
#### Abstract

The first problem we are dealing with in Chapter 2 is a quaternary problem that can be seen as a generalization of Languasco \& Zaccagnini [2], Liu \& Sun [4] and Wang \& Yao [5]. The second quaternary problem outlined in Chapter 3 has a lower density and it leads to a narrower range for $k$.

The last problem outlined in Chapter 4 of this dissertation deals with an improvement of the result contained in Languasco \& Zaccagnini [3]. Such improvements are contained in [1], due to Languasco, Zaccagnini and the author of this dissertation.

All these problems were treated by combining Harman's technique on the minor arc with a suitable estimate for the $L^{4}$-norm of the relevant exponential sum over primes.

\section*{References} [1] A. Gambini, A. Languasco, and A. Zaccagnini. A Diophantine approximation problem with two primes and one $k$-th power of a prime. arXiv preprint arXiv:1706.00343, 2017. Submitted. [2] A. Languasco and A. Zaccagnini. A Diophantine problem with a prime and three squares of primes. Journal of Number Theory, 132(12):3016-3028, 2012. [3] A. Languasco and A. Zaccagnini. A Diophantine problem with prime variables. in V. Kumar Murty, D. S. Ramana, and R. Thangadurai, editors, Highly Composite: Papers in Number Theory, Proceedings of the International Meeting on Number Theory, celebrating the 6oth Birthday of Professor R. Balasubramanian (Allahabad, 2011). Ramanujan Mathematical Society-Lecture Notes Series, 23:157-168, 2016. [4] Z. Liu and H. Sun. Diophantine approximation with one prime and three squares of primes. The Ramanujan Journal, 30(3):327-340, 2013. [5] Y. Wang and W. Yao. Diophantine approximation with one prime and three squares of primes. Journal of Number Theory, 2017.


