mirrors is under realisation.

According to different possible thermal effects, the intrinsic thermal noise could have

a dependence on temperature as T or
√

T . Even if the noise is inversely proportional to T

a factor ≈ 2 gain is still not sufficient to measure the magnetic vacuum birefringence with

a signal-to-noise ratio of 1 at the present rotation frequencies. However, if the noise of the

experiment shows an improvement the way to reach MBV is drawn. The cooling at 160 K

accompanied by an improvement of the structure supporting the magnets and of the rigidity

of the vacuum tubes is a possible solution.
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